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Complete and accurate global solar radiation (R,) data at a specific region are crucial for regional climate assessment and crop
growth modeling. The objective of this paper was to evaluate the capability of 12 solar radiation models based on meteorological
data obtained from 21 meteorological stations in China. The results showed that the estimated and measured daily R; had statistically
significant correlations (P < 0.01) for all the 12 models in 7 subzones of China. The Bahel model showed the best performance for
daily R, estimation among the sunshine-based models, with average R of 0.910, average RMSE 0f 2.306 MJ m > d ', average RRMSE
0f17.3%, average MAE of 1.724 MJ m ™2 d', and average NS of 0.895, respectively. The Bristow-Campbell (BC) model showed the best
performance among the temperature-based models, with average R* of 0.710, average RMSE of 3.952 MJ m™> d ™', average RRMSE
of 29.5%, average MAE of 2.958 M]m ™ d ™", and average NS of 0.696, respectively. On monthly scale, Ogelman model showed
the best performance among the sunshine-based models, with average RE of 5.66%. The BC model showed the best performance
among the temperature-based models, with average RE of 8.26%. Generally, the sunshine-based models were more accurate than
the temperature-based models. Overall, the Bahel model is recommended to estimate daily R,, Ogelman model is recommended to
estimate monthly average daily R, in China when the sunshine duration is available, and the BC model is recommended to estimate

both daily R, and monthly average daily R, when only temperature data are available.

1. Introduction

Solar energy is the most fundamental renewable energy
source on the earth’s surface, and global solar radiation (R,)
plays an important role in a wide range of applications in
areas such as meteorology and hydrology [1]. Changes in
the amount of R, greatly influence the hydrological cycle,
terrestrial ecological systems, and the climate [2]. Complete
and accurate R, data at a specific region are highly crucial to
regional crop growth modeling, evapotranspiration estima-
tion, irrigation system development, and utilization of solar
energy resources. Meanwhile, due to the fast growth in the
global energy demand and destructive effects of fossil fuels
on the environment, there is a growing demand for reliable R

information for clean energy technology development [3, 4].
The best method to determine the amount of R, at any site
is to install measuring instruments such as pyranometers
or pyrheliometers at every specific location. Monitoring
their daily recording and maintenance, however, is a very
troublesome business and costly exercise [5, 6]. In fact,
the reliable measurement of R, data is relatively scarce in
many developing countries due to the expensive instruments,
technical equipment, and maintenance requirements [6].
Currently, only 122 out of 752 national meteorological stations
in China have R, observing instruments [7]. Furthermore,
even for those stations where R, is observed, there are many
R, data which are missing or lie outside the expected range
due to equipment failure and other difficulties [8-10].
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Thus, different R, models have been proposed for estimat-
ing daily or monthly R, using different techniques, such as
geostationary satellite images, neural networks, time series
methods, physically radiative transfer models, and stochastic
weather methods, which were generally based on differ-
ent types of data including meteorological and geograph-
ical data [11, 12]. Among them, meteorological data-based
models using empirical correlations depend on the most
common meteorological elements including cloud cover,
sunshine duration, temperature, and relative humidity, mak-
ing them the most commonly examined and widely used
models around the world, especially the sunshine-based and
temperature-based models [6, 11]. The primary sunshine-
based model can be traced back to Angstrém model, using
sunshine duration and clear sky radiation data to estimate
R, [11, 13, 14]. Prescott [15] suggested using the extraterres-
trial radiation to replace clear sky radiation and presented
the Angstrom-Prescott (AP) model. Several Angstrom-type
regression models, namely, the linear, quadratic, cubic, loga-
rithmic, and exponential models, were compared to estimate
R, on horizontal surfaces at 4 meteorological stations in
Tunisia, and the statistical results indicated that the models
were considered suited to accurately estimate R, and the
cubic model showed the best regression fit and performed
slightly better than the others [16]. Although the sunshine-
based models are generally more accurate for estimating R,
their application is often limited by the lack of sunshine
records [1, 9, 17]. In this context, R, forecast models based on
geographical location, air temperature, and/or precipitation,
recorded at the great majority of the meteorological stations,
are attractive and viable options [1, 8]. The temperature-based
models were only based on air temperature data which can
be measured easily [18]. Hargreaves-Samani (HS) model [19]
was proposed as a more convenient, effective, and strong
applicability model with fewer input parameters, based on the
daily maximum and minimum temperature to estimate R,.
Annandale et al. [20] modified the HS model by accounting
for the effects of reduced altitude and atmosphere thickness
on R,. In order to calculate the average monthly R, Allen
[21, 22] also proposed a self-calibrated model based on HS
model. Bristow and Campbell [23] presented a simple model
for estimating daily R,, in which R; was an exponential
function in terms of temperature. Goodin et al. [24] modified
Bristow-Campbell (BC) model by adding the extraterrestrial
R, term meant to act as a scaling factor. Liu et al. [10]
evaluated the accuracy and applicability of 16 temperature-
based models, including modified versions of the BC and
HS models in 15 meteorological stations of Northeast China,
North China Plain, and Northwest China, and the results
showed that the original BC model performed similarly to
the best performing modified HS model but significantly
outperformed the original HS model with a 4~7% higher
accuracy. Hassan et al. [11] established 17 new temperature-
based models and compared these models with Annandale,
Allen, and Goodin models to estimate monthly average daily
R, in Egypt and found that the local formula for the most
accurate new model provided good predictions at different
locations, especially at coastal sites. In general, the sunshine-
based models are more accurate than temperature-based
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models [11, 25]. However, sunshine data are not widely avail-
able compared with ambient temperature data at standard
meteorological stations [11].

China is an agricultural country, and agricultural appli-
cation of solar energy has an important guiding significance
to the agricultural clean production, energy conservation,
and emissions reduction. Therefore, reliable estimation of R,
is very important for the operation of solar-powered pump
station systems and solar irrigation systems, lift irrigated
projects, and potential yield of crops in China [17]. In particu-
lar, it is of great significance for developing and utilizing solar
energy resources in nonradiation observation areas due to the
lack of observation stations and meteorological stations. In
this paper, we analyzed the accuracy and applicability of 9
sunshine-based models and 3 temperature-based models to
estimate daily R, using the widely measured meteorological
variable obtained from 21 meteorological stations in China,
and the empirical coeficients of each model were calibrated
based on the least squares method.

2. Materials and Methods

2.1. Study Area and Experimental Data. According to the
natural geographical features, China is divided into 7 sub-
zones: North China, Central China, East China, South China,
Northeast, Northwest, and Southwest China. In the current
study, 21 meteorological stations located in different climatic
zones of China were selected (Figure 1), and each subzone
contains 3 meteorological stations.

Daily measurements of global solar radiation (R,) and
meteorological variables, including maximum (7T,,,,) and
minimum (T,,;,) air temperature at 2m height, relative
humidity (RH), and sunshine duration (1) were obtained
from 21 national meteorological stations during 1995~2014.
The data of 1995~2010 were used to calibrate the empirical
coefficients of the 12 models and the data of 2011~2014
were used to evaluate the performance of the models. The
data sets were provided and rigorously quality-controlled by
the National Meteorological Information Center of China
Meteorological Administration (http://data.cma.cn/). Miss-
ing data were reconstructed based on linear interpolation.
The geographical locations of each station and annual mean
meteorological variables are presented in Table 1.

2.2. Models for Estimation of Solar Radiation. A number of
empirical correlations which determine the relation between
R and various meteorological parameters have been devel-
oped to estimate daily or monthly R in the literature, such as
sunshine-based models, cloud-based models, temperature-
based models, and other meteorological parameter-based
models [6, 26]. The sunshine-based and temperature-based
models are the most commonly used around the world [6, 9].
In this paper, 12 representative models were chosen to predict
R,, including 9 sunshine-based models and 3 temperature-
based models.

2.2.1. Sunshine-Based Models

Model 1 (Angstrom-Prescott model (AP)). Angstrom [14]
derived a simple linear relationship between the ratio of
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FIGURE 1: Geographical positions of the meteorological stations.

average daily R, and the corresponding value on a completely
clear day at a given location and the ratio of average daily sun-
shine duration to the maximum possible sunshine duration,
which is the most widely used correlation for estimating daily
R, [27]. Prescott [15] modified the method and proposed the
following equation:

R, = [a+b<%)]wa @

where R is the global solar radiation (M] m2d™h), R, is the
extraterrestrial radiation (MJ m ™2 d 1), nis sunshine duration
(h), N is maximum possible sunshine duration (h), and a and
b are the empirical coefficients.

Model 2 (Ogelman model (0OG)). Ogelman et al. [28] sug-
gested a second-order polynomial equation for estimating R,

as follows:
2
Rs:[a+b<£>+c<£>]xRa, (2)
N N

where g, b, and ¢ are the empirical coefficients.

Model 3 (Jin model (Jin)). Through the use of R, data and
some geographical parameters like altitude and latitude, Jin
et al. [29] derived the following model:

R, = a+bc05(p+cZ+d<%)]xRa, (3)

where ¢ is the latitude of the location (°) and Z is the
altitude of the location (km); a, b, ¢, and d are the empirical
coeflicients.

Model 4 (Bahel model (BA)). Bahel et al. [30] suggested a
famous correlation with varied meteorological conditions
and a wide distribution of geographic location; the equation
is as follows:

R, = [a+b<%> +c<%>2+d<%>3] xR, (4)

where a, b, ¢, and d are the empirical coefficients.

Model 5 (Louche model (LO)). Louche et al. [31] have mod-
ified the Angstrom-Prescott model through the use of the
ratio of (n/N,;,) instead of (n/N); the equation is presented

as follows:
R = [a+b< n )] xR,
Nnh

1 0.8706

Nnh

(5)

+0.0003,

where a and b are the empirical coeflicients.

Model 6 (Glover-McCulloch model (GM)). Glover and
McCulloch [32] suggested the following model, which took
into account the effect of latitude of the site ¢ as an additional
input and was valid for ¢ < 60°:

R, = [acos<p+b(%)]XRa, (6)

where a and b are the empirical coefficients.
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Model 7 (Elagib-Mansell model (EM)). Through the use of
sunshine duration and geographical parameters, Elagib and
Mansell [33] derived a new equation for estimating R, as

R, = a+bL+cZ+d(%)]><Ra, (7)

where L is the latitude of the location (rad); a, b, ¢, and d are
the empirical coefficients.

Model 8 (Almorox-Hontoria model (AH)). Almorox and
Hontoria [34] derived an exponential type equation as fol-
lows:

R, = [a+bexp(%>]xRa, (8)

where a and b are the empirical coefhicients.

Model 9 (Dogniaux-Lemoine model (DL)). Through taking
into account the effect of latitude of the site as an additional
input, Dogniaux and Lemoine [35] derived the following
equation for estimating R:

R=fas [o(2) el bra( L) re

where a, b, ¢, and d are the empirical coefficients.

2.2.2. Temperature-Based Models

Model 10 (Hargreaves-Samani model (HS)). Hargreaves and
Samani [19, 36] recommended a simple equation to estimate
R, which required only maximum and minimum tempera-
ture data; the equation is presented as follows:

R, = [@ (Tpax = Tonin)" ] X R (10)

where T, and T, are the maximum daily temperature
and minimum daily temperature (°), respectively; a is the
empirical coefficient.

Model 11 (Annandale model (AN)). Annandale et al. [20]
derived a model based on Hargreaves-Samani model by
accounting for the effects of reduced altitude and atmospheric
thickness on R; the equation is presented as follows:

R, = [a(1+27%107°Z) (Tppax = Toin) ] X Rn (1)

where a is the empirical coeflicient.
Model 12 (Bristow-Campbell model (BC)). Bristow and
Campbell [23] proposed a method for daily R, based on

the difference of maximum and minimum temperatures; the
equation is presented as follows:

Rs =a [1 - €&Xp (_b (Tmax - Tmin)c)] X Ra’ (12)

where a, b, and c are the empirical coefficients.

2.3. Statistical Evaluation. The performance of the studied
models to estimate R, was evaluated in terms of the following
statistical error tests: coefficient of determination (R?), root
mean square error (RMSE), relative root mean square error
(RRMSE), Nash-Sutcliffe coeflicient (NS), and mean absolute
error (MAE), which are defined in the following equations
(37, 38]:

L R )

R n =\2 «n —\2
Zi:l (Xi - X) Zi:l (Yi - Y)
1<¢ 2
RMSE = ;;(Yi—Xi) ,
noy. - X.) 3
- \(/n) 2L (- x) (13)
X
n 2
Ns =1 Zim (= X0
> (X -X)

11’1
MAE = ;;|}Q—X,~|,

where X; and Y; denote the measured and estimated values,
X, and Y, represent the corresponding mean R, values,
respectively, the subscript i refers to the ith value of the solar
irradiation, and # is the number of data. RMSE and MAE
are both in MJm™2d™'; RRMSE is dimensionless, taking
on a value from 0 (perfect fit) to co (the worst fit); NS is
dimensionless, taking on a value from 1 (perfect fit) to —co
(the worst fit).

2.4. Global Performance Indicator. In order to overcome the
discrepancy and to further improve the outcomes of statistical
analysis, a new factor was proposed by Despotovic et al. [39]
known as the Global Performance Indicator (GPI), which was
a worthy tool to combine the effects of individual statistical
indicators. The equation is presented as follows:

5
GPI; = Z“j ()’j - yij)’ (14)
i

where a; is equal to 1 for the indicator R* and NS, while for
other indicators it is equal to +1. y; is the median of scaled
values of indicator j, and y;; is the scaled value of indicator j
for model i. A higher value of GPI results in a higher accuracy
of the model.

3. Results

3.1. Calibration of Empirical Coefficients. The empirical coef-
ficients of the 12 models were calibrated based on the least
squares method for R, estimation using the meteorological
variables obtained from 21 meteorological stations during
1995~2010, and the adjusted coefficients of each subzone



are shown in Table 2. As shown in Table 2, the calibrated
a and b of the AP model ranged between 0.161~0.214 and
0.532~0.555, respectively. The calibrated a, b, and ¢ of the
OG model ranged between 0.144~0.202, 0.605~0.798, and
-0.313~-0.082, respectively. The calibrated a, b, ¢, and d
of Jin model ranged between 1.805~2.068, —2.227~-2.048,
-0.101~0.027, and 0.532~0.555, respectively. The calibrated a,
b, ¢, and d of the BA model ranged between 0.134~0.190,
0.867~1.261, —1.799~-0.739, and 0.443~1.158, respectively.
The calibrated a and b of the LO model ranged between
0.161~0.214 and 0.608~0.635, respectively. The calibrated a
and b of the GM model ranged between 0.185~0.269 and
0.532~0.555, respectively. The calibrated a, b, ¢, and d of the
EM model ranged between 0.130~0.163, 0.005~0.034, 0.029~
0.037, and 0.532~0.555, respectively. The calibrated a and b
of the AH model ranged between —0.165~-0.085 and 0.325~
0.358, respectively. The calibrated a, b, ¢, and d of the DL
model ranged between 0.198~0.260, 0.082~0.109, —0.090~
-0.065, and 0.456~0.524, respectively. The calibrated a of
HS and AN models were both in the range 0.139~0.155.
The calibrated g, b, and ¢ of the BC model ranged between
0.552~0.695, 0.018~0.030, and 1.740~2.269, respectively. The
regression coefficients were different in different climate
zones. This can be explained as a consequence of local and
seasonal changes in the type and thickness of cloud cover,
the effects of snow covered surfaces, the concentrations of
pollutants, and latitude [6, 34, 40].

3.2. Performances of the Models. The statistic performances
of the analyzed models in estimating daily R for each zone
of China are shown in Tables 3-9. As shown in Tables 3-9,
there were good agreements between the estimations and
the measurements. The estimated and measured daily R, had
statistically significant correlations for all the 12 models at the
21 meteorological stations (P < 0.01). The statistical results
showed that the sunshine-based models were more accurate
for daily R, estimation at the 7 subzones of China compared
with the temperature-based models.

In North China, the BA model had the best estimation
precision among the sunshine-based models, followed by Jin
and DL models, with average R* of 0.923, 0.921, and 0.921,
average RMSE of 2.209, 2.231, and 2.231MJ m > d"", average
RRMSE of 15.5%, 15.6%, and 15.6%, average MAE of 1.603,
1.639, and 1.639 MJ m > d ™", average NS of 0.906, 0.904, and
0.904, and GPI of 0.069, 0.011, and 0.011, respectively. The BC
model showed the highest estimation precision among the
temperature-based models, with average R* of 0.735, average
RMSE 0f 3.953 MJ m > d ", average RRMSE of 27.8%, average
MAE of 3.007 MJm > d™", average NS of 0.703, and GPI of
—4.084.

In Central China, the BA model had the best estima-
tion precision compared with other sunshine-based mod-
els, followed by OG and LO models, with average R* of
0.906, 0.898, and 0.896, average RMSE of 2.368, 2.445,
and 2.482MJm™2d ", average RRMSE of 19.8%, 20.5%, and
20.8%, average MAE of 1.751, 1.833, and 1.873MJm>d™",
average NS of 0.899, 0.892, and 0.889, and GPI of 0.236,
0.078, and 0.002, respectively. The BC model showed the best

Advances in Meteorology

estimation precision among the temperature-based models,
with average R of 0.701, average RMSE of 4170 MJ m™>d ",
average RRMSE of 35.0%, average MAE of 3.021MJm™>d ",
average NS of 0.693, and GPI of —3.485.

In Eastern China, the BA model showed the best esti-
mation precision compared with other sunshine-based mod-
els, followed by OG and DL models, with average R? of
0.914, 0.909, and 0.900, average RMSE of 2.325, 2.397, and
2.458 MJm™> d", average RRMSE of 17.7%, 18.3%, and 18.8%,
average MAE 0f1.730, 1.812, and 1.851 MJ m > d ", average NS
0f 0.901, 0.895, and 0.890, and GPI of 0.284, 0.160, and 0.035,
respectively. The BC model showed the best performance
among the temperature-based models, with average R* of
0.640, average RMSE of 4.582MJm>d ", average RRMSE
of 34.9%, average MAE of 3.449 MJm > d™', average NS of
0.616, and GPI of —3.838.

In South China, the BA model showed the highest predic-
tion accuracy among the sunshine-based models, followed by
OG and LO models, with average R* of 0.911, 0.904, and 0.897,
average RMSE of 2.222, 2.299, and 2.343MJ m™2d ", average
RRMSE of 16.7%, 17.3%, and 17.7%, average MAE of 1.776,
1.850, and 1.885 MJ m > d™", average NS of 0.898, 0.891, and
0.888, and GPI of 0.278, 0.127, and 0.035, respectively. The BC
model had the best estimation precision compared with the
other temperature-based models, with average R? of 0.696,
average RMSE 0f 3.937 MJ m > d™', average RRMSE of 29.6%,
average MAE of 3.064 MJ m>d™', average NS of 0.685, and
GPI of —3.273.

In Northeast China, the BA model had the best estima-
tion precision compared with other sunshine-based mod-
els, followed by OG and AP models, with average R* of
0.921, 0.920, and 0.918, average RMSE of 2.224, 2.230, and
2.252MJ m* d™!, average RRMSE 0f 16.3%, 16.3%, and 16.5%,
average MAE of 1.661, 1.669, and 1.685MJ m 2 d ", average
NS of 0.904, 0.904, and 0.902, and GPI of 0.072, 0.055, and
0.003, respectively. The BC model had the highest estimation
precision among the temperature-based models, with average
R* of 0.718, average RMSE of 3.944 MJm>d™', average
RRMSE of 28.8%, average MAE of 2.955 MJ m > d ™", average
NS of 0.708, and GPI of —4.275.

In Northwest China, the BA model showed the high-
est prediction accuracy among the sunshine-based mod-
els, followed by OG and EM models, with average R* of
0.890, 0.888, and 0.888, average RMSE of 2.665, 2.684, and
2.693MJm™>d ", average RRMSE 0f19.4%, 19.5%, and 19.6%,
average MAE 0f1.932,1.956, and 1.941 M] m2d7}, average NS
of 0.881, 0.879, and 0.878, and GPI of 0.071, 0.013, and 0.010,
respectively. The BC model had the best estimation precision
compared with the temperature-based models, with average
R* of 0.729, average RMSE of 4.075MJm>d™', average
RRMSE of 29.4%, average MAE of 2.940 MJ m > d ™, average
NS of 0.724, and GPI of —3.787.

In Southwest China, the BA model had the best estima-
tion precision compared with other sunshine-based mod-
els, followed by OG and AP models, with average R’
of 0.904, 0.898, and 0.895, average RMSE of 2.132, 2.163,
and 2.206 MJm > d ™', average RRMSE of 15.7%, 16.0%, and
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16.4%, average MAE of 1.614, 1.646, and 1.684 MJm>d ",
average NS of 0.874, 0.870, and 0.865, and GPI of 0.290,
0.172, and 0.019, respectively. The BC model showed the best
performance among the temperature-based models, with
average R? of 0.753, average RMSE of 3.002 M] m2d7,
average RRMSE of 21.0%, average MAE of 2.218 MJm >d ",
average NS of 0.743, and GPI of —2.662.

Comparison between estimated and measured monthly
average daily R, and relative error (RE) of different models
for each subzone are presented in Figure 2. As shown in
Figure 2, the estimated and measured monthly average daily
R, had good agreements. In addition to Wuhan, Nanchang,
Shanghai, Chengdu, and Kunming stations, the estimated
and measured R, all presented parabolic variation. For the
9 sunshine-based models (AP, OG, Jin, BA, LO, GM, EM,
AH, and DL), the average RE was in the range 1.71%~12.94%,
1.59%~12.72%, 1.71%~13.38%, 1.61%~13.17%, 1.67%~12.98%,
1.74%~13.09%, 1.70%~12.95%, 1.93%~13.19%, and 1.68%~
13.20%, respectively. For the 3 temperature-based models
(HS, AN, and BC), the average RE was in the range 3.33%~
21.96%, 3.33%~21.96%, and 3.18%~15.16%, respectively. This
means the sunshine-based models had a better performance
for monthly average daily R, compared with the temperature-
based models, and the OG model had the lowest RE value
between the sunshine-based models, followed by DL and
GM models, with average RE of 5.66%, 5.73%, and 5.80%. In
the temperature-based models, BC model had the lowest RE
value, with average RE of 8.26%, and the RE of HS and AN
models RE had a large variation in a year. For the 7 subzones
(North China, Central China, East China, South China,
Northeast China, Northwest China, and Southwest China),
the models with the lowest RE were Jin, OG, DL, LO, AP,
OG, and HS models, respectively, with average RE of 4.87%,
6.77%, 4.79%, 4.81%, 5.71%, 5.09%, and 5.08%. In Taiyuan,
Jinan, Harbin, and Chengdu stations, all the models trended
to underestimate the monthly average daily R,. Overall, there
were large differences for models in under/overestimating R,
at different climatic zones.

4. Discussion

Results indicated that the prediction accuracy of each model
for estimating R, was different in each subzone of China. This
may be due to the vast territory of China, which leads to a
wide difference of topography and climate in different areas.
Generally, the sunshine-based models had a better perfor-
mance for the 7 subzones compared with the temperature-
based models. Trnka et al. [41] analyzed 7 methods for
estimating daily R, in the Central Europe case study area
(lowlands of Austria and the Czech Republic), where the
sunshine-based models were found to be the best of all tested
models, followed by cloud-based models, precipitation-based
models, and temperature-based models. Mecibah et al. [42]
introduced the best model for predicting the monthly mean
daily R, on a horizontal surface for 6 Algerian cities, and
the results obtained in this study confirmed the previous
studies, which indicated that the sunshine-based models were
generally more accurate to estimate R; than temperature-
based models. The amount of solar radiation reaching the
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earth’s surface is closely related to sunshine duration. At
the same time, clouds and their accompanying weather
patterns are also one of the most important atmospheric
phenomena that restrict the solar radiation on the earth’s
surface, and this is the main reason for the higher accuracy
of the sunshine-based models and cloud-based models. Solar
radiation reaching the earth’s surface is absorbed by the
atmosphere or emitted into the air in the form of long
wave radiation, and the portion absorbed by the atmosphere
causes an increase in atmospheric temperature. Therefore, the
effect of temperature on solar radiation is less than sunshine
duration, which led to the lower calculation accuracy of the
temperature-based models compared with sunshine-based
models.

In addition, the present study found that Bahel model
showed the best estimation precision of R in the 7 subzones.
Chelbi et al. [16] compared several Angstrém-type regression
models, namely, the linear, quadratic, cubic, logarithmic, and
exponential models, in Tunisia, and the results showed that
the cubic model (Bahel model) showed the best regression
fit and performed slightly better. Chen et al. [43] compared
5 R, models with measured daily data in China; the results
showed that the estimated daily R, was relatively accurate
using sunshine-based models, and the Bahel model was
slightly better than the Angstrém model with average NS
of 0.84 and 0.83, respectively. This research found that the
BC model had the best estimation precision for R; between
the temperature-based models. Quej et al. [17] evaluated
the prediction accuracy and applicability of 13 empirical
R, models for warm subhumid regions (Yucatdn Peninsula,
Mexico), and results showed that the BC model was the best
temperature-based model for estimating R. Chen et al. [43]
also found that the BC model was more accurate for R, than
HS model, with average NS of 0.47 and 0.44, respectively. This
is consistent with the results in the present study. In addition,
we should analyze the influence of different geographical
and meteorological factors on the accuracy of different
models.

5. Conclusion

In this study, 12 solar radiation models were evaluated using
daily meteorological data for estimating R, at 21 meteorologi-
cal stations across China. The performance of each model has
been evaluated and compared using the RMSE, RRMSE, NS,
MAE, RE, and GPI. The main conclusions of this study are
shown as follows.

(1) The estimated and measured daily R, had statistically
significant correlations (P < 0.01) for all models at 21 mete-
orological stations. The sunshine-based models were more
accurate for R, estimation than the temperature-based mod-
els. For the 7 subzones, the BA model had the best estimation
precision for daily R, estimation among the 12 models. In
China, the BA model also showed the best daily R, estimation
compared with other sunshine-based models, followed by
OG and DL models, with average R? of 0.910, 0.905, and
0.902, average RMSE of 2.306, 2.352, and 2.386 MJm>d ",
average RRMSE of 17.3%, 17.7%, and 17.9%, average MAE of
1.724,1.775,and 1.799 MJm ™ d™", average NS of 0.895, 0.891,
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FIGURE 2: Comparison between monthly average daily global solar radiation and relative error of each model in China.

and 0.887, and GPI of 0.191, 0.084, and 0.008, respectively.
The BC model had the best estimation accuracy among the
temperature-based models, with average R* of 0.710, average
RMSE 0f 3.952 MJ m > d", average RRMSE of 29.5%, average
MAE of 2.958 M m > d™", average NS of 0.696, and GPI of
-3.650, respectively.

(2) At monthly scale, the sunshine-based models also had
a better performance compared with the temperature-based
models for monthly average daily R, estimation, and the OG
model had the lowest RE value between the sunshine-based
models, followed by DL and GM models, with average RE of
5.66%, 5.73%, and 5.80%. In the temperature-based models,
the BC model had the lowest RE value, with average RE
of 8.26%. For the 7 subzones (North China, Central China,
East China, South China, Northeast China, Northwest China,
and Southwest China), the models with the lowest RE are
Jin, OG, DL, LO, AP, OG, and HS models, respectively, with
average RE of 4.87%, 6.77%, 4.79%, 4.81%, 5.71%, 5.09%, and
5.08%.

(3) Overall, the BA model is recommended to estimate
daily R and the OG model is recommended to estimate
monthly average daily R; in China when the sunshine hours
are available, and the BC model is recommended to estimate
both daily R; and monthly average daily R; when only
temperature data are available.

Complete and accurate R, data at a specific region are
highly crucial to regional crop growth modeling, irrigation

system development and utilization of solar energy resources.
The main objective of this study is to evaluate the applicability
of different radiation models in 7 subzones of China. When
sunlight passes through the atmosphere, a portion of sunlight
is scattered, reflected, or absorbed by gases, clouds, and dust
in the atmosphere, which varies with time in temperature and
composition. Unfortunately, our work ignored the question
and did not take into account the effects of climate change
and human activities on solar radiation. We mainly consider
the application of clean energy in agricultural production,
and we will take into account this question in the future
research.
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