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Comparative Analysis of Fuzzy ART and ART-2A
Network Clustering Performance

Thomas Frank, Karl-Friedrich Kraiss, and Torsten Kuhlen

Abstract—Adaptive resonance theory (ART) describes a family
of self-organizing neural networks, capable of clustering arbi-
trary sequences of input patterns into stable recognition codes.
Many different types of ART-networks have been developed to
improve clustering capabilities. In this paper we compare cluster-
ing performance of different types of ART-networks: Fuzzy ART,
ART 2A with and without complement encoded input patterns,
and an Euclidean ART 2A-variation. All types are tested with
two- and high-dimensional input patterns in order to illustrate
general capabilities and characteristics in different system envi-
ronments. Based on our simulation results, Fuzzy ART seems
to be less appropriate whenever input signals are corrupted
by addititional noise, while ART 2A-type networks keep stable
in all inspected environments. Together with other examined
features, ART-architectures suited for particular applications can
be selected.

Index Terms—Adaptive resonance theory, clustering, clustering
analysis, neural networks, self-organization, sensor signals.

I. INTRODUCTION

S
ELF-ORGANIZED clustering is a powerful tool when-

ever huge sets of data have to be divided into separate

categories. The need for setting up such categories may arise,

e.g., from the need to set up recognition codes for complex

system-state classes, or to discover separated clusters of data

subsets with characteristic similarities (“data mining” [10]).

In the field of neural networks, the adaptive resonance theory

(ART), introduced and developed by Carpenter et al. from

the Center for Adaptive Systems, Boston University [3], is

a popular representative for self-organized clustering. Some

outstanding features of ART, besides its clustering capabilities,

attract the attention of application engineers. Among these

are performance, economic usage of memory resources and

temporal stability of stored knowledge. Neural networks are

typically applied when standard statistical clustering methods

fail on the interpretation of a given dataset, according to

low performance or vast requirements of system resources.

However, neural networks follow internal rules, making their

applicability to a given problem predictable. The clustering

performance of ART-networks is not well documented in

the literature. It is assumed that clustering depends not only

on the network architecture and parameters, but also on

the dimensionality and nature of the clustered data. This

Manuscript received July 30, 1997; revised January 6, 1998.
T. Frank is with Siemens Business Services, CC Machine Vision, D-53119

Bonn, Germany.
K.-F. Kraiss and T. Kuhlen are with the Lehrstuhl für Technische Infor-

matik, Aachen University of Technology, D-52074 Aachen, Germany.
Publisher Item Identifier S 1045-9227(98)02766-0.

paper concentrates on the comparative analysis of clustering

properties for several variants of ART-networks on two types

of input patterns. Two-dimensional pattern sets illustrate the

geometric characteristics of ART-clustering and the internal

representation of knowledge by prototypes. Sampled step

responses of second-order systems are used as an example

of high-dimensional input patterns, modeling ART properties

by clustering the shapes of time-dependent sensor signals.

II. SELF-ORGANIZED CLUSTERING WITH ART-NETWORKS

The common algorithm used for clustering in any kind of

ART network is closely related to the well-known -means

algorithm [1]. Both use single prototypes to internally repre-

sent and dynamically adapt clusters. The -means algorithm

clusters a given set of input patterns into groups. The

parameter thus specifies the coarseness of the partition. In

contrast, ART uses a minimum required similarity between

patterns that are grouped within one cluster. The resulting

number of clusters then depends on the distances (in terms

of the applied metric) between all input patterns, presented to

the network during training cycles. This similarity parameter

is called vigilance [3]. Fig. 1 illustrates the main stages of

a simplified ART algorithm.

The first step, the preprocessing stage, is the creation of

an input pattern as an array with a constant number of

elements. ART requires the same pattern size for all patterns,

i.e., the dimension of the input space into which all cluster

regions shall be placed. Any of the already formed prototypes

is of the same dimension . In addition, the elements of an

input pattern must fit constraints concerning, e.g., value bounds

or the geometric length of the array as vector. These constraints

are characteristics of the different types of ART networks

and are needed to make the input comparable to the cluster

prototypes. Once the input pattern is formed, it is compared

to the stored prototypes in a search stage. If the degree

of similarity between current input pattern and best fitting

prototype1 is at least as high as vigilance , this prototype

is chosen to represent the cluster containing the input. The

degree of similarity is typically limited to the range [0,1]. If

similarity between input pattern and best fitting prototype does

not fit into the vigilance interval , a new cluster has to be

installed, where the current input is most commonly used as

the first prototype or cluster center. Otherwise, if one of the

previously committed clusters matches the input pattern well

1 Upper case letters are used to mark the winning prototype/cluster of a
comparison.
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Fig. 1. Pattern processing by an ART network, consisting of a preprocess-

ing-, search-, and adaptation-stage. The search stage will be defined more
precisely as a circuit of choice, match, and reset. Termination of the algorithm
is guaranteed by the initial values of prototypes.

enough, it is adapted by, e.g., slightly shifting the prototype’s

values toward the values of the input array.

Specific ART neural networks, such as ART 2 [2] or Fuzzy

ART [7], more or less extend this basic layout to show a link

between the computational characteristics of the algorithms

and the biologically motivated connectionist approach. Con-

cerning the description of the algorithms we used for ART

computer simulations in this paper, these extensions are not

our primary focus. More detailed information on particular

network designs can be found in [2], [3], [7], and [14].

The primary processing module of any ART network is a

competitive learning network, as shown in Figs. 2 and 3 [3].

The neurons of an input layer register the values of an

input pattern . Every neuron of an output

layer receives a bottom-up net activity , built from all -

outputs . The vector elements of can be

seen as results of comparisons between input pattern and pro-

totypes .

These prototypes are stored in the synaptic weights of the

connections between - and -neurons. Only -neuron ,

receiving the highest net activity , sets its output to one,

while all other output neurons remain zero

if

otherwise.
(1)

Fig. 2. A competitive learning network. Input layer F1 adopts the values
of input pattern I. A winner-take-all output layer F2 indicates the according
cluster for I, by the position of its one and only activated neuron J .

Fig. 3. A simplified representation of the competitive learning network from
Fig. 2. All inputs and outputs of F1 and F2 are united in one arrow for any
input or output vector. The adaptive weight-matrix Wij of all connections
between layer F1 and F2 is replaced by the ./-symbol.

One possible way to compute net activities , and by that

measure the similarity between and , is the weighted sum

(2)

Variations on this measure are often employed because the

value exerts great influence on the resulting clusters. After

an -winner has been found, the corresponding prototype

is adapted to the input pattern . One

suitable method for adaptation is to move slightly toward

input pattern

(3)



546 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 3, MAY 1998

The constant learning rate is chosen to prevent pro-

totype from moving too fast and therefore destabilizing

the learning process. Prototypes for this kind of competitive

learning network can be initialized either with random values

or with values of randomly chosen input patterns from the

training sequence.

Competitive learning networks of this kind tend toward

unstable categorization whenever the distances between single

input patterns vary in too wide a range [3]. Additionally, there

is no way to control either the number of clusters produced

by the network, or the minimum similarity of patterns in

one cluster. The ART solves this problem by extending the

competitive learning network as shown in Fig. 4. A second set

of connections is added, sending -output back to layer

. The synaptic top-down weights of these connections

are, besides a possible scaling factor, identical to the bottom-up

weights . The top-down net activity is usually calculated

by

(4)

This leads to

(5)

because all -outputs, except , are set to zero [see (1)]. So

input layer receives prototype , representing the current

winning cluster , as net activity. Now the most complex

part of signal processing in ART networks takes place, i.e.,

matching prototype with input pattern . This task is

completed in ways characteristic to the different types of

ART networks and, as in ART 2 [2], uses extensions to the

internal structure of layer . This yields a single matching

value, that is compared with the vigilance , defining the

minimum similarity between an input pattern and the prototype

of the cluster it is associated with. If the matching value is

smaller than vigilance , the current winning -neuron is

removed from the competition by a reset signal. The reset

signal forces the activation of -neuron to zero and another

-neuron is activated, receiving the highest net activity of

all nonreset output neurons. Once a prototype is found that

leads to a matching value with input pattern , at least as

high as vigilance , no further reset signal is applied and the

network attains resonance. The position of the last winning -

neuron indicates the final cluster for input , and the associated

prototype is adapted. Fig. 1 summarizes these steps of a single

pattern processing by an ART-network. None of the output

neurons is reset at the beginning.

The initial values of prototypes that have not yet been

accessed by an input pattern, provide for two key features.

1) Previously accessed prototypes are first compared to the

input pattern before an uncommitted prototype is chosen.

2) If none of the committed clusters matches the input

pattern well enough, search will end with the recruitment

of an uncommitted prototype.

Fig. 4. Basic layout of an ART network. The competitive learning network
from Fig. 3 is extended by a second set of connections leading all F2-outputs
uj back to the input layer F1.

III. DESCRIPTION OF ART-NETWORK ARCHITECTURES

The following section describes different ART-network ar-

chitectures capable of processing analog input patterns. Prop-

erties will be discussed for Fuzzy ART [7] and ART 2A [6],

as well as for some modified ART 2A algorithms. The ART

1 algorithm [3] is not discussed, as it is exclusively designed

for binary input patterns and therefore not comparable to all

other ART variants presented in this chapter. The predecessor

of ART 2A, ART 2 [2], is neglected, because ART 2A

incorporates nearly the same clustering characteristics while

working several orders of magnitude more efficiently in com-

puter simulations [6]. Some features of the neural architectures

described in the original publications are skipped, as they are

not relevant for this analysis.

A. Fuzzy ART

Referring to Fig. 1, any ART-type net can be characterized

by its preprocessing-, choice-, match- and adaptation-rule,

where choice and match define the search circuit for a fitting

prototype. With Fuzzy ART [7], these rules are as follows.

• Preprocessing

All values of an input pattern must fit into the interval

(6)

• Choice

Bottom-up net activities, leading to a preliminary choice

of a prototype, are determined using the fuzzy conjunction

, which is defined by

A single net activity can be seen as the degree of

prototype , being a fuzzy subset of input pattern [14]

(7)
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where is fuzzy subset of , if . The size

of a vector is determined by its -norm, the sum

of its components. The choice parameter [7] provides

a floating point overflow, if . In [9] some

additional properties of Fuzzy ART with variations on

are pointed out, such as, e.g., lowest possible vector size

of prototypes. Simulations in this paper are performed

with a value of .

• Match

The similarity of input and current winning prototype

is measured by the degree of being a fuzzy subset

of . Resonance and adaptation occurs, if

(8)

• Adaptation

The winning prototype is adapted by moving its

values toward the common MIN vector of and

(9)

The learning rate defines how quickly prototypes

converge to the common minimum of all input patterns as-

signed to the same cluster. With the network is working

in a fast learning mode [7], stabilizing the network state after

a few presentations of all training patterns. In contrast, lower

learning rates lead to a slow learning mode. ART-networks

can simply be run in a pure classification mode by setting

the learning rate of a previously trained network to zero,

which prevents all prototypes from being modified by new

input patterns. Uncommitted prototypes are initialized with a

constant value

(10)

This ensures that search will end if a previously uncommitted

prototype is top-down compared with input by (8), since

then. The higher the initial value for

chosen, the lower the bottom-up net activity resulting from

an uncommitted prototype (7). By that, initial values

guarantee that all committed prototypes are compared with the

input, before an uncommitted cluster is chosen as winner.

A useful method to accelerate learning in ART networks

is to set the learning rate whenever a previously

uncommitted cluster is adapted to the current input vector.

Then input is identically copied as the first prototype of

a new cluster if no other stored prototype matches the input

well enough. Committed prototypes might then be adapted

more slowly , to preserve them from being corrupted

by noisy input patterns. This method is called fast-commit

slow-recode [7] and is used for all simulations of Fuzzy ART

networks in this paper.

1) Complement Coding: Carpenter and Grossberg mention

a problem of cluster proliferation that can occur with Fuzzy

ART [7]. Because vector elements of prototypes can only

become smaller by adaptation, a fuzzy ART network tends to

create more and more prototypes over time that match input

patterns with higher values, while prototypes with very low

values might never be accessed further on. This behavior is

avoided by normalizing inputs to a constant vector length [7],

[9]. One possible method is to use an Euclidean normalization

to convert an input pattern into a coded input

The main disadvantage of this method is the complete loss

of any information stored in the vector length of an input

pattern. Therefore, a modified normalization variant called

complement coding is typically used to set all input patterns to

a common vector length [4], [7], [9]. An original vector

is coded into an input pattern by

adding the complements of its elements to the original vector.

This doubles the dimension of all input patterns and prototypes

(11)

The -norm2 of complement encoded vectors of the same

dimension is constant, independent of the values of their

elements

(12)

Using complement coding, (8) reduces to

(13)

Uncommitted prototypes are still initialized according to (10).

Working in fast learning mode , a prototype in

Fuzzy ART represents the common MIN-vector of all input

patterns , with , assigned to the same cluster ,

in at least one presentation

(14)

Using complement coding, input patterns

lead to prototypes representing the common MIN- and MAX-

vectors of all uncoded patterns

(15)

With lower learning rates , network prototypes converge more

slowly to these MIN- and MAX-bounds.

2 The Lr-norm is defined by jXj

(r)
=

m

i=1 x
r

i
.
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Fig. 5. Similarity in ART 2A is measured by angle ' between input
vector I and prototype WJ. Input I is assigned to cluster J if cos'

� cos� = vigilance �.

B. ART 2A

This section discusses another popular ART algorithm,

called ART 2A [6]. In contrast to Fuzzy ART, ART 2A

uses the angle between prototype vectors and input pattern

to find a fitting cluster. Fig. 5 illustrates the relationships for

two-dimensional input patterns.

The central functions of the ART 2A-algorithm, according

to Fig. 1, are as follows.

• Preprocessing

No negative input values are allowed and all uncoded

input vectors are normalized to unit Euclidean length,

denoted by function symbol

(16)

Carpenter and Grossberg suggest an additional method

of noise suppression to contrast enhance characteristic

pattern features by setting all input values to zero, which

do not exceed a certain bias [2]

(17)

if

otherwise
(18)

This kind of contrast enhancement does only make sense

if characteristic features of input patterns, leading to a

distribution on different clusters, are coded exclusively in

their highest values. With bounded by

(19)

the upper limit will lead to complete suppression of all

patterns having the same constant value for all elements.

• Choice

Bottom-up net activities, leading to the choice of a

prototype, are determined by

if indexes a

committed

prototype

otherwise

(20)

(21)

Bottom-up net activities are determined differently for

previously committed and uncommitted prototypes. The

choice parameter again defines the maximum depth

of search for a fitting cluster. With , all committed

prototypes are checked before an uncommitted prototype

is chosen as winner. The simulations in this paper apply

.

• Match

Resonance and adaptation occurs either if is the index

of an uncommitted prototype or if is a committed

prototype and

(22)

• Adaptation

Adaptation of the final winning prototype requires a shift

toward the current input pattern

(23)

ART 2A-type networks always use fast-commit slow-

recode mode. Therefore the learning rate is set to

if is an uncommitted prototype and to lower values for

further adaptation. If contrast enhancement is used, (22)

is modified to

if

otherwise.

(24)

Since match and choice do not evaluate the values of un-

committed prototypes, there is no need to initialize them with

specific values. ART 2A-related networks should not be used

in fast-learning mode with , because prototypes then

begin to “jump” between all patterns assigned to their cluster,

instead of converging toward their mean.

C. ART 2A-C: Complement Encoding with ART 2A

The main disadvantage of ART 2A for many implemen-

tations is the loss of all information coded in the length of

an input pattern, because all patterns are normalized to unit

Euclidean length. In other words, ART 2A cannot distinguish

between two uncoded inputs and , where ,

with . Using complement encoding, as described in

Section III-A1, all information stored in the length of an

uncoded vector is coded into the direction of the resulting

vector . Whitely et al. used this method to extend



FRANK et al.: COMPARATIVE ANALYSIS OF FUZZY ART AND ART-2A 549

the recognition capabilities of ART 2A in processing analog

sensor signals [12]. One way to include complement coding

into the ART 2A algorithm, is to use it as an additional

preprocessing step before entering the algorithm. Unfortu-

nately, prototypes are normalized to unit length and adapted to

normalized input patterns, when doing so. To keep a geometric

interpretation of prototypes as a measure of all uncoded input

patterns assigned to their cluster, normalization is moved from

preprocessing and adaptation to the choice/match function.

The complete algorithm is as follows.

• Preprocessing

(25)

• Choice

if indexes a

committed

prototype

otherwise

(26)

(27)

• Match

As with ART 2A, resonance and adaptation occurs either

if indexes an uncommitted prototype or if is already

committed and

(28)

• Adaptation

(29)

In contrast to Fuzzy ART using complement encoding, ART

2A-C prototypes remain a complement encoded pattern, even

when adapted to several different input patterns. This is shown

for two one-dimensional complement coded input patterns

and . Following (29), a

vector is also a complement coded

one-dimensional pattern

with

and

Hence ART 2A-C prototypes represent a complement coded

mean-vector of all input patterns assigned to the individual

clusters.

D. ART 2A-E: Euclidean Distances in ART 2A

Another way to preserve vector-length information in ART

2A pattern processing, is to replace the ART 2A-distance

metric with a Euclidean measurement of similarity and skip

the length normalization of inputs in the preprocessing and

adaptation stage. A comparable approach is done in [11]. The

Euclidean algorithm used in this section, differs in some ways

from [11] to keep it closer to the ART principles.

• Preprocessing

All elements of an input vector should fit to the interval

(30)

• Choice

Bottom-up net activities are determined using the Eu-

clidean distance, normalized with the dimension of

an input vector. This keeps measurements of similarity

independent from the number of vector elements. The

distance is subtracted from one to get , if input

vector and prototype are identical

(31)

Uncommitted prototypes should be initialized with values

to achieve a sufficiently deep search for a fitting

committed prototype.

• Match

The match function remains as in (28).

• Adaptation

(32)

Table I summarizes the ART-algorithms discussed. Choice-

and match-functions of ART 2A-type networks are listed only

for committed prototypes/clusters. All ART 2A-type network

simulations are done in fast-commit slow-recode mode, setting

when adapting a previously uncommitted prototype and

, else.

IV. COMPARATIVE ANALYSIS OF CLUSTERING PERFORMANCE

This section presents clustering examples for all ART-

architectures discussed in the previous section. Two types

of pattern sets, both consisting of 100 different patterns, are

used to analyze and compare clustering performances. Patterns

are presented in different random orders. A training sequence

with a particular network and pattern set is stopped after

each pattern has been presented a minimum number of times.

Therefore not all patterns are necessarily presented the same

number of times. This strategy takes into account that in

many inspected environments neither the frequency nor the

order of particular system states is predictable. Unless it is

explicitly mentioned, simulations with different network types

or network parameters are performed with the same random

but constant order of patterns to keep the results comparable.

When a training sequence is completed, the final distribution

of the complete pattern set into clusters is tested with a
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TABLE I
SUMMARY OF THE ART-ALGORITHMS USED FOR SIMULATIONS IN THIS PAPER

single presentation of each individual pattern in the set, while

learning rate is set to zero (classification mode).

A. Clustering Performance for Two-Dimensional Data

The first inspected pattern set consists of 100 two-

dimensional patterns, representing uniformly distributed points

in a unit square. Pattern values are taken from the interval

to fit the input restrictions of any described ART-

network type. The spatial distribution of the data points does

not support an obvious distinction of clusters. So the clustering

performance in different simulations demonstrates clearly the

different geometric interpretations of the pattern space and the

according prototype representations. Fuzzy ART and the ART

2A-type networks are discussed separately, because of their

characteristic differences.

1) Two-Dimensional Clustering with Fuzzy ART: In the

special case of area points as two-dimensional input patterns,

(15) defines four-dimensional Fuzzy ART-prototypes as rect-

angles, with the first two elements representing the lower left

corner, and the last two elements representing the complements

of the upper right coordinates. A stable network state is

reached, when all uncoded training patterns are

enclosed by at least one of these prototype rectangles. If a

complement coded input pattern

defines a point inside a prototype rectangle, (9) will lead to

no further network modifications, since then.

According to (13), resonance and adaptation of occurs, if

(33)

Hence the vigilance parameter defines a maximum extension

of a single rectangle [7], with a lower bound for the -norm

of any committed Fuzzy ART-prototype

(34)

The upper limit results from (12) and defines the initial

extension of a prototype after its first adaptation. With learning

rate , the adaptation of a prototype toward an input

pattern not yet lying within its area, stretches the according

rectangle to the minimum area, covering all patterns assigned

to the same cluster for at least one time. With a stable

network state is reached, as soon as all training patterns have

been presented just one time (one-shot learning [7]). Fig. 6(a)

shows an example for one-shot learning of the complete 2-D

pattern set. The patterns were presented in a random order,

until any pattern was processed by the network at least once.

Cluster 5 is divided into two separate areas, 5a and 5b, because

its prototype rectangle is partially covered by that of cluster 2.

Bottom-up net activities are set to their maximum value

, whenever an input pattern defines a point inside a

prototype rectangle [see (7)]. If this point is inside more than

one rectangle, the prototype with lowest index j is chosen as

winner3. The prototypes of the network, used in Fig. 6(a), are

With lower learning rates in slow-learning mode, pro-

totype rectangles do not tend to overlap that often. While

rectangles cover the input space more efficiently up to their

maximum size, the overall number of stored prototypes is

3 The winning index might also be chosen at random, if more than one
prototype leads to a maximum bottom up net activity.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Two-dimensional clustering performance for Fuzzy ART-networks. Circles mark the spatial positions of uncoded input patterns. Prototypes are printed
as rectangles. Patterns assigned to a common cluster are marked with an underlying gray shade. Cluster 5 in (a) is split in two separate areas (5a and 5b).
The experiments illustrated in (e) and (f) differ in their random pattern-presentation order.

reduced. Fig. 6(b) shows clusters from a network with the

same vigilance, but lower learning rate than in Fig. 6(a), after

adaptation to the same random training sequence. Because

training stopped when each pattern was presented at least one

time, prototype rectangles do not cover all patterns, assigned

to the cluster they represent. Fig. 6(c) shows clusters when

pattern presentation is continued until each pattern is processed

at least ten times. Prototypes now reached their stable values,

indicated by the fact, that all training patterns are covered by

prototype rectangles.

With learning rates , the number of clusters, as well as

the distribution of patterns to clusters, might vary throughout

pattern presentation, as long as prototypes have not yet reached

their stable equilibrium. Fig. 6(d) and 6(e) shows intermediate

states of the same network after each pattern of the training

sequence has been presented at least one and at least ten times.

The number of clusters increases from six to eight. Higher

vigilances limit the maximum area in pattern space covered by

a single prototype rectangle and increase the total number of

clusters on a static pattern set. Fig. 6(f) uses the same values

for parameters and as Fig. 6(e). Each pattern is again

presented at least ten times, but in a different random order.

The example demonstrates, that even lower vigilances do not

necessarily prevent cluster rectangles from overlapping. The

number of resulting clusters depends not only on vigilance

parameter but also on the order of pattern presentation.

2) Two-Dimensional Clustering with ART 2A-Type Net-

works: ART 2A prototypes are continually modified as long

as the network is presented with input patterns. The prototypes

thus never reach stable equilibria. An appropriate time to stop

training is reached, when all patterns are assigned to the same

clusters over two or more presentations. In most cases this state

is reached after few training cycles, independent of the nature

and size of the input patterns [12]. With the two-dimensional

input patterns used in this section, stability in this sense is

always reached with a combination of learning rate

and a minimum of ten presentations per pattern. The geometric

interpretation of ART 2A-type prototypes is a mean-vector of

all patterns assigned to the according clusters. Variations

on influence the number of presentations necessary to

lead prototypes to this mean point. A rule-of-thumb is to

choose as high as possible, to still achieve stability in the

above mentioned sense, with the lowest necessary number

of presentations per pattern. As mentioned before, a Fuzzy

ART-like one-shot-learning with cannot be performed

with ART 2A-type networks, since clustering will not stabilize

when a prototype is always set to the values of the last input

pattern assigned to the cluster it represents. Fig. 8 illustrates
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Fig. 7. Cluster borders in ART 2A-E are defined by the centerlines (thick
lines) between prototype positions (crosses). Here illustrated for the clustering
example of Fig. 8(g).

clustering results of ART 2A and the modified algorithms ART

2A-C and ART 2A-E. The networks were trained with two

different values for vigilance parameter and two different

random pattern sequences (A and B). Both sequences stopped

after each pattern was presented at least ten times. Vigilances

were chosen with no other prediction but a number of three or

four for the lower and five or six clusters for the higher value,

when training with pattern sequence A. Prototype positions

are marked with crosses. Even though ART 2A-C stores four-

dimensional prototype vectors, the interpretation remains a

two-dimensional complement encoded point in pattern space

(see Section III-C). For example with Fig. 8(d), prototype

values of ART 2A-C are

The first thing to remark, when looking at Fig. 8, is the

way pattern space is separated into clusters by the different

network-types. Since ART 2A normalizes all prototypes and

uncoded input patterns to unit Euclidean length (17), a pattern

appears the same to the network as a pattern

. As a consequence, clusters separate the

two-dimensional pattern space along radials [Fig. 8(a)–8(c)].

Vigilance defines a maximum angle between input and

prototype vector of for and

for (see Fig. 5).

ART 2A-C and ART 2A-E behave in a very similar fashion

in separating pattern space into clusters, even if ART 2A-C

compares the angle between a complement coded input pattern

and a prototype, while ART 2A-E measures a Euclidean

distance between input pattern and prototype. This emphasizes

the fact that complement coding stores length information of

an uncoded pattern in the direction of a coded pattern. With

two-dimensional input patterns, the choice/match function (31)

of ART 2A-E defines a circle around any stored prototype,

with radius

(35)

With Fig. 8(g)–8(i) the radii are for

and for . An input pattern is assigned

to the cluster with the smallest Euclidean distance to its

prototype and the pattern lying inside the according circle area.

Otherwise, the input pattern is lying outside any of the already

existing cluster circles, a new cluster with a new prototype is

set up. Cluster borders within more than one circle area are

defined by the centerline between the neighboring prototypes

(Fig. 7).

Some properties are common for all ART 2A-type networks.

Higher vigilances increase the number of clusters, set up on

the same pattern sequence. The number of clusters can vary

with the order of pattern presentation, as can be seen in the

middle and right column of Fig. 8. In contrast to Fuzzy ART,

clusters are always coherent in pattern space and never split

in two separate areas as with Fig. 6(a).

B. Clustering Performance for Higher Dimensional Data

In Section IV-A ART-clustering with different network vari-

ants was illustrated on two-dimensional input patterns. Appli-

cations using clustering algorithms on various sources of input

data usually deal with input patterns of higher dimensions. One

typical scenario is the clustering of analog sensor data. Here,

the task is to discover the structure of technical or biological

system states as, e.g., in [8] or [12], by analyzing the shapes of

specific time dependent sensor signals. Input patterns in these

cases do not cover the whole multidimensional input space,

but tend to form groups in geometrically separated areas.

ART-networks are used to either discover stable categories of

patterns with a minimum required similarity [8], or to set up

recognition maps of an input space, by supervised assignment

of ART clusters to pattern classes, with variants of ARTMAPS

[4], [5], [12], [13]. In such applications the results of clustering

should not, or at most very slightly, depend on the random

order in pattern presentation. In addition, the network output

should be fairly independent of additional noise, since input

patterns built from sensor signals will always vary, even when

representing exactly the same system state.

Clustering capabilities of ART networks are examined,

using step responses of second-order systems (Fig. 9) as

an example for a more general sensor signal shape. The

response function is normalized so that the resulting oscillation

converges around a value of

(36)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. Comparison of two-dimensional clustering performance for ART 2A-type networks. Circles mark the spatial positions of input patterns; crosses
mark the positions of prototypes. Patterns assigned to a common cluster are marked with an underlying gray shade. The common learning rate used for all
simulations is � = 0:1, with a minimum of ten presentations per input pattern in a random sequence.

Input vectors are formed out of 100 consecutive values of

with . A useful property of the step response is the

fact that it is completely defined by two physical parameters,

eigenfrequency and damping . Therefore, input

patterns as shown in Fig. 9, as well as clusters, can be depicted

in a two-dimensional PT2-parameter plane to illustrate the

influence of different network-parameter variations. The period

length of the step response in terms of inverse eigenfrequency

is varied from ten to 100 time intervals in steps of ten.

The damping is varied from to at ten

equidistant intervals on a logarithmic scale. Step responses

of the training-pattern set are equally distributed over this

physical parameter plane, but represent points in discrete

subareas of a 100-dimensional pattern space. So in contrast
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Fig. 9. Step responses of second-order systems (PT2) with different eigenfrequencies and dampings. Input patterns consist of 100 samples, taken at
equidistant times.

Fig. 10. PT2 step response with period length 1=f0 = 40 and damping � = 0:13. The original signal (dotted line) is corrupted by a random white
noise with maximum amplitude 0.25.

to the two-dimensional pattern set of the previous sections,

there are geometrical preferences for clustering, which should

be discovered independently of the random order in pattern

presentation. Since exclusively damping and eigenfrequency

determine the shape of the trained step responses, networks

are expected to set up clusters, including shapes referenced

by neighboring points in the parameter plane. The training set

is presented in random orders, as with the two-dimensional

pattern set (see introduction of Section IV).

Generalization capabilities of ART-networks are tested by

classifying the pattern set with previously trained networks and

learning rate , after any pattern has been corrupted with

a random white noise (see Fig. 10). The more noisy patterns

are assigned to the clusters of their undisturbed origins, the

higher is the quality of generalization.

3) Higher Dimensional Clustering with Fuzzy ART: Fig. 11

shows clustering examples of step responses with Fuzzy ART

in one-shot-learning mode, learning rate , and slow-

learning mode, . The random pattern sequences

were presented with a minimum of one presentation per

pattern with , and 200 presentations per pattern with

. Fig. 11(a) shows an example of one-shot learning

with vigilance set to . The network set up seven

clusters on the pattern set. Besides cluster 1, patterns from all

other clusters are distributed over up to five separate coherent

areas (gray shades) on the parameter plane, as shown for

cluster 4. The cluster numbers represent the temporal order

during training in which prototypes were accessed for the

first time. Clusters in Fig. 11(b) are set up with the same

network-parameters but a different random order in pattern



FRANK et al.: COMPARATIVE ANALYSIS OF FUZZY ART AND ART-2A 555

(a) (b) (c)

(d) (e) (f)

Fig. 11. High-dimensional clustering performance of Fuzzy ART networks. Step responses of second-order systems are defined by their eigenfrequency
f0 and damping �, marked with circles on the parameter plane. Gray shades group neighboring patterns in the parameter plane, assigned to the same
cluster. Single Fuzzy ART clustersare often represented by more than one coherent area on the parameter plane. Experiments in (a) and (b) differ in
the random order of input pattern presentation.

presentation. The scene is again dominated by a huge cluster

1 and four additional clusters, dividing the PT2-parameter

plane in distinctly different clusters. Only cluster 1 and 5

are coherent, while clusters 2, 3, and 4 are split in up to

three seperate areas. Even in slow-learning mode, with at

least 200 presentations per pattern, Fuzzy-ART clustering

remains incoherent in the physical parameter-plane and highly

dependent on the order of pattern presentation. In Fig. 11(d)

seven clusters were set up, showing the same characteristics

as with (a) and (b) in one-shot learning mode. Clustering

tends to become more stable and coherent, when using higher

vigilances as in Fig. 11(d), where only cluster 12 is defining

two separate coherent areas on the plane. Fig. 11(c) and

11(f) demonstrate the assignment of noisy input patterns to

the clusters of Fig. 11(b) and 11(e). All input patterns were

corrupted with a random white noise of maximum amplitude

0.1, which is 2.5 times smaller than with Fig. 10. Most

of the noisy patterns are assigned to different clusters than

their undisturbed trained origins. Some patterns are even not

assigned to a cluster at all, as to be seen in Fig. 11(f) with

all points/parameter-pairs not included by a gray shade. If we

assume that input patterns still represent the same physical

state of the underlying second-order system, the recognition

capabilities of Fuzzy ART in real-world environments are

rather discouraging.

Properties of Fuzzy ART depend on the state of its pro-

totypes. Fig. 12 shows examples of prototypes, according to

the network of Fig. 11(b) and 11(c). Once prototype areas

have reached their stable equilibrium on the training pattern

set, the MIN- and MAX-components of any Fuzzy ART

prototype [see (15)] define the borders of an area, covering

all patterns assigned to the associated clusters. The maximum

area is again defined by (34). With and uncoded

patterns, consisting of 100 elements, the limits for prototypes

are set to . With Fig. 12 the -norms

are: , and .

Cluster 5 refers to the last installed prototype during training,

adapted to only one input pattern [ and

in Fig. 11(b)]. Once the -norm of a prototype reaches the

lower limit, no pattern is assigned to its cluster, with even one

element lying outside the MIN-/MAX-borders. This is why

cluster 1 in Fig. 11(c) was accessed by none of the noisy input

patterns, while cluster 5 attracts that many patterns. With a

noise-amplitude of 0.25 instead of 0.1, as shown in Fig. 11(c),

all noisy patterns are assigned to cluster 5. As a summary,

Fuzzy ART recognition properties are highly sensitive to noise,
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Fig. 12. Fuzzy ART-prototypes W1, W2, und W5, according to Fig. 11(b) and (c). The MIN- and MAX-components of the first and second half of a
prototype are drawn seperately, defining a hatched area, covering all input patterns assigned to the according cluster.

making its output unpredictable and indefinite, when input

patterns in classification mode differ even slightly

from the trained patterns.

Some of the Fuzzy ART properties may change, when the

training of a network is terminated before prototype rectangles

have reached their stable equilibrium. This method would

generally exclude the one-shot learning mode, where prototype

areas will usually reach their maximum size after a single

presentation of a complete patterns set. In addition, Fuzzy ART

loses its very useful property of indicating the completion of

a training cycle through stability of prototypes. The question

then arises, how to appoint an appropriate time to stop training.

4) Higher-Dimensional Clustering with Art 2A-Type Net-

works: Fig. 13 shows clustering examples of the PT2-step

responses for ART 2A and the Euclidean ART 2A-E. All

ART 2A-type networks, ART 2A with and without comple-

ment encoded input patterns and ART 2A-E, behave very

similarly in clustering PT2 step responses, in spite of the

different distance metrics. ART 2A-C and ART 2A-E al-

ready showed similarities when clustering two-dimensional

data (see Fig. 8). Since the Euclidean length of input vectors

does not vary in too wide a range, the relative shape of

patterns within the training set remains nearly the same, even

when normalized to unit Euclidean length. So all ART 2A-

type networks detect the same similarities and differences

of the presented step responses. Networks were trained with

a constant learning-rate of and a minimum of 20

presentations per pattern. These values turned out to deliver

prototypes close to the means of the assigned input patterns,

and led to stable distribution of patterns to the same clusters

over several training cycles. Fig. 14 shows prototypes of

ART 2A and ART 2A-E, according to Fig. 13(b) and (e).

The differences in the quality of the shapes between both

network types are minimal. ART 2A-C prototypes approximate

those of ART 2A-E, in as far as they have the same adap-

tation rules. ART 2A-C prototypes consist of 200 elements.

The last 100 elements define the complement of the first

(see Section III-C).

Clusters of ART 2A-type networks are always coherent in

the physical parameter plane, just as they are in pattern space.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 13. High-dimensional clustering performance of ART 2A-type networks. All physical parameter-pairs grouped by a gray shade represent a complete
cluster of 100-dimensional PT2-step responses. The simulations were done with a learning rate of � = 0:1 and a minimum of 20 presentations per
pattern in two different random sequences A and B. Noisy patterns were classified with � = 0 and the trained networks from the middle column
of figures. Noise amplitude is set to 0.25.

So ART 2A-clusters do not only reflect geometrical neighbor-

hoods but also similarities in physical signal parameters of

the second-order systems. Up to a limit of damping

the eigenfrequency of the input patterns is the main criterion

on which patterns are distinguished. Above that damping

limit, clustering becomes more indefinite, with a tendency

to a constant relation . Vigilances were chosen with

respect to the number of clusters created by a network. The

comparison of Fig. 13(a) and (d) and Fig. 13(b) and (e), shows

the similarity in the shapes of clusters on the parameter plane

for ART 2A and ART 2A-E. The same shapes turn out when

clustering the pattern set with ART 2A-C and an appropriately

chosen vigilance. Comparing the left and middle column in

Fig. 13, clustering turns out to be rather independent of the
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Fig. 14. Prototype representations, referring to the ART 2A clusters of Fig. 13(b) and the ART 2A-E clusters of Fig. 13(e).

random order in pattern presentation, especially for lower

vigilances and higher cluster sizes.

Generalization and recognition properties are illustrated

with a noise corrupted pattern set, classified by the trained

networks from the middle column of Fig. 13. Noise amplitude

is set to 0.25 (see Fig. 10). Patterns not assigned to the same

clusters as their undisturbed trained origin, are rather assigned

to no cluster at all than assigned to the wrong cluster (right col-

umn of Fig. 13). The disturbing influence of additional noise

on the assignment of patterns to existing clusters increases,

together with vigilance parameter [Fig. 13(i)]. Up to noise

amplitudes of about 0.15, pattern distribution did almost not

vary from that of the undisturbed patterns. That means, that

for many applications ART 2A-like network variants can be

treated as rather insensitive against small variations on input

patterns, representing the same state of the inspected system.

V. CONCLUSION

Leaving aside the biologically motivated aspects, ART

turns out to be an effective, transparent clustering algorithm.

Two different types of ART-networks, Fuzzy ART and ART

2A, as well as two ART 2A-modifications, ART 2A-C and

ART 2A-E, were inspected. Each variant is characterized

by its preprocessing-, choice-, match- and adaptation-rule

(see Table I). Two-dimensional pattern sets illustrated the

geometric nature of ART-clusters. Fuzzy ART uses the degree

of an input pattern being fuzzy subset of a stored prototype to

measure the similarity between two patterns. When using com-

plement encoded input patterns, prototypes converge toward

the common MIN- and MAX-values of all patterns assigned to

the according cluster. Clusters separate the pattern space along

the pattern space axes. In contrast ART 2A measures the cosine

of the angle between input- and prototype-vector, separating

pattern space along radials. Using complement encoding with

ART 2A (ART 2A-C), length and orientation of an uncoded

input vector is stored as a higher dimensional coded pattern.

The result is a distance metric comparable to the Euclidean

metric of ART 2A-E. Properties of ART-networks depend

on two main parameters, and . Vigilance defines the

minimum similarity between patterns in one cluster in terms

of the applied distance metric. Higher vigilances increase the

total number of clusters set up on a static pattern set. If no

geometric preferences are given for a specific pattern set, as

with the two-dimensional patterns in this paper, the number

of clusters is also slightly dependent on the order of pattern

presentation. Learning rate regulates adaptation of stored

prototypes toward input patterns.

Fuzzy ART networks reach a state of temporally stable

prototypes, indicating the end of a training cycle on a fixed set

of patterns. All network weights are fixed, when all training

patterns are enclosed by the MIN- and MAX-bounds defined

by the prototypes. The extension of prototypes is limited by

the vigilance parameter . Once the maximum extension of a

prototype has been reached, no further patterns are assigned

to the according cluster not lying completely within the MIN-

and MAX-borders. This makes Fuzzy ART highly sensitive

to additional noise on trained input patterns and its output

unpredictable. Even if the geometric distribution of input
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patterns in pattern space gives preferences for the distribution

of these patterns to clusters, Fuzzy ART clusters remain highly

dependent on the random order of pattern presentation and tend

to be incoherent in pattern space. The example of sampled

PT2-step responses in this paper illustrated that Fuzzy ART-

clusters can even be incoherent in the physical parameter

space.

For most applications, where pure self-organized clustering

of a pattern set is required, ART 2A is the more appropriate

solution. If there are geometric preferences within a given pat-

tern set, ART 2A-type networks discover them, independently

from the random order of pattern presentation. ART 2A-type

clusters are always coherent in pattern space, and in addition

are also always coherent in the parameter plane of second-

order systems. Even if there is no stable network state as

with Fuzzy ART, after a few presentations of a pattern set a

network state is reached, where single patterns will not change

their clusters anymore, and prototypes represent a means of

all accorded input patterns. Decisions on which kind of ART

2A-type network should be chosen for a particular application

depend on the computational requirements of the algorithms

on specific platforms. If all inspected system information is

stored in the direction of input vectors, pure ART 2A is a fast

alternative; otherwise one of its variations should be chosen.
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