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Abstract

Regulation of gene expression is central to many biological processes. Al-

though reconstruction of regulatory circuits from genomic data alone is

therefore desirable, this remains a major computational challenge. Com-

parative approaches that examine the conservation and divergence of cir-

cuits and their components across strains and species can help reconstruct

circuits as well as provide insights into the evolution of gene regulatory pro-

cesses and their adaptive contribution. In recent years, advances in genomic

and computational tools have led to a wealth of methods for such analy-

sis at the sequence, expression, pathway, module, and entire network level.

Here, we review computational methods developed to study transcriptional

regulatory networks using comparative genomics, from sequences to func-

tional data. We highlight how these methods use evolutionary conservation

and divergence to reliably detect regulatory components as well as estimate

the extent and rate of divergence. Finally, we discuss the promise and open

challenges in linking regulatory divergence to phenotypic divergence and

adaptation.
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INTRODUCTION

Gene expression is a key factor shaping organism phenotype ( Jacob & Monod 1961) and is con-

trolled by intricate, integrated regulatory circuits spanning multiple molecular levels. These levels

include the regulation of transcription through transcription factor (TF) binding, the interaction

of chromatin remodelers or noncoding RNAs with regulatory DNA, higher order chromosome

organization, post-transcriptional control of RNA levels through RNA transport, processing,

modification, sequestration, and degradation, and control of protein translation, stability, and ac-

tivity, especially through signal transduction networks and post-translational modifications such

as phosphorylation and acetylation. At each layer, we distinguish between regulators—e.g., TFs

and chromatin remodelers at the transcriptional layer—and targets—e.g., the gene promoters to

which a TF binds—such that gene expression levels are determined through a regulatory network

connecting regulators to targets at each level. Dissecting such regulatory networks is one of the

fundamental challenges of systems biology.

Time and again, changes in gene regulation and expression have been postulated to be major

forces in adaptation and evolution (Emerson & Li 2010, Gasch et al. 2004, Jordan et al. 2005, King

& Wilson 1975, Romero et al. 2012, Thompson & Regev 2009, Tirosh & Barkai 2011, Weirauch

& Hughes 2010, Wohlbach et al. 2009, Wray 2007, Zheng et al. 2011). Numerous studies have

implicated regulatory variation in generating the phenotypic diversity of both unicellular and

multicellular organisms, both within populations and between species. Regulatory divergence

between species has been studied across many kingdoms of life, including bacteria (McAdams

et al. 2004), fungi (Gasch et al. 2004, Thompson et al. 2013, Tirosh & Barkai 2011, Tirosh et al.

2006, Wohlbach et al. 2011), flies (Bradley et al. 2010, Jiménez-Guri et al. 2013, Kalinka et al. 2010,

Paris et al. 2013, Prud’homme et al. 2007, Wittkopp et al. 2008), worms (Silver et al. 2012, Yanai

& Hunter 2009), plants (Ichihashi et al. 2014), fish (Brawand et al. 2014, Chan et al. 2010, Jones

et al. 2012), and mammals (Barbosa-Morais et al. 2012, Brawand et al. 2011, Khaitovich et al. 2006,

Necsulea et al. 2014, Merkin et al. 2012). Similarly, regulatory mechanisms and gene expression
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divergence has been studied between individuals of the same species, including in yeast (Brem

2005, Kvitek et al. 2008), fish (Oleksiak et al. 2002), flies (Denver et al. 2005), worms (Grishkevich

et al. 2012), plants (Lasky et al. 2014, West et al. 2007), and humans (Battle et al. 2013, Bryois

et al. 2014, Li et al. 2014, Stranger et al. 2007). Across species, several phylogenetic studies have

demonstrated the role of regulatory divergence in phenotypic variation, although many regulatory

changes may be neutral ( Jordan et al. 2005, Khaitovich et al. 2004, Lynch 2007, Yanai et al. 2004).

Genetic variants associated with many complex human diseases and phenotypes often map to

noncoding regulatory regions (Maurano et al. 2012), and studies are beginning to show how

this variation is mechanistically associated with gene expression changes and physiological effects

related to the etiology of human disease (Emilsson et al. 2008, Farh et al. 2015, Lee et al. 2014,

Ye et al. 2014).

Comparative studies of gene regulatory networks within and between species can thus serve

two important goals. First, leveraging the genetics implicit in the differences and similarities

between species or individuals can help dissect the mechanisms that govern changes in expression

(Wittkopp 2007), thus aiding in the reconstruction of a regulatory network. Second, comparing

gene regulation mechanisms and expression levels between organisms or individuals can help

shed light on the driving forces and mechanisms underlying adaptation and evolution (Necsulea

& Kaessmann 2014, Romero et al. 2012, Wohlbach et al. 2009, Wray 2007).

Achieving these goals requires two interrelated efforts. One is to collect relevant data on gene

expression and regulation mechanisms across species or individuals; the other is to develop com-

putational methods that use these data to infer gene regulatory networks, compare networks across

species, and infer evolutionary histories. In recent years, tremendous technological advances have

been made in the accurate measurement of gene expression and regulation at all levels. In parallel,

advances in computational methodologies specifically geared to examining regulatory profiles and

networks across multiple genomes have been instrumental in gleaning insights into regulatory

variation within and between species. Such research is setting the stage to understand the impact

of regulatory divergence on the overall phenotype of organisms and to provide an integrated view

of how different functional levels contribute to downstream gene expression. Notably, although

gene regulation acts at all levels, from transcription to protein synthesis, nearly all studies have

focused on messenger RNA (mRNA) levels and transcriptional mechanisms, as data for these two

aspects remain the most readily available for systematic genomic experiments. As a result, most

computational methods have been developed with these data in mind. Both regulatory networks

(De Smet & Marchal 2010) and comparative analysis of gene expression (Necsulea & Kaessmann

2014, Romero et al. 2012) have been the topics of recent reviews. In addition, several reviews

by us and others describe experimental approaches to studying the evolution of gene regulation

and regulatory networks (Li & Johnson 2010, Thompson & Regev 2009, Tirosh & Barkai 2011,

Wohlbach et al. 2009).

In this review, we focus on computational approaches that aim to systematically infer tran-

scriptional gene regulatory networks from comparative data and to study the evolution of these

networks. We briefly introduce transcriptional regulatory networks and then describe computa-

tional approaches for detecting changes in network components and assessing the rate of change.

We examine these approaches from three perspectives, which cover nearly all studies in this field:

(a) transcriptional regulation through TF binding to specific cis-regulatory sequences, (b) the tran-

scriptional state as measured by mRNA levels and chromatin state, and (c) a systems-level view of

entirely inferred networks. We conclude with an outlook on challenges to understanding the con-

tribution of regulatory divergence to phenotypic divergence, which requires integrating multiple

levels of regulation, including at the translational, pre-transcriptional, and post-translational levels.
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Node: regulatory
proteins such as
transcription factors
and target genes

Edge: a connection
between a regulatory
protein and a target
gene, specifying that
the protein regulates
the gene

MAJOR STRATEGIES FOR MODELING TRANSCRIPTIONAL
REGULATORY NETWORKS

A transcriptional regulatory network specifies which trans regulators (e.g., proteins and noncoding

RNAs) and cis sequence elements control the expression of target genes, in which contexts, and

in what way. In many studies, this information is abstracted as a graph in which nodes represent

regulators (e.g., TFs, signaling proteins, and chromatin remodelers) and their target genes

(Figure 1a) and edges represent directed regulation from a regulator to a target (Figure 1b).

Edges are determined by physical interactions between a regulator and a target, as when a TF

physically interacts with binding sites at the promoters of its target genes. The expression level

of a target gene is a function of the regulator’s state as well as cis sequence features, such as a TF’s

binding affinity for a gene’s promoter (Figure 1a). A trans regulator’s state may reflect a protein’s

level, location, and modifications. A regulator may directly regulate a target’s expression, as when

a TF binds to a promoter or enhancer, or may do so indirectly, as when a signaling protein

modifies a TF and affects its binding to a promoter (Figure 1a).

A regulatory network model has two components: (a) the structure, which specifies the reg-

ulators of a target gene (Figure 1b), and (b) the regulatory function, encoded as a mathematical

function (Figure 1b), which describes how individual and combined regulatory inputs specify a

target gene’s expression. Several different mathematical functions at different levels of resolution

are commonly used to relate regulatory inputs to expression output. Among them are Boolean

functions (Dunn et al. 2014), ordinary differential equations (Greenfield et al. 2013, Molinelli

et al. 2013), and probabilistic functions (Bonneau 2008, de Jong 2002, Friedman 2004, Kim et al.

2009, Markowetz & Spang 2007, Pe’er & Hacohen 2011, Segal et al. 2005). Although differ-

ential equation–based models and stochastic models based on a master equation (Thattai & van

Oudenaarden 2001) can readily represent biochemical events and nonlinear interactions, they can-

not always be fit with available data. Probabilistic graphical models, such as Bayesian networks,

Markov networks, and factor graphs, are powerful paradigms for modeling regulatory networks

(Friedman 2004, Markowetz & Spang 2007, Segal et al. 2005) and can handle noise and uncertainty

in measurements. Although genome-wide gene expression data are commonly used as the sole or

primary source to construct these models, some approaches integrate multiple types of data (Cheng

et al. 2011, Ciofani et al. 2012, Marbach et al. 2012, Novershtern et al. 2011a, Segal et al. 2003).

Five key experimental genomic strategies can help decipher the components and interactions in

a regulatory network (Figure 2): (a) RNA profiling, today normally with RNA-seq (Hoheisel 2006,

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 1

Key features in regulatory network biology. (a) Regulators interact directly or indirectly with a gene’s
promoter. Trans regulators such as transcription factors (TFs; X1 and X2, blue blobs) bind to DNA, whereas
signaling proteins (X3, purple blob) modify TFs, affecting their regulatory activity and indirectly impact a
target gene’s downstream expression. (b) Many network models are specified by their structure (topology)
and regulatory functions (ψ). The structure specifies the connections, or regulatory function edges (arrows)
between regulators (X1 and X3, blue and purple spheres) and their target (Y, red cubes). The regulatory function
(ψ) is associated with specific parameters that capture the nature of regulation (e.g., linear or logistic) and its
strength. (c) Regulatory subnetworks. Regulators (nodes), target genes (nodes), and regulatory connections
(edges) are assembled into network substructures that represent aspects of biological pathways. Examples
shown (top to bottom) are a linear regulatory path with a series of regulators leading from an upstream
regulator to a target gene, a regulatory module of coexpressed genes associated with a shared regulatory
program, and a subnetwork of interconnected regulators and target genes. Regulatory paths and modules are
specific cases of subnetworks.
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Figure 2

Key experimental genomic strategies to decipher the components and interactions of regulatory networks. (a) Chromatin accessibility
profiling with DNase I hypersensitivity (DNase-seq), FAIRE-seq, ATAC-seq or MNase-seq measures open chromatin structure and
nucleosome positions by employing enzymes (scissors) that cleave DNA that is not bound by nucleosomes (shaded gray spheres).
Protein-DNA interactions for transcription factors (TFs; X1 and X2, shaded blue spheres) or histone modification states (orange sphere,
CH3CO) are measured by ChIP-seq or ChIP-chip assays. These technologies are used to identify cis-regulatory elements where TFs
bind on gene promoters or distally on enhancers. RNA profiling is performed by RNA-seq or microarray analysis. Genetic
perturbation ( pink lightning bolt) of regulators by knockout, overexpression, genome editing, or knockdown followed by RNA profiling
is used to validate predictions of regulatory networks. (b) Expression quantitative trait loci (eQTL) analyses: a genomic strategy to link
genetic changes to their effects on gene expression in cis or in trans. A DNA polymorphism (black sphere) in a promoter (notched gray box)
in Gene A alters binding of the TF (blue pyramids), reducing expression in cis. A trans change is illustrated by a DNA polymorphism in a
gene encoding a TF that alters binding to the promoters of both Gene A and Gene B, resulting in reduced expression of both.
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Nagalakshmi et al. 2008, Wang et al. 2009); (b) measuring protein-DNA interactions for TF or

histone modification states with chromatin immunoprecipitation followed by sequencing (ChIP-

seq) (Furey 2012, Park 2009) or microarray (ChIP-chip assays) (Harbison et al. 2004, Johnson et al.

2007); (c) chromatin accessibility profiling by DNase I hypersensitivity ( John et al. 2013, Song &

Crawford 2010) and ATAC-seq (Buerostro et al. 2013) and nucleosome positioning with MNase-

seq (Barski et al. 2007) and FAIRE-seq (Giresi et al. 2007); (d ) genetic perturbation of regulators by

knockout (Kemmeren et al. 2014), overexpression, knockdown (Amit et al. 2009, Chua et al. 2006,

Nishiyama et al. 2009, Novershtern et al. 2011b, Walker et al. 2007), or finer editing (Hsu et al.

2014, Sander & Joung 2014), followed by profiling of RNA levels; and (e) expression quantitative

trait loci (eQTL) analyses, which can link genetic changes to their effects on gene expression in

cis or in trans (Brem 2002, Fraser et al. 2011, Göring et al. 2007, Majewski & Pastinen 2011,

Rockman & Kruglyak 2006, Stranger & Raj 2013). Each strategy addresses a distinct aspect of

regulatory networks: RNA profiling addresses the targets and output of the network; protein-

DNA interaction and chromatin accessibility profiles help determine the molecular structure of

the network; and genetic strategies, either engineered or based on natural variation, determine

function and causality.

Most of these strategies have been deployed, at least to some extent, in a cross-species, com-

parative genomics setting, providing both excellent input for and substantial need for compu-

tational method development and application. First and foremost, many studies have collected

comparative transcriptional profiles across phylogenies, in either a condition- or tissue-specific

manner, including in yeasts (Thompson et al. 2013, Tirosh & Barkai 2011, Tirosh et al. 2006),

flies ( Jiménez-Guri et al. 2013, Kalinka et al. 2010, Paris et al. 2013, Prud’homme et al. 2007,

Wittkopp et al. 2008), worms (Grishkevich et al. 2012, Yanai & Hunter 2009), plants (Ichihashi

et al. 2014), fish (Brawand et al. 2014), frogs (Yanai et al. 2011), and mammals (Barbosa-Morais

et al. 2012, Brawand et al. 2011, Merkin et al. 2012). Second, factor-specific ChIP-seq or ChIP-chip

experiments have measured the binding of orthologous proteins to genomic loci across multiple

species in a phylogeny, including in yeast (Baker et al. 2012, Borneman et al. 2007, Lavoie et al.

2010, Tuch et al. 2008), flies (He et al. 2011, Paris et al. 2013), vertebrates (Schmidt et al. 2010),

and mammals (Ballester et al. 2014, Kutter et al. 2011, Perry et al. 2012, Schmidt et al. 2012,

Stefflova et al. 2013, Wong et al. 2014). Similarly, epigenomic profiles of chromatin states, such

as histone modifications and DNA methylation, have been collected across multiple species in

matched tissues and developmental stages (Cotney et al. 2013, Ho et al. 2014, Villar et al. 2015,

Xiao et al. 2012). Third, when collected across a set of species, global maps of open chromatin,

created with DNase I hypersensitivity assays (Stergachis et al. 2014, Vierstra et al. 2014) or nucle-

osome position profiles compiled with MNase-seq (Tsankov et al. 2010, 2011; Tsui et al. 2011),

allow a comprehensive comparison of entire regulatory landscapes, focusing on those elements

that are accessible. Finally, an increasing number of approaches and studies in the emerging field

of genetical genomics link genetic variants to gene expression traits in cis or in trans (Figure 2e).

Importantly, two new studies have examined transcriptomes across multiple species after knockout

of a TF (Maguire et al. 2014, Wong et al. 2014), together with binding profiles of that TF (Wong

et al. 2014). Others have leveraged natural genetic variation across individuals for eQTL analysis

in humans (Dixon et al. 2007, Emilsson et al. 2008, Farh et al. 2015, Göring et al. 2007, Lee et al.

2014, Schadt et al. 2008, Stranger et al. 2007, Ye et al. 2014); worms (Grishkevich et al. 2012, Li

et al. 2006); fish (Oleksiak et al. 2002); flies (Denver et al. 2005, Genissel et al. 2008), including

recombinant inbred lines (Anholt & Mackay 2004); plants (Lasky et al. 2014, West et al. 2007);

and mice (Peirce et al. 2004). Meiotic segregants or species hybrids (Thompson & Regev 2009,

Wittkopp et al. 2008) in yeast (Brem 2002, Brem et al. 2005, Tirosh et al. 2006) and fly (Wittkopp

et al. 2008) have also been investigated in this way.
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COMPARATIVE ANALYSIS OF REGULATORY GENOMICS DATA
IN INFERRING NETWORKS AND STUDYING EVOLUTION

As noted above, comparative analysis of gene regulation data presents two important possibilities.

First, comparing across species allows us to better infer functional regulatory relationships, either

because of the conservation of functional elements through purifying selection (Haerty & Ponting

2014, Lindblad-Toh et al. 2011, Siepel et al. 2005, Ward & Kellis 2012a, Xie et al. 2005) or

because of the ability to link genetic changes across strains or species to their functional impact

(e.g., on TF binding or mRNA levels) (Emerson & Li 2010, Zheng et al. 2011). Such inference

should result in more accurate or comprehensive models of regulatory networks. Second, given

inferred networks across species, analyzing reconstructed models through an evolutionary and

phylogenetic lens can shed light on the evolutionary processes and associated adaptations. Such

analyses can help address questions about the constraints that operate on quantitative traits such as

expression levels and how these constraints act on individual genes, modules, and entire pathways.

Thus, computational analysis methods for comparative data on gene regulation must tackle two

challenges: the inference of gene regulation, which receives additional power from evolutionary

considerations, and rigorous phylogenetic analysis of network evolution.

In practice, these challenges are tackled in the context of the different components and entities

in gene regulatory network models, three of which are the focus of most studies today (Figure 3;

Table 1). One line of research focuses on regulatory interactions with DNA, most prominently

the identification and analysis across species of TF binding sites (TFBSs), either from sequence

data alone or from TF binding information; sites that are clustered in a genomic region and form

a cis-regulatory module (CRM) are of special interest. A second focus is on understanding the

evolution of transcriptional or epigenomic states, at either the single-locus or gene-module level.

Finally, emerging approaches consider an entire pathway or subnetwork, including regulators,

their targets, and the regulatory interactions involved.

At each level, computational methods must (a) identify the relevant entities (e.g., regulatory

DNA, gene module, or subnetwork) in the studied species, thus essentially inferring a regulatory

model; (b) compare the entities across species or strains to estimate conservation and divergence;

and (c) assess the rate of change, in particular testing whether changes deviate from a neutral model

of evolution, and if so, how selection is acting on an entity. An entity is said to evolve neutrally

if the change across species is linear with respect to the divergence time, i.e., when it is under

neither purifying nor diversifying selection (Khaitovich et al. 2004).

Comparative Analysis of Regulatory Sequence Elements

Divergence in regulatory sequence elements has been implicated in the evolution of complex

traits (Villar et al. 2014, Wray 2007, Wray et al. 2003). Mutations in these elements can alter the

affinity of a TF for a specific genomic region, either by partially affecting binding or resulting in

a complete gain or loss of a binding site.

Detection of cis-regulatory elements from sequence data alone is notoriously challenging

(Hardison & Taylor 2012), given the short and partially degenerate nature of the sites and the

many perfect-match sequence sites that either are not bound by a factor or are bound without any

apparent impact on gene expression. These characteristics both provide important opportunities

and pose challenges for comparative analysis of cis-regulatory elements. First, phylogenetic con-

servation (or finer constrained patterns) can provide an important signal for detecting functional

elements. Second, assessing how sequences change can highlight the sequences essential for bind-

ing specificity. Finally, monitoring the gain and loss of sites across a phylogeny can shed light
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Figure 3

Comparative analysis of gene regulatory networks is performed at multiple levels: (a) DNA sequences, (b) individual TFBSs,
(c) cis-regulatory modules, (d ) expression levels of individual genes, (e) sets of coexpressed genes or modules, and ( f ) subnetworks.
Shown on the left is a phylogenetic tree of three species. Representative methods, tools, and analytical measures used to study each level
are shown at the bottom of the figure. Abbreviations: COE, conservation of expression; COMODO, conserved modules across
organisms; CRETO, Cis-Regulatory Element Turn-Over; ED, expression divergence; EMMA, Evolutionary Model-based
cis-regulatory Module Analysis; GERP, Genomic Evolutionary Rate Profiling; ICC, iterative comparison of coexpression; ISA, iterative
signature algorithm; OU, Ornstein-Uhlenbeck; ReLA, REgulatory region Local Alignment tool; SiPhy, SIte-specific PHYlogenetic
analysis.

on evolutionary constraints on gene regulation. Mirroring these opportunities, computational

methods for comparative analysis of regulatory elements fall into two broad classes: those that

detect reliable cis-regulatory elements across multiple species and those that assess cis-regulatory

divergence across species. We highlight key approaches in each category.

Leveraging Conservation to Detect cis-Regulatory Elements and Modules
Across Multiple Species

Detecting mechanistically functional cis-regulatory elements, defined here as elements bound by

regulatory factors that impact transcription of their cognate target genes, is notoriously difficult

(Bailey 2008, Hardison & Taylor 2012, Whitfield et al. 2012). Extensive methods based on se-

quence and other experimental data from a single species are available for inferring the presence

of cis-regulatory elements (Hardison & Taylor 2012, Stormo & Zhao 2010, Yáñez-Cuna et al.

2013). Almost invariably, the DNA-sequence specificity of a TF is represented as a sequence motif
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Table 1 Computational tools to address various problems in the comparative analytics of regulatory networks

Method or

measure

Level of

regulatory

network Type of analysis Description

GERP DNA sequence Detection of sequence

constraint

Tool to study constraint in DNA sequences

SiPhy DNA sequence Detection of site-specific

sequence constraint

Probabilistic model of sequence evolution that has different

rate parameters for individual site locations

PhastCons DNA sequence Detection of site-specific

sequence constraint

Model of sequence evolution to find sequences evolving

neutrally or under constraint; based on PhyloHMM

Sunflower TFBS Assessment of selection on

binding sites

HMM-based approach to measuring selection on binding

sites; adapts the dN/dS ratio to the context of regulatory

regions

CRETO TFBS Assessment of selection on

binding sites

Probabilistic phylogenetic model to study evolution of

individual binding sites

Cladeoscope TFBS Sequence-specific motif

learning and binding-site

detection

Approach to identify motifs in multiple, distant species

EMMA CRM Detection of CRMs Probabilistic model of background sequence and CRM

evolution to detect CRMs

ReLA Regulatory

sequence

element

Detection of general

regulatory regions

Model based on local alignments of binding sites of

different TFs

TF-map cis-element Alignment of promoters Tool that maps binding site occurrences to the names of

TFs and performs sequence alignment based on these data

ICC Individual gene Conservation of gene

expression

Method based on Pearson’s correlation coefficient;

applicable when conditions measured across species are

the not the same

COE Individual gene Conservation of gene

expression

Approach based on Pearson’s correlation coefficient;

applicable for cross-species comparison when matched

conditions are available

ED Individual gene Divergence of gene

expression

Procedure based on a Euclidean distance metric of

expression divergence; requires matching across

conditions

Brownian motion Individual gene/

gene module

Selection on expression Model that assumes expression evolves at the same rate on

all lineages

Ornstein-

Uhlenbeck

process

Individual gene Selection on expression Model that can be used to detect lineage-specific selection

COMODO Expression

module

Detection of coexpressed

gene modules across two

species

Approach that exploits homology and coexpression to

simultaneously find coexpressed modules in two species; a

module includes homologous genes as well as additional

nonhomologous, species-specific genes that serve as

linkers

Softcluster Expression

module

Detection of coexpressed

gene modules across

multiple species

k-means algorithm with a heuristic to favor coclustering of

orthologous genes

(Continued )
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Table 1 (Continued )

Method or

measure

Level of

regulatory

network Type of analysis Description

Arboretum Expression

module

Detection of coexpressed

gene modules across

multiple species

Probabilistic model of module evolution and detection;

based on a Gaussian mixture model of module expression

ISA Expression

module

Detection of coexpressed

gene modules in one species

Algorithm that identifies biclusters in one species at a time,

where each bicluster represents a set of genes that are

coexpressed in a subset of conditions

Multispecies

cMonkey

Expression

module

Detection of coexpressed

gene modules across

multiple species

Method that identifies biclusters in multiple species; starts

with seeds of orthologous genes that are coexpressed in

each species and iteratively adds new genes to each module

PathBLAST Network Network alignment Local network alignment for two species

NetworkBLAST-M Network Network alignment Local network alignment that is applicable to multiple

species

GRAEMLIN Network Network alignment Global network alignment that is applicable to multiple

species

GHOST Network Network alignment Global network alignment

IsoRank/IsoRankN Network Network alignment Global network alignment based on spectral methods;

IsoRank works with two species, whereas IsoRankN

works with more than two species

LocalAli Network Network alignment Local network alignment program that makes use of a

phylogeny to find conserved subnetworks

ProPhyC Network Network refinement Approach that refines a set of extant regulatory network

reconstructions; makes use of a probabilistic model of

network evolution

Abbreviations: COE, conservation of expression; COMODO, conserved modules across organisms; CRETO, Cis-Regulatory Element Turn-Over; CRM,

cis-regulatory module; dN/dS ratio, ratio of nonsynonymous to synonymous substitutions; ED, expression divergence; EMMA, Evolutionary Model-Based

cis-Regulatory Module Analysis; GERP, Genomic Evolutionary Rate Profiling; HMM, hidden Markov model; ICC, iterative comparison of coexpression;

ISA, iterative signature algorithm; ReLA, REgulatory region Local Alignment tool; SiPhy, SIte-specific PHYlogenetic analysis; TF, transcription factor.

Position weight
matrix (PWM):
commonly used to
represent the DNA
sequence binding
affinity of a
transcription factor

(Figure 3) and formally encoded as a position weight matrix (PWM), which specifies the DNA

base pair composition at each position of the motif.

Phylogenetic signals, especially conservation, have been used for more than a decade to deter-

mine the position of sites acted upon by purifying selection in a group of species (Boffelli et al.

2003, Bulyk 2003, Frazer et al. 2003, Margulies et al. 2003, Skipper 2004, Stark et al. 2007), based

on the intuitive notion of a phylogenetic footprint (Blanchette & Tompa 2002). Initially, such

approaches were site (i.e., instance) specific, relying on an alignment of orthologous sequences to

identify a conserved element using programs such as PhyloGibbs (Siddharthan et al. 2005) and

Phylogenetic Motif Elicitation (PhyME; Sinha et al. 2004). Given the inability to align regulatory

DNA beyond certain evolutionary distances, methods have also emerged to compare the set of

sites associated with orthologous genes across more distant species (Gordân et al. 2010, Habib

et al. 2012). Some approaches use comparative data to both discover the motifs and score them.

Others rely on an existing library of motifs—for example, those determined by experimental ap-

proaches in one species (Daniel & Newburger 2009, Kheradpour & Kellis 2014, Mathelier et al.

2013, Neph et al. 2012)—scoring and refining motif instances based on evolutionary conservation.
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Hidden Markov
model (HMM):
a probabilistic model
commonly used to
model sequential data;
provides the basis of
many sequence
analysis tools

The input for the alignment-based method PhyloGibbs (Siddharthan et al. 2005) is several

multiple sequence alignments of orthologous promoters and one alignment for every gene. The

program uses a Bayesian framework that combines a sampling-based, motif-finding approach with

phylogenetic information on orthologous promoters. Because alignment of regulatory regions is

challenging, methods that need an input alignment are applicable only to closely related species.

Several hybrid approaches exist, in which an initial, possibly noisy alignment is gradually refined

while the presence of a sequence motif is simultaneously detected (Bais et al. 2007).

Conversely, Cladeoscope (Habib et al. 2012) is an alignment-free approach that can be applied

over great phylogenetic distances. It requires an independent initial set of motifs from which to

learn species-specific motifs. Being alignment free, Cladeoscope can be used to compare regulatory

sequences between very distant species; the available initial library impacts its sensitivity, however,

such that it is more sensitive in species closer to its source. Indeed, when applied to 23 species of

Ascomycete yeasts, Cladeoscope performed better in species more closely related to Saccharomyces

cerevisiae and Schizosaccharomyces pombe, from which most motif data were derived. The absence

of motifs detected in distant species may reflect divergence in TF-binding specificity rather than

true loss (Habib et al. 2012).

In many multicellular organisms, multiple binding sites are typically organized in close proxim-

ity to one another on individual gene promoters within CRMs, and it is reasonable to hypothesize

that selection may act not only on individual elements but also on entire CRMs (Villar et al. 2014).

This selection may occur at two levels. First, within a CRM, a site may only move when paired

with another, dependent site; for example, cooperative binding of certain factors may require them

both (Villar et al. 2014). Second, the entire CRM may evolve as a single unit (Duque et al. 2014)

moving, being duplicated, or being lost as a whole.

Identification and comparative analysis of CRMs and the enhancers that harbor them have been

the subject of intense research. For example, GibbsModule (Xie et al. 2008) extends PhyloGibbs

to find CRMs, relying on an input sequence alignment, whereas Evolutionary Model-based cis-

regulatory Module Analysis (EMMA; He et al. 2009) is an alignment-free method that uses a

statistical model of the evolution of CRMs and an input library of motifs to simultaneously align

regulatory regions and detect clusters of TFBSs. Briefly, EMMA represents a CRM as a hidden

Markov model (HMM), with a background state to generate nonbinding sites and k states to

represent each of the k motifs. EMMA has distinct evolutionary models for the background

sequence and binding sites, the latter based on a population genetics model of different evolutionary

constraints for sites in a motif with different extents of degeneracy. Applied to simulated and real

data from two Drosophila species, EMMA improved alignments of regulatory regions relative to

existing methods that assumed a fixed input sequence alignment, as measured by the ability to

recover conserved binding sites in aligned regions and accurately discriminate between true and

false CRMs. EMMA identified CRMs in regions that were previously classified nonfunctional

sites and further showed that distal CRMs were more conserved than promoter-proximal CRMs.

Another approach, REgulatory region Local Alignment tool (ReLA; González et al. 2012), uses

a local alignment strategy to identify regulatory regions that are characterized by the presence of

conserved clusters of binding sites. Such regions can represent enhancers as well as promoters. In a

nutshell, ReLA converts occurrences of binding sites into symbols of a different alphabet and aligns

the sequences in this new alphabet to identify contiguous, aligned regions of binding sites. ReLA

identifies experimentally validated enhancers and promoters with as good or higher precision and

recall as other approaches for identifying transcription start sites or conserved TFBSs, and it can

serve as a useful annotation tool for less well-characterized genomes.

Finally, related strategies are used to identify general noncoding or functional regions, not

necessarily those characterized by TFBSs. Most notably, PhastCons (Siepel et al. 2005) finds
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general conserved coding and noncoding regions based on a two-state phylogenetic hidden Markov

model (PhyloHMM; Siepel & Haussler 2004), in which one state is for conserved elements and

one for nonconserved elements. PhastCons has become the gold standard in large comparative

genomics projects seeking to identify phylogenetic footprints of conserved elements (Brawand et al.

2014, Lindblad-Toh et al. 2011, Pique-Regi et al. 2011), and it has proven useful for identifying

noncoding functional regions, including enhancers (Brawand et al. 2014).

Assessing Conservation and Divergence of cis-Regulatory
Elements and Modules

A key goal is to reconstruct and monitor the process of evolution by comparing cis-regulatory

elements across species. It is critical not to conduct such analyses in a circular fashion. In particular,

any evolutionary constraint introduced by the method used to develop the model cannot then be

purported to be a conclusion of the resulting model. An obvious example is conservation: If

conservation is aggressively used to call sites, it is not surprising that conservation is subsequently

observed across the resulting model. Overall, computational approaches to compare cis-regulatory

models across species can be partitioned into those that only quantify the extent of divergence and

those that additionally inform us about the rate of divergence in specific lineages, distinguishing

neutrality from positive or negative selection.

Cis-regulatory site evolution has been explored from two perspectives: the evolution of indi-

vidual bases within a site and an overall site’s gain and loss, known as turnover. Although the

two are interrelated when site turnover happens through a series of point mutations, the former

emphasizes effects on binding specificity, whereas the latter highlights overall regulatory impact.

Two popular tools for assessing the conservation and divergence of single base pairs are ap-

plicable to cis-regulatory elements: Genomic Evolutionary Rate Profiling (GERP; Cooper et al.

2005) and SIte-specific PHYlogenetic analysis (SiPhy; Garber et al. 2009). GERP explicitly mea-

sures evolutionary constraint on sequence quantitatively (Cooper et al. 2005). It computes the

mutation rate for each column of a multiple sequence alignment for a set of species. It then com-

pares these rates with a neutral rate of mutation for the species under consideration and returns

candidate elements that have fewer mutations than would be expected from the neutral model

(i.e., the Hasegawa, Kishino, and Yano model of DNA sequence evolution; the neutral rate is

estimated using only those species that do not have a gap in that column). SiPhy considers more

general patterns of conservation, including constraint that is reflected in the biased substitution of

specific bases. Using a rate matrix, SiPhy models the evolution of DNA sequences as a continuous-

time Markov process for each branch on the species tree. Rate matrix entries reflect site-specific

biases, the neutral substitution rates of bases, and the overall rate of substitution. Like GERP,

SiPhy estimates rate parameters for each column, but it also uses an HMM to identify contiguous,

variable-length regions exhibiting similar levels of constraint. SiPhy identifies a greater number

of constrained sequences compared to rate-based methods such as GERP or PhastCons, many of

which are degenerate. It has been used to compute constraint in the human genome using whole

genome alignments from 29 mammals (Lindblad-Toh et al. 2011), as well as to identify regulatory

variants in the human genome (Ward & Kellis 2012a,b).

Overall constraint can be leveraged or interpreted in a more nuanced way, tailored specifically

to the molecular reality of a DNA sequence bound by a TF, by considering how a change in a

site’s sequence would impact binding affinity. For example, the site-level selection (SS) method,

first used to study the evolution of regulatory sequences in 12 Drosophila species (Kim et al.

2009), not only quantifies the rate of substitution from one site to another but determines each

site’s fitness level based on its binding affinity (Kim et al. 2009). The Predicted Expression-Based
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Site Evolution Simulator (PEBSES) and Predicted Expression-Based CRM Evolution Simulator

(PEBCRES) methods have since extended the SS method to model selection on a site within a

CRM and on an entire CRM, respectively (Duque et al. 2014). A complementary approach (Tanay

et al. 2004a) used promoter sequence alignment across four yeast species to compute a normalized

substitution rate between pairs of DNA octamers that differed by one base pair. Next, a selection

network was generated, in which nodes represented octamers and edges were weighted by the rate

of substitution from one octamer to another. Clustering the selection network identified families

of motifs that shared a high substitution rate and were isolated from other octamers with lower

substitution rates. The organization of the selection network provided several insights into the

affinity of multimodal TFs and their functional diversity.

In another example, the method Sunflower (Hoffman & Birney 2010) studies selection on

binding sites by capturing the impact of a mutation in a TFBS on a TF’s binding affinity. Sunflower

uses an analog of the ratio of nonsynonymous to synonymous (dN/dS) substitutions between two

protein-coding sequences, where dT (analogous to dN) is the change in binding affinity resulting

from a mutation. dT is obtained from the relative entropy between the posterior distribution of

states before and after a simulated disruption in binding sites, using an HMM with one state for

the unbound state and multiple additional states for each column of the TF’s PWM. Sunflower

has revealed that dT/dS values are typically uncorrelated with dN/dS values for the protein coding

portions of both individual genes and functional gene classes, suggesting that positive selection

acts on processes either at the transcriptional or the protein-coding level, but not both.

Finally, some approaches study divergence at the binding-site level, relying on either compu-

tational determination of binding sites without alignments (as for Cladeoscope, discussed above)

or on comparative in vivo binding data sets created using ChIP-chip or ChIP-seq experiments.

In some cases, an underlying assumption is that although the entire promoter sequence may be

evolving neutrally, and the positions of the binding site may change, binding site occurrence may

be under constraint; these methods are set to either leverage or capture this constraint. An early

example of this strategy, applicable only to pairs of species, was TF-map (Blanco et al. 2006).

Here, the difficulty of aligning fast-evolving promoter sequences was addressed by representing

them in a different alphabet, in which each character represented a motif instance.

A second generation of approaches relaxes this assumption even further, quantifying turnover

even in the absence of an alignment by considering the binding sites associated with a gene, locus,

or even the genome as a whole. For example, Cis-Regulatory Element Turn-Over (CRETO;

Otto et al. 2009) is a maximum likelihood–based approach that models the number of binding

sites for a specific TF in a phylogeny, without requiring binding site positions to be conserved

between species. Using an explicit model of evolution parameterized by a rate of gain and loss of

binding sites in different clades of the phylogeny, CRETO can also provide insight into potential

selective forces that act on binding sites (described below). As CRETO only analyzes a genome-

wide aggregate count of binding sites, it does not capture gene-level binding information. It is most

useful when applied to factors associated with tightly regulated gene modules, all sharing the same

regulatory program (e.g., methionine genes in yeast; Gasch et al. 2004). Conversely, Cladeoscope

(Habib et al. 2012) analyzes turnover at either a per-gene or per-module level. When applied to

23 species of Ascomycete yeasts, Cladeoscope showed rapid turnover of binding sites at the gene

level. Despite this rapid turnover, association of biological processes with the gene targets of a TF

remained conserved, demonstrating that constraint operates at the level of biological processes

and pathways associated with TF targets.

The challenge of reliably detecting sites while not overly relying on sequence conservation

is substantially relaxed when comparative TF binding data are available. Such data reflect direct

evidence of regulatory interactions between TFs and DNA across multiple species (Borneman
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et al. 2007, He et al. 2011, Schmidt et al. 2010, Tuch et al. 2008) or regions with binding-

accessible chromatin based on DNase I hypersensitivity assays (Stergachis et al. 2014, Thurman

et al. 2012, Vierstra et al. 2014). Several studies have compared binding profiles across species,

either focusing on per-site comparisons (Bardet et al. 2012; Schmidt et al. 2010, 2012) or per-

ortholog comparisons (Borneman et al. 2007, Tuch et al. 2008). The former strategy requires

alignment, to relate bound sites between species, but does not require knowing the association

of a site with a regulated target gene, making it a compelling option for mammalian genomes, in

which much binding occurs at distal enhancers. The latter strategy does not require alignment,

as it is the site-target association that is compared across orthologs, but it does require knowing

which target gene is associated with each site. It is thus useful for either lower eukaryotes, such as

yeast, or instances when binding and regulation occur at the proximal promoter.

Both strategies have been successfully applied in relevant settings. For example, a continuous-

time Markov chain analysis of individual binding instances, derived from ChIP-chip data, captured

insertion-deletion (INDEL) events genome wide (Zheng & Zhao 2013). This approach projects

each bound peak onto the corresponding species entry in a multiple sequence alignment and con-

verts the positions of the multiple sequence alignment into an alphabet of GAP (G), BINDING (B),

or NO-BINDING (N), each represented by a distinct state in the continuous-time Markov chain.

The Markov chain’s rate matrix contains a rate parameter that reflects loss or gain of a binding site

for each branch of the tree; this parameter is estimated using Expectation Maximization (EM).

Application of this approach to published binding data for the TF CEBPA (Schmidt et al. 2010)

has shown that sites that are conserved at the nucleotide level are under strong selective constraint,

as measured by GERP scores, and are unlikely to be disrupted by INDELs. However, neutral

regions display accelerated transition rates in TF binding regions (B) compared with nonbinding

regions (NB), with accelerated binding site turnover. An example of the per-ortholog comparison

was the study of the evolution of the target set of the yeast TF Mcm1 (Tuch et al. 2008). In

particular, the authors developed a maximum likelihood–based evolutionary model to estimate

the rate of gain and loss of the Mcm1 targets, from Mcm1 binding profiles across three yeast

species (Tuch et al. 2008). Cladeoscope later used a similar model to estimate turnover from

computational predictions of TF gene targets based on the aggregated affinity of a TF for a gene

promoter (Habib et al. 2012).

Comparative Gene Expression Across Species: From Genes to Modules

Whereas cis-regulatory elements and the factors that bind them represent key regulatory com-

ponents of a network and allow us to infer and compare regulatory mechanisms across species,

genome-wide expression profiles, especially mRNA profiles, are a major output of transcriptional

regulatory networks (Figure 3). In particular, they provide a comprehensive molecular phenotype

from which physiological functions and organismal phenotypes can be inferred, thus connecting

network organization to function and regulatory evolution to adaptation (Necsulea & Kaessmann

2014, Romero et al. 2012, Zheng et al. 2011).

Changes in expression across species are studied at either the level of individual gene orthologs

or the level of sets of genes coexpressed in a module or pathway. As for cis-regulatory sequences, all

methods aim to quantify the extent of expression or regulation divergence, and some also assess the

extent to which the observed divergence is explained by a neutral model versus selection (Figure 3).

Performing any comparison requires matching orthologs across species (a computational challenge

addressed in other reviews, typically based on sequence data alone; see Kuzniar et al. 2008, Koonin

2005), and, in the case of module-level analysis, inferring modules across species, which can be per-

formed independently for each species or in a phylogenetically informed way, as discussed below.
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Two major strategies are used to estimate the extent of divergence or similarity in orthologous

gene expression between two species: comparing gene coexpression even when profiles are not

matched between species and comparing expression when matched measurements are available.

A compelling early method to compare unmatched samples in a pair of species was iterative

comparison of coexpression (ICC; Tirosh & Barkai 2007). ICC measures the similarity in

coexpression profiles between two orthologs, with similarity being iteratively computed for each

gene with an ortholog in the other species. In the first iteration, the ICC value is a Pearson’s

correlation coefficient computed between two vectors, one for each species. Each vector reflects

the correlation of a gene with all other genes in that species, limited to genes with matched

orthologs. In subsequent iterations, the ICC value is a weighted correlation, where the weight

is the ICC value from the previous iteration. This iterative procedure enables ICC to favor

genes whose expression correlations are more conserved across species. A related measure that

requires matched conditions is expression divergence (ED) (Tirosh et al. 2006). ED more directly

considers the correlation in expression profiles between orthologs while controlling for technical

variation, differences in the magnitude and kinetics of expression, and scaling differences. A related

measure of ED that also requires matched conditions is conservation of expression (COE) (Shay

et al. 2013). A more principled approach to comparing expression between matched conditions

relies on a likelihood ratio test (Khan et al. 2013). For every pair of orthologs, a likelihood ratio is

computed for a gene’s expression under (a) the null model of no differential expression between

two orthologs and (b) a second model that captures a species-specific component of expression.

A likelihood ratio can be converted into a P-value using the χ2 distribution, assigning statistical

significance to divergence in expression while controlling for the false discovery rate.

Although gene-pair comparisons are helpful, they may be prone to errors in measurement and

errors in correctly resolving orthologs, as well as phenotypic changes due to expression diver-

gence of individual genes and are less directly interpretable than most researchers would prefer.

Conversely, gene modules—sets of coexpressed and/or co-regulated genes—are a hallmark of

gene regulatory networks (Tanay et al. 2004b), and analysis at the module level has repeatedly

been shown to increase both statistical robustness and biological interpretability in single-species

studies (Mitra et al. 2013). Furthermore, as noted above, analysis of comparative cis-regulatory

elements suggests that selection may act to conserve the regulation of a pathway or a process rather

than the regulation of any particular gene in a module (Habib et al. 2012). Thus, there has been

substantial effort to develop methods to infer and compare regulatory modules between species,

either pairwise or simultaneously across multiple species in a phylogeny.

Some strategies identify modules of orthologous genes whose coexpression is conserved in pairs

of species, and these methods do not typically require data from matched conditions (Bergmann

et al. 2003, Tanay et al. 2005, Zarrineh et al. 2011). One such approach first identifies modules

of coexpressed genes in each species independently and then matches the modules across pairs

of species based on significant overlap in the orthologous genes within the two modules (Tanay

et al. 2005). A related approach, conserved modules across organisms (COMODO), detects sets

of coexpressed genes by extending the ICC concept of conserved correlation of expression from

a single gene to multiple genes (Zarrineh et al. 2011). COMODO seeds modules of highly co-

expressed genes identified independently for each species, and finds initial pairs with significant

orthology overlap, and then expands these modules to include additional genes. In both cases,

the matched pair of orthologous modules includes orthologs coexpressed in both species and

additional, species-specific genes.

Other strategies rely on matched conditions to infer modules across larger numbers of species.

These strategies are distinct from pairwise methods because of their ability to consider expression

levels of genes (rather than only coexpression), as well as the phylogenetic relationships between
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multiple species. As in the pairwise case, modules can include both conserved and species-specific

members, and phylogenetic structure can enhance the power to reliably identify clade-specific and

lineage-specific patterns. One early strategy, Softcluster (Kuo et al. 2010), concatenates expression

data from each species by matching corresponding experimental conditions and then uses k-means

clustering with an added heuristic to favor orthologous genes being in the same cluster. We

recently developed a more flexible strategy, Arboretum (Roy et al. 2013), that directly models

gene orthology relationships across multiple species in a complex phylogeny. Arboretum relies on

a generative probabilistic model of module evolution and a Gaussian mixture model to represent

the expression modules in each species, and assigns genes to modules in each extant and ancestral

species. It also models gene duplication events and infers ancestral modules. As a result, Arboretum

can handle genes with complex orthology relationships, resulting from both duplication and loss.

Notably, however, Arboretum does not infer the expression pattern in ancestral nodes.

Both Softcluster and Arboretum assume that a given gene may belong to only one module

capturing its expression profile across all investigated conditions in a given species. This is a

reasonable assumption when the number of conditions investigated is small, as was the case in both

studies used to introduce the programs, but it is less reasonable when many diverse conditions are

investigated in each species. In that case, a gene may belong to different modules under different

conditions, a situation captured by biclustering methods. For example, the Iterative Signature

Algorithm (ISA) is applied in a cross-species setting by first identifying modules in one species

and then finding the set of orthologs of that module’s members in another species, followed by

a two-stage application of ISA to identify conserved and coexpressed modules. More generally,

cMonkey identifies biclusters in multiple species by identifying seed biclusters for every pair of

species, followed by refinement of biclusters based on species-specific information (Waltman et al.

2010). Notably, cMonkey can incorporate diverse data, such as information on binding sites and

metabolic pathways.

Estimating Selection Pressure on Gene Expression

Fundamental questions about assessing the selective pressures acting on gene expression and

coexpression (i.e., regulation) are at the crux of reasoning about regulatory evolution and its

adaptive importance (Romero et al. 2012, Necsulea & Kaessmann 2014). However, unlike models

of sequence evolution, which are employed as the basis for analysis of cis-regulatory evolution,

models of the evolution of expression and coexpression are still in their early stages. Arguably, a

unified model has not yet been fully developed. In the past decade, both model-based and empirical

measures of selection on gene expression have been developed. Model-based approaches assume

an explicit model of the evolution of quantitative traits in a phylogeny (Bergmann et al. 2003),

most commonly the Ornstein-Uhlenbeck (OU) model or the Brownian Motion (BM) model (see

below).

Empirical strategies to assess selection on expression rely on ranking or nonparametric sta-

tistical tests that aim to reflect some prior, informal assumption about how selected expression

patterns would behave compared to nonselected ones. For example, one approach discussed by

Romero et al. (2012) relies on the intuition that positive selection manifests as low interindividual

variation within a species and differential expression across species. Genes can thus be ranked

based on the difference between expression variation within and between species, with genes that

are candidates for positive selection expected to rank highly. Such rank-based approaches are

empirical and straightforward: They make few assumptions about the model of selection and its

contributing factors and are well-suited for studies in nonmodel systems (Romero et al. 2012). An

earlier study, the first to examine whether divergence in gene expression between species results
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from positive selection or neutral processes (Khaitovich et al. 2004), relied on the assumption that

mutations cause changes in expression independent of the absolute level of expression. Hence,

the squared difference in the log of expression of orthologous genes should scale linearly with

phylogenetic distance under a neutral model. To determine whether gene expression between hu-

mans and chimpanzees evolved neutrally, the authors used both the Kolmogorov-Smirnov (KS)

and Wilcoxon rank-sum tests to compare two distributions: one distribution captured the squared

difference of the mean expression of each gene between the two species, and the other distribution

the squared difference of the mean expression of a set of pseudogenes, considered to be evolv-

ing neutrally. A significant P-value for any test suggested that a neutral model could not explain

the expression differences between the species. The authors also devised a test for positive selec-

tion that compared the distributions of diversity with the divergence ratio in intact genes versus

pseudogenes. Again, KS and Wilcoxon rank-sum tests were used to assess statistical differences

between the two distributions. However, when applied to these data, no significant change was

detected using either this approach or related strategies, supporting a neutral model of expression

evolution among the species studied.

Conversely, model-driven approaches rely on statistical models of expression evolution as

a continuous trait to quantify the extent of selection in a lineage-specific manner in a complex

phylogeny. The two popular models for expression evolution are the BM and OU models. The BM

model is the simplest, assuming that a quantitative trait evolves according to a neutral model or by

random drift (i.e., there is no selection). The only parameter in the model is the intensity of random

fluctuations in a trait of interest, which is the same for all branches of the tree (Butler & King 2004).

The OU approach explicitly models selection for each branch, such that selection acts to push the

current value of the trait toward its optimal value. Although all lineages evolve neutrally in the

BM model, the OU model enables different selective forces to act on lineages, each represented by

branch-specific arguments. Both models are represented as multivariate Gaussian models whose

parameters are estimated using maximum likelihood. However, in the BM model, means are

lineage-specific estimates of a trait, whereas in the OU model, means are linear combinations of

other parameters defining the optimal values of the trait in ancestral paths. The OU process was

recently used to study the evolution of tissue-specific expression in eight mammals and chicken

(Brawand et al. 2011). It found a large number of genes under positive selection, many in the

testis, and depletion in positive selection on gene expression in the brain. More sophisticated

models are still emerging, and others are likely to come. For example, mixture models can help

capture selection pressure on expression (Eng et al. 2009) by attempting to decompose the total

variance in expression of a gene across species into its correlated phylogenetic signal, assumed

to be given by a neutral model; the uncorrelated phylogenetic signal, to capture selection; and

residual experimental variance.

Finally, such approaches can be applied not only to individual genes, but also to entire pre-

defined gene modules (Figure 3). For example, a recent study (Schraiber et al. 2013) developed

a maximum likelihood framework based on the BM model to assess the evolution of expression

of genes in a module. In this model, the rate of expression evolution of a module’s genes follows

an inverse gamma distribution whose parameters are fit to maximize the observed expression in

extant species. Applying this approach to mRNA profiles from four sensu stricto Saccharomyces

yeast species and interspecies hybrids identified several modules that display non-neutral regu-

latory variation. Another study (Fraser et al. 2011) analyzed predefined modules for bias in the

direction of changes in expression that can be explained by a particular variant in cis. It revealed

modules associated with locomotion, growth, and memory that were under lineage-specific selec-

tion between two mouse species. Module-level analyses are thus particularly valuable in relating

sequence regulatory variants with a measurable non-neutral impact to higher-level phenotypes.
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Comparative Analysis of Subnetworks and Pathways

A comprehensive understanding of regulatory networks and their evolution would, by necessity,

combine both regulatory inputs and their impact on target gene expression within a single inte-

grative network model (Figure 3). Comparative network analysis can assist in the inference of

such models (network reconstruction), their comparison between species (network alignment),

and quantification of any selective pressures at the network level (network selection).

Although computational approaches for network reconstruction in a single species have been

an area of intensive research for more than a decade (Bonneau 2008, Kim et al. 2009, De Smet

& Marchal 2010), approaches that leverage comparative data or a phylogenetic approach are

only emerging: Some methods use comparative data to refine regulatory network reconstructions

first obtained independently in individual species, whereas others construct a regulatory network

for multiple species simultaneously. The refinement process takes a network inferred in a single

species and uses comparative data to improve it. For example, ProPhyC (Zhang & Moret 2012) is

a probabilistic approach that iteratively refines a network based on the assumption that networks

whose evolution follows that observed in the species genome are more likely to be true. This

assumption is also made by the related methods RefineML and RefineFast (Zhang & Moret 2008).

ProPhyC allows diverse network evolution models, including edge gain and loss and gene (i.e.,

node) duplication and loss. Other strategies aim to jointly infer networks across multiple species.

For example, one approach uses a probabilistic framework of regulatory network evolution to

estimate regulatory edges in each extant and ancestral species (Xie et al. 2011). In this model,

the connection between a TF and a target gene is modeled using a hidden variable (edge state,

Figure 1c) that determines the generative process of a sequence or the expression level of a

given gene. If a TF regulates a gene, its sequence is governed by an HMM that captures the

TF’s binding site; if it does not regulate the gene, its sequence and expression state are governed

by a background sequence and expression model. The expression cluster to which the gene is

preassigned determines the target gene’s expression. Thus, the regulatory connections themselves

evolve on the phylogenetic tree, modeled by a continuous-time Markov process with parameters

for the gain and loss of regulatory edges learned using EM (Xie et al. 2011). Although these

approaches show initial promise, the limited number of multispecies data sets has curtailed method

development. As more functional genomics profiles are collected, it will be possible to develop and

test approaches that more systematically integrate data across multiple species, allowing changes

in genes and interactions.

More extensive work has been done to develop methods that can compare network models—

independently defined in each species and typically represented as graphs—between species. Net-

work alignment methods, analogous to sequence alignment methods, aim to find conserved sub-

networks between a pair of networks (Figure 3). Although most network alignment methods were

initially developed in the context of protein-protein interaction graphs, which tend to not have di-

rectional information on edges, they can be applied to regulatory network models as well provided

that directionality in the regulatory network can be ignored. By analogy to sequence alignment

methods, network alignment methods can be distinguished by whether they perform pairwise

(reviewed in Clark & Kalita 2014) or multiple (Flannick et al. 2006, Liao et al. 2009) network

alignment and by whether they perform local alignments of subgraphs or global alignments of en-

tire graphs, the latter primarily useful for closely related species. Among local alignment methods

are the pairwise PathBLAST (Kelley et al. 2004), its multiple network extension NetworkBLAST-

M (Kalaev et al. 2009), and LocalAli (Hu & Reinert 2015), whereas IsoRank (Singh et al. 2008),

IsoRankN (Liao et al. 2009), GRAEMLIN (Flannick et al. 2006), and GHOST (Patro & Kingsford

2012) are all global network alignment methods.
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All alignment methods aim to create a new graph, in which nodes represent an orthologous

group of proteins and edges represent conserved interactions among the proteins. Conserved sub-

networks are then identified by matching nodes in one species to nodes in another species, such

that both sequence similarity and network similarity are maximized in the alignment. Methods

vary in their definition of network similarity. For example, in PathBLAST (Kelley et al. 2004),

similarity is defined by conserved edges in the local neighborhood of a gene. IsoRank, IsoRankN,

and GHOST are based on spectral methods (von Luxburg 2007) that exploit global topological

properties to define the relevance or connectivity of a specific graph and to define node simi-

larity. Although most multispecies methods are agnostic of phylogeny and do not handle gene

duplication, LocalAli (Hu & Reinert 2015) and GRAEMLIN (Flannick et al. 2006) do use phy-

logeny both to refine conserved subnetworks in extant species and to infer ancestral subnetworks,

which are important for reconstructing the evolutionary process (Baker et al. 2012, Li & Johnson

2010).

Finally, although studying the impact of selective and neutral forces on network evolution

addresses fundamental questions, it is significantly more complicated than studying the impact

of these forces on sequence or even expression evolution. This is because very few network re-

constructions exist, and those that do are incomplete. Furthermore, organizational properties of

networks, such as network modularity or scale-free distributions, although intriguing, could arise

through nonadaptive forces such as mutation, recombination, and random drift. An explicit model

that accounts for such nonadaptive forces is important to understand the interplay of selection and

nonadaptive forces in shaping such topological features (Lynch 2007). In practice, most studies

on real systems, rather than simulated data, have examined how events such as gene duplication,

often hypothesized to play a major role in evolution (Ohno 1970, Taylor & Raes 2004), give

rise to the network observed in a single, extant species (Presser et al. 2008, Teichmann & Babu

2004). An alternate strategy would take network models predefined independently in multiple

extant species (Gibson & Goldberg 2009, Patro et al. 2012, Pinney et al. 2007), infer an ances-

tral network, and then estimate rates of divergence by parameterizing a probabilistic model of

network evolution and estimating the model within a maximum likelihood or a Bayesian frame-

work. This model would evolve through edge gain and loss and gene duplication, divergence, and

loss. However, as discussed above, the limited availability of reliable network reconstructions in

extant species limits the feasibility of this approach at the moment. Good theoretical models of

network evolution—ideally with empirical support—could eventually help improve multispecies

reconstruction methods, yielding more accurate species-specific networks.

FUTURE OUTLOOK: HOW DO REGULATORY NETWORK CHANGES
ADAPTIVELY IMPACT PHENOTYPE?

Studying the evolution of regulatory networks promises insight into the evolution of complex

traits. In this review, we highlighted the major opportunities offered by a comparative perspec-

tive to examining regulatory networks, discussed computational challenges, and outlined avail-

able methods to systematically study regulatory network evolution. Computational approaches

to detect changes at the sequence level, including in both coding and noncoding DNA, have

significantly advanced. Going forward, three major challenges remain. They include developing

methods that (a) integrate comparative regulatory information from multiple molecular levels

(e.g., cis-regulatory elements, TF binding, chromatin organization, mRNA levels, and protein

levels) into network models across species; (b) assess selection pressure on network elements and

topological properties, and on networks as a whole; and (c) predict phenotype from genotype by

incorporating network knowledge.

6.20 Thompson · Regev · Roy

print



With regard to the first challenge, genomic studies are increasingly collecting integrative data

across species, highlighting the opportunity and need for novel computational methods. For ex-

ample, a recent study (Khan et al. 2013) collected RNA and protein profiles from three mammalian

species and found that protein levels are under greater evolutionary constraint than mRNA levels.

Another recent study (Wong et al. 2014) tackled the burning need to relate network structure

(e.g., TF binding to cis-regulatory elements) to function (i.e., impact on expression). Genome-

wide binding of three tissue-specific TFs was measured by ChIP-seq, and genome-wide mRNA

levels following TF knockout in four related mouse species were measured using RNA-seq. Most

cross-species differences in TF binding were not reflected by functional changes in expression,

highlighting the critical importance of functional strategies. Moreover, comparative epigenomic

data are now increasingly collected in mammals (Xiao et al. 2012, Villar et al. 2015) and other

animals (Ho et al. 2014), and yeast (Tsankov et al. 2010, 2011; Tsui et al. 2011), although com-

parative methods to analyze these data are just emerging (Ho et al. 2014). Finally, as comparative

functional genomics studies expand to measure post-translational modifications (Boekhorst et al.

2008, Freschi et al. 2014, Nakagami et al. 2010, Still et al. 2013), integrated approaches that com-

bine multiple types of data, including transcriptomic, proteomic, and epigenomic data, will be

important for examining the relative contribution of different modes of regulation to phenotypic

divergence.

With regard to the second challenge, computational methods that incorporate specific con-

nectivity and organizational properties of networks are needed to study selection on networks and

how these properties relate to adaptive evolution. As in studying selection pressure on sequences

and expression, one needs parameterized models to capture network evolution under a neutral

model versus under lineage-specific evolution. Furthermore, one must be able to disentangle the

various sources of network differences between species, including differences owing to errors in

network reconstruction. Such a model could be formulated within a probabilistic framework with

parameters to account for each network operation, such as edge insertion and deletion and gene

duplication and divergence, and parameters could be estimated for different networks in extant

species. An important barrier is obtaining better reconstructions for extant species, which requires

collection of comprehensive gene expression data across multiple conditions for multiple species.

Network reconstruction algorithms that leverage phylogenies with realistic models of network

evolution are also important. Further incorporating a population genetics framework to study the

role of different selection forces on the topological and structural properties of a network could be

useful. Initial theoretical models have shown that some properties of networks may be governed by

phenotypic selection, but intrinsic properties of an organism such as mutational bias, expression

cost, and expression dynamics could also influence network structure (Tsuda & Kawata 2010).

With regard to the final challenge, genome-wide association and eQTL studies examine how

changes in genotype influence changes in expression and other complex traits within a population.

A regulatory network-based predictive model that can predict complex phenotypes, especially

those associated with species fitness, can provide insights into how regulatory networks shape the

adaptability of species to changing environmental conditions. However, almost all of these studies

have examined sequence variation independent of regulatory network structure. As much of the

genetic variation associated with complex traits in genome-wide association studies resides in

regulatory regions (Maurano et al. 2012, Thurman et al. 2012), these variants likely impact genes

through a regulatory network; indeed entire pathways may be targets of variants that act in trans.

Thus, approaches that link regulatory variants to downstream phenotypes through regulatory

network mechanisms will become increasingly important (Califano et al. 2012). One approach

toward addressing this problem is based on network information flow. Here, the goal is to link

regulatory variants in some genes to downstream effector genes through an underlying network
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(Cho et al. 2012). A second strategy is to extend approaches developed to predict phenotypes

correlated with fitness from protein sequence variation ( Jelier et al. 2011). Although the study

cited here focuses on protein coding regions, this approach provides one possible way to predict

phenotypes from genomic sequences, especially when considering a small number of strains or

species.

In summary, a large number of computational tools have been developed and used to study

the evolution of regulatory sequences. These tools help us to study evolutionary dynamics at

the level of individual base pairs, single regulatory sites, or larger regulatory elements by finding

sequence-specific motifs in poorly annotated species and identifying parts of the genome under

accelerated or constrained evolution. Recently, our repertoire of functional genomics data has

grown, as such data are more readily and extensively collected. Computational approaches to

compare the transcriptome and epigenome are emerging and have been important for systematic

annotation and comparison of the noncoding portions of DNA, which constitute a significant

fraction of mammalian genomes. We are in the early stages of methods for regulatory network

evolution and to link changes in the network to changes in phenotype. As more data sets measuring

genome-wide states of the regulation machinery become available, advances in approaches to map

networks and model their evolutionary dynamics will become increasingly important for studying

selection on regulatory networks and its impact on complex phenotypes.
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