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Abstract 14 

Micropropagation techniques offer opportunity to proliferate, maintain, and study dynamic plant 15 
responses in highly controlled environments without confounding external influences, forming the 16 
basis for many biotechnological applications. With medicinal and recreational interests for Cannabis 17 
sativa L. growing, research related to the optimization of in vitro practices is needed to improve 18 
current methods while boosting our understanding of the underlying physiological processes. 19 
Unfortunately, due to the exorbitantly large array of factors influencing tissue culture, existing 20 
approaches to optimize in vitro methods are tedious and time-consuming. Therefore, there is great 21 
potential to use new computational methodologies for analysing data to develop improved protocols 22 
more efficiently. Here, we first tested the effects of light qualities using assorted combinations of 23 
Red, Blue, Far Red, and White spanning 0-100 µmol/m2/s in combination with sucrose 24 
concentrations ranging from 1-6 % (w/v), totaling 66 treatments, on in vitro shoot growth, root 25 
development, number of nodes , shoot emergence, and canopy surface area. Collected data were then 26 
assessed using multilayer perceptron (MLP), generalized regression neural network (GRNN), and 27 
adaptive neuro-fuzzy inference system (ANFIS) to model and predict in vitro Cannabis growth and 28 
development. Based on the results, GRNN had better performance than MLP or ANFIS and was 29 
consequently selected to link different optimization algorithms (genetic algorithm, biogeography-30 
based optimization, interior search algorithm, and symbiotic organisms search) for prediction of 31 
optimal light levels (quality/intensity) and sucrose concentration for various applications. Predictions 32 
of in vitro conditions to refine growth responses were subsequently tested in a validation experiment 33 
and data showed no significant differences between predicted optimized values and observed data. 34 
Thus, this study demonstrates the potential of machine learning and optimization algorithms to 35 
predict the most favourable light combinations and sucrose levels to elicit specific developmental 36 
responses. Based on these, recommendations of light and carbohydrate levels to promote specific 37 
developmental outcomes for in vitro Cannabis are suggested. Ultimately, this work showcases the 38 
importance of light quality and carbohydrate supply in directing plant development as well as the 39 
power of machine learning approaches to investigate complex interactions in plant tissue culture.  40 
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Introduction 41 

The multifaceted value of Cannabis sativa L. (cannabis) as a quality fiber, seed oil, and therapeutic 42 
crop have been recognized for millennia (Hesami et al., 2020; Sandler et al., 2019). Over the past two 43 
decades, interest relating to its medicinal applications have largely been emphasized due to the 44 
discovery of over 500 unique secondary metabolites (ElSohly and Gul, 2014). Of these compounds, 45 
there are more than 100 cannabinoids that contribute to cannabis’ pharmacological properties 46 
(Fathordoobady et al., 2019). Medicinal use can relieve symptoms associated with glaucoma, nausea, 47 
irritability, epilepsy, chronic pain, etc. (Barrus et al., 2017), showing potential to revolutionize the 48 
pharmaceutical industry, and technologies related to extraction and administration of bioactive 49 
compounds (Fathordoobady et al., 2019; Vita et al., 2020). Due to the important industrial 50 
implications of drug-type cannabis, it is imperative to establish methods for the production of high 51 
quality biomass with consistent secondary metabolite profiles, which is achievable in part through 52 
micropropagation (Chandra et al., 2020). 53 

Since many nations have adopted the more liberal view of cannabis, it’s since gained higher 54 
economic status as an industrial crop, and additional secondary products such as extract derivatives 55 
are expected to further amplify economic expansion (Moher et al., 2020). The need to maintain 56 
product consistency, while supporting innovation and development (Burgel et al., 2020) requires a 57 
better understanding of the physiological responses of cannabis to external stimuli. Research 58 
initiatives are needed to optimize current production strategies, enhancing our recognition of, and the 59 
precision at which we can invoke specific physiological responses to fit an assortment of industrial 60 
applications. Micropropagation offers unique opportunities to produce and maintain extensive 61 
populations of genetically uniform plantlets in time and cost-effective systems (Nathiya et al., 2013). 62 
Tissue culture techniques can be applied to examine essential plant responses to external stimuli in 63 
highly controlled environments under axenic conditions for biotechnological (Shukla et al., 2017), 64 
conservation (Ayuso et al., 2019) and various –omics related technologies (Andre et al., 2016). These 65 
approaches can be re-applied to suit the needs of the emerging cannabis industry.  66 

Until recently, cannabis micropropagation has largely been an underground effort with few peer 67 
reviewed studies. This lack of insight concerning in vitro cannabis techniques has limited 68 
biotechnological utility of this crop (Smýkalová et al., 2019). While the current cannabis boom has 69 
led to the emergence of numerous in vitro protocols (Galán-Ávila et al., 2020; Lata et al., 2016; 70 
Wróbel et al., 2020), a robust and efficient protocol has yet to be fully developed. Several intrinsic 71 
(e.g., genotype, type, and age of explant) and extrinsic (e.g., basal salt medium, vitamins, plant 72 
growth regulators (PGRs), gelling agents, carbohydrate source, additional additives, temperature, and 73 
light) factors (Fig. 1) influence in vitro shoot growth and development and contribute to challenges in 74 
reproducibility (Hesami and Jones, 2020). Most previous studies in cannabis have investigated the 75 
effect of basal media, along with different types and concentrations of PGRs for shoot growth and 76 
regeneration (Chaohua et al., 2016; Lata et al., 2016; Movahedi and Torabi, 2015). Clonal line 77 
proliferation using apical and nodal explants on medium with reduced PGRs has been demonstrated 78 
as an effective approach for non-medicinal cannabis, while reducing the amount of emergent genetic 79 
variability (Wróbel et al., 2020). A cannabis micropropagation approach truly optimized for cross-80 
cultivar maintenance and proliferation should allow formative physiological development on a 81 
pathway to photoautotrophic competence, coaxed through abiotic conditioning in the absence of 82 
PGRs. Though certain in vitro propagation, embryogenesis, and regeneration procedures rely on 83 
PGRs, many beneficial physiological characteristics can be induced or enhanced by appropriately 84 
adjusting light quality, quantity, and carbohydrate supply. In vitro shoot growth and development 85 
may be achieved or enhanced by manipulating light and sugar in the absence of PGRs.  86 
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Though micropropagation protocols show promise to advance certain aspects of the cannabis 87 
industry, there remain issues with conventional in vitro systems. Photosynthetically incompetent 88 
organs, and fragile roots are phenotypic traits commonly observed in cultures (Jha and Bansal, 2012). 89 
Anatomical variations tend to be culture-induced, emerging with high humidity, elevated PGR 90 
concentrations, low light intensity, and high substrate water potential, causing physiological disorders 91 
such as hyperhydricity (Majada et al., 2000). These abiotic factors, along with limited culture CO2 92 
availability, and potential for ethylene accumulation frequently impede photosynthetic responses 93 
(Nguyen et al., 2001), complicating the ex vitro transfer of specimens (Nathiya et al., 2013). Due to 94 
such limitations, new cultures must be supplied alternative carbon sources to maintain metabolic 95 
activity in otherwise daunting, closed environments (Eckstein et al., 2012). Sugar occurrence allows 96 
continuous plantlet development under low irradiance (Cioć et al., 2018), commonly used in vitro. A 97 
standardized addition of 3% (w/v) sucrose to the micropropagation media helps to counteract short-98 
term, negative environmental impacts by providing substitute carbohydrates to elicit photo-99 
mixotrophic metabolism (Gago et al., 2014). In vitro  sucrose levels impact plantlet physiology by 100 
regulating genes relating to primary and secondary metabolic function (Yang et al., 2012). While 101 
supplemental carbon supply is a necessity for early-stage explants, developing plantlets can build 102 
sucrose dependence (Lembrechts et al., 2015), further limiting idealized physiological function and 103 
subsequent ex vitro re-localization. Conversely, previous work has also demonstrated that sugar can 104 
have positive effects on plantlet development under different environmental conditions in vitro 105 
(Eckstein et al., 2012; Kozai et al., 1987; Roh and Choi, 2004).  106 

Although the occurrence of sucrose often activates photomixotrophic metabolic responses, light 107 
nevertheless bears high influence over in vitro success (Miler et al., 2019). Sugar and light signal 108 
essential metabolic processes which govern the condition of cultured plantlets (Eckstein et al., 2012). 109 
Though low light intensity in vitro hampers photosynthetic efficiency, overly high intensities can 110 
limit synthesis of photo-absorptive pigments and damage certain components of the photosynthetic 111 
apparatus (Cioć et al., 2018). Since high light levels throughout different culture stages can be 112 
stressful to developing plantlets, substitute carbon sources can help elicit photo-protective responses, 113 
indicating a possible sugar/light signalling pathway for photo-protection (Eckstein et al., 2012). Thus, 114 
photosynthetic limitation in vitro could largely be more related sub-optimal abiotic conditions in the 115 
presence of exogenous sugar, rather than the impact of the sugar itself (Arigita et al., 2002). 116 
Chloroplast localization (Eckstein et al., 2012), leaf area index (Snowden et al., 2016), and leaf 117 
thickness are influenced by changes in light quantity and quality. Proper development of these traits 118 
can increase photoabsorption saturation point (Macedo et al., 2011), enhancing plantlet fitness. 119 
Sustainable adjustment of the abiotic conditions combined with exogenous sugar can improve 120 
protective and repair responses (Eckstein et al., 2012; Tichá et al., 1998), allowing plantlets to more 121 
effectively sequester and utilize otherwise excessive and damaging photo-irradiation. Preliminary 122 
work conducted by our lab points in this direction in the case on micropropagated cannabis. 123 
Modifying abiotic factors and their interactions with sugar-related dynamics, is sometimes 124 
overlooked in micropropagation (Eckstein et al., 2012). Thus, research surrounding the potential to 125 
improve tissue culture protocols by optimizing abiotic influence and sugar-related dynamics should 126 
be thoroughly pursued. 127 

The use of light emitting diodes (LEDs) for plant tissue culture allows strategic manipulation of light 128 
quality and intensity, impacting biomass and secondary metabolite accumulation of various species 129 
(Cioć et al., 2018; Manivannan et al., 2015; Ucar et al., 2016). Cool fluorescent lights have been 130 
popular for conventional micropropagation systems (Fanga et al., 2011) due to relatively low energy 131 
consumption, heat dissipation, and cost. However, they deliver light at wavelengths outside of the 132 
photoabsorptive range and lack control over spectral quality, which limits its power over 133 
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physiological conditioning (Bello-Bello et al., 2016). There exists an established dogma that blue 134 
light (B) heavily influences chloroplast development, chlorophyll production, and stomata 135 
functionality, while red light (R) influences carbohydrate localization, and various anatomical 136 
processes such as leaf expansion (Hung et al., 2016; Ucar et al., 2016). Various combinations of 137 
these wavelengths can mutually and individually persuade shoot and root elongation (Ramírez-138 
Mosqueda et al., 2017). LED technologies hold significant potential in the pursuit of plant growth in 139 
controlled environments, including plant tissue culture (Fontana et al., 2019). Control over spectral 140 
composition with LEDs allows wavelength emission that match photoreceptor action spectra to more 141 
directly trigger morphogenic responses (Li et al., 2010), while limiting heat dissipation, and energy 142 
consumption (Zhao et al., 2020). Photomorphogenic responses are primarily prompted by light 143 
quality through phytochrome reception of R and far-red light (Fr), and cryptochrome absorption of B 144 
(Miler and Zalewska, 2006), which largely shape plant development and physiology (Legris et al., 145 
2019). 146 

Despite the apparent simplicity of light quality and intensity, it is a complex factor comprised of 147 
nearly infinite potential mixtures which interact with other factors such as sucrose levels to influence 148 
in vitro shoot growth and development as a nonlinear, multifactorial, and complex process. The 149 
establishment and optimization of in vitro culture protocols have been principal challenges for many 150 
tissue culture researchers. Historically, micropropagation systems have been developed through serial 151 
manipulation and optimization of single factors, individually. Conventional statistical methods such 152 
as simple regression and ANOVA have typically been recommended for small databases with limited 153 
dimensions, and are therefore inappropriate for analyzing data derived from complex and non-linear 154 
processes such as light quality (Hesami et al., 2021b; Yoosefzadeh-Najafabadi et al., 2021a). The 155 
high probability of overfitting is one of the main disadvantages of using conventional statistical 156 
methods (Jafari and Shahsavar, 2020; Yoosefzadeh-Najafabadi et al., 2021b). Using conventional 157 
statistical methods, some of the puzzle pieces of in vitro practices have been sequentially assembled. 158 
However, many factors in tissue culture systems remain unoptimized. To overcome such setbacks, 159 
different factors can be simultaneously optimized through precision in vitro culture techniques using 160 
machine learning methods (Fig. 2). In recent years, machine learning algorithms such as artificial 161 
neural networks (ANNs) and neuro-fuzzy logic have been successfully applied for modeling and 162 
predicting various in vitro culture systems such as shoot growth and development, callogenesis, 163 
somatic embryogenesis, androgenesis, secondary metabolite production, and rhizogenesis (Hesami 164 
and Jones, 2020; Niazian and Niedbała, 2020). However, in most plant tissue culture studies, 165 
individual models were employed, and the efficiency of different machine learning algorithms has 166 
not been compared (Hesami et al., 2021c). 167 

There exist two general groups of optimization methods. Classical optimization algorithms include 168 
dynamic programming (DP), linear programming (LP), stochastic dynamic programming (SDP) 169 
which have limitations restricting their flexibility and efficiency. For instance, LP requires objective 170 
function and constraint to be linear, which is not ideal for plant tissue culture. Conversely, 171 
evolutionary optimization algorithms are considered more powerful mathematic methods for solving 172 
complex, multidimensional problems such as designating optimal factors for micropropagation with 173 
high accuracy and pace (Hesami and Jones, 2020). Although there are different types of evolutionary 174 
optimization algorithms, the genetic algorithm (GA) has been applied to the vast majority of plant 175 
tissue culture optimization studies relating to shoot proliferation, secondary metabolite production, 176 
and somatic embryogenesis. Despite the advantages that GA imparts over classical methods, 177 
premature convergence can sometimes lead to failure in obtaining a fully optimized solution 178 
(Hosseini-Moghari et al., 2015). To overcome this, new evolutionary optimization algorithms, 179 
including biogeography-based optimization (BBO), interior search algorithm (ISA), and symbiotic 180 
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organisms search (SOS) have been developed. These approaches have been evaluated in different 181 
fields of study (Bozorg-Haddad et al., 2016; Hosseini-Moghari et al., 2015; Mokhtari Fard et al., 182 
2012; Moravej and Hosseini-Moghari, 2016), and are expected to be superior in optimizing plant 183 
tissue culture protocols. 184 

The current study tests the combined effects of B (400-500nm), R (600-700nm), Fr (700-800nm), 185 
and White (W) (400-700nm) (Figure 3, Figure 9) light at different intensities, and carbohydrate 186 
concentrations on shoot length, root length, number of nodes, number of shoots, and canopy surface 187 
area. Data collected were assessed using machine learning and evolutionary optimization algorithms 188 
to predict and optimize these factors for cannabis maintenance and proliferation in vitro. Predictions 189 
were then tested in a validation experiment to identify the best optimization algorithm for in vitro 190 
plant applications. Ultimately, the research presented will facilitate development of current practices 191 
for maintenance, proliferation, and acclimation of micropropagated cannabis, boosting our 192 
understanding of the dynamics between light and sugar-related plantlet responses, while identifying 193 
superior predictive analytic practices to guide future experimentation. 194 

 195 

1 Materials and Methods 196 

1.1 Plant material and experimental design 197 

In this study, the effects of different light qualities, intensities and sucrose concentrations were 198 
evaluated for shoot growth, canopy surface area, and additional growth parameters, using the 199 
medicinal strain of cannabis “UP-802” supplied by Hexo, Brantford, ON. To this end, four plantlets 200 
per treatments were cultured in single Magenta boxes, allowing one experimental unit per treatment. 201 
Stock UP-802 specimens were maintained in cultures supplemented with 3% (w/v) sucrose, 202 
maintained under 16-hr photoperiod with 75% R, 12.5% B and 12.5% W LEDs at 50 µmol/m2/s.  203 
Both stock and experimental plantlets were grown at approximately 26�. Non-experimental media 204 
components included 0.53% (w/v) DKW with vitamins, 0.10% (w/v) plant preservation mixture, and 205 
0.60% (w/v) agar. Media pH was adjusted to 5.7 prior to agar addition, sterilization, and use. 206 
Chemicals were obtained from PhytoTech Labs. 207 

To test the multivariable influences of sugar and light quality (intensity and spectrum) on in vitro 208 
cannabis development, plantlets were grown for 6-weeks with alternative sucrose concentrations, in 209 
compartmentalized light treatments. Programmable LED lights were used to provide light, allowing 210 
different combinations of B (400-500nm), R (600-700nm), Fr (700-800nm), and W (400-700nm) 211 
(Figure 3, Figure 9) light at specific intensities between 0-100 µmol/m2/s. The FinMax 212 
(bigfin.github.io/Prismatic) programmable LED lighting system was developed in-house to empower 213 
photobiology research with precise lighting treatments (Figure 3). The intensity of the 9 214 
independently dimmable channels were programmed and calibrated at plant height using a 215 
spectrometer (Li-Cor LI-180). 216 

At the end of each experiment, shoot length was measured by selecting the longest shoot and 217 
measuring from the root-shoot junction to apical meristem. Similarly, root length was measured from 218 
the root-shoot junction to root tip of the longest root. Number of nodes was collected by counting 219 
nodes on longest shoots. Shoot number was determined by counting emergent stems. Canopy surface 220 
areas were obtained by dissecting leaves and processing through ImageJ. All raw data were collected 221 
and processed using ImageJ software (Rueden et al., 2017).  222 
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For the preliminary experiment, apical explants were collected from stock UP-802 cultures, and sub-223 
cultured to Magenta boxes with experimental media containing 1, 3 or 6% (w/v) sucrose. One culture 224 
of each sucrose concentration was randomly assigned to one of 22 different light treatments listed in 225 
Table 1, where they remained for 6-weeks. Data on shoot length, root length, number of shoots, 226 
number of nodes, and canopy surface area that was collected from 264 plantlets, as presented in 227 
Table 1, and processed with ImageJ software (Rueden et al., 2017). Raw experimental datasets were 228 
then analyzed using machine learning algorithms to build an appropriate model for cannabis shoot 229 
growth and development. 230 

1.2 Modeling procedure 231 

Three well-known machine learning algorithms, MLP, GRNN, and ANFIS, were applied to model 232 
and predict in vitro shoot growth and development of cannabis using the collected dataset. Box-Cox 233 
transformation was employed to normalize the data before using the machine learning algorithms. 234 
Principal component analysis (PCA) was applied to detect outliers, but no outliers were identified. In 235 
this study, the five-fold cross-validation approach, with 10 repetitions was applied to evaluate the 236 
prediction accuracy of the tested machine learning algorithms.  237 

Different light qualities (B, R, W, and Fr) at various intensities and different levels of Sucrose were 238 
selected as input variables, while shoot length, root length, number of nodes, number of shoots, and 239 
canopy surface area were considered as target (output) variables (Fig. 4a). 240 

To evaluate and compare the efficiency and accuracy of the machine learning algorithms, R2 241 
(coefficient of determination), mean bias error (MBE), and root mean square error (RMSE) were 242 
employed based on the following equations: 243 

(1) �� �  � � ∑ ��� � �	�
��
���∑ ��� � �̄�
��
���

 

 244 

(2) ��
� � ������ � �	�
��

���

� /� 

 245 

(3) ��� � �/� ���� � �	�
�

���

 

 246 

Where iy  is the value of prediction, n is the number of data, and iŷ  is value of observation. 247 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.09.455719doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.09.455719
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                                                                           Precision tissue culture of Cannabis sativa 

 
7 

 2.2.1 Multi-Layer Perceptron (MLP)  248 

MLP belongs to the ANNs which is inspired by the neural structure of the human brain. A neuron in 249 
the human neural network receives impulses by using a number of dendrites from other neurons. 250 
Based on the received impulses, a neuron through its single axon may send a signal to other neurons. 251 
Like the human neural network, ANNs contain nodes, each of which receives a number of input 252 
variables and produce a single target variable, where the target variable is a relatively simple function 253 
of the input variables (Fig. 4b). 254 

The 3-layer backpropagation MLP is a parallel and distributed algorithm that uses supervised 255 
learning for the training subset. The following equation is employed to minimize the error between 256 
the input and target variables: 257 

(4) ����� � �� ���� � �	�

�

���


� 

 258 

Where ys is the sth observed variable, n is the number of observations, and ��� is the sth predicted 259 
variable. 260 

To determine the �� in the model k output variables and with p neurons in the hidden layer, following 261 
function is employed: 262 

(5) �	 � � �� ��. ��� �����  ��	
  �


�

���

�

���

! 

 263 

where wj represents the weighted input data into the jth neuron of the hidden layer, w0 equals the bias 264 
connected to the neuron of output, wji represents the weight of the direct relationship of input neuron 265 
i to the hidden neuron j, xi is the ith target variable, f represents activation function for the target 266 
neuron, wj0 shows the bias for node jth, and g shows the activation function for the hidden neuron. 267 

Since the number of hidden units and the number of neurons in each node play an important role in 268 
the efficiency of MLP, they should be determined. In the present investigation, trial and error-based 269 
approach was used to detect the optimal neuron number in the hidden layer. Also, linear function 270 
(purelin) as the transfer functions of output layer and hyperbolic tangent sigmoid function (tansig) as 271 
the transfer functions of hidden layer were applied. Moreover, A Levenberg-Marquardt algorithm 272 
was employed for adjusting bias and weights. 273 

 2.2.2 Generalized Regression Neural Network (GRNN)  274 

The GRNN as another kind of ANNs consists of four layers (Fig. 4c). The node in input layer 275 
completely enters the node in pattern layer. The output of each neuron in pattern layer is connected to 276 
the summation neurons. The unweighted pattern neuron outputs are determined by D-summation 277 
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neuron, while the weighted pattern neuron outputs are computed by S-summation neuron. Finally, the 278 
following equation is employed to determine the output: 279 

(6) �	 �  ∑ �� ��� �� 
��

�

�����
���

∑ ��� �� 
��

�

�����
���

             

 280 

(7) "�
� �  �� �  ��
� �� � ��
             

 281 

where σ represents width parameter, �� shows the average of all the weighted observed output data, yi 282 
shows the ith output variable, and #�

� equals a scalar function which is based on any xi and yi 283 
observed data.  284 

 2.2.3 Adaptive Neuro-Fuzzy Inference System (ANFIS) 285 

ANFIS developed by Jang (1993) is one of the most well-known neuro-fuzzy logic systems. The 286 
overall ANFIS model with two Takagi and Sugeno type if-then rules can be defined as follow:  287 

(8) ���� �: �	 
 �� �� 
�� � �� �� �����	� � ��
 � ��� � �� ���� ��: �	 
 �� �� 
�� � �� �� �����	� � ��
 � ��� � �� 

 288 

Where x and y are input variables; f1 and f2 are the outputs within the fuzzy area determined by the 289 
fuzzy rule; A1, A2, B1, and B2 are the fuzzy sets; p1, p2, q1, q2, r1, and r2 are the design parameters that 290 
are specified during the training set. The ANFIS model is built of five layers (Fig. 4d) as follow: 291 

Layer 1 (adaptive or input layer): Every adaptive (input) node i in layer 1 defines a square node with 292 
a node function: 293 

(9) ��
� � �	�

�
��
 

Where 1
iO  is the fuzzy membership grade, x is the input of adaptive node i, and �
�

 is Gaussian 294 

membership function which is deremined as follow: 295 

(10) �	�
�
�  � �
� � !
  "�
�

#�$�
 

where ai and ci are premise parameters. 296 

Layer 2 (rule layer): Every role node in layer 2 can be considered as a circle node labeled ∏ where 297 
the output is the result of all incoming inputs. 298 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.09.455719doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.09.455719
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                                                                           Precision tissue culture of Cannabis sativa 

 
9 

(11) �� � $��
��
 % $��

��
&' � �,  )& 

Each node output displays the rule’s firing strength. 299 

Layer 3 (average layer): Each node as a fixed node in layer 3 is labeled N. The ith node determines 300 
the ratio of the firing strength of ith rule to the total rules’ firing strengths. The outputs of layer 3 301 
(normalized firing strengths) are calculated as follow: 302 

(12) �� � ����   ��

&' � �,  ) 

Where *� is output of this layer. 303 

Layer 4 (consequent layer): Nodes in layer 4 are called consequent nodes. The following equation is 304 
used to calculate the output of this layer. 305 

(13) +�
� � ���� � ���,��  -��  ��
& 

Where pi, qi, and ri are parameter sets and *� is output of layer 3. 306 

Layer 5 (output layer): There is only one single fixed node labeled . in this layer. The final output 307 
(/�

�) of the model is calculated based on the following equation: 308 

(14) +�
� � � ����

�

���

 

In the current study, the Gaussian membership function (between 3 and 5 membership functions for 309 
different variables) was considered based on a trial and error approach. The number of epochs to train 310 
the models was also set to 10. Moreover, the least-squares method and backpropagation algorithm 311 
were applied to adjust the consequent and premise parameters, respectively. 312 

1.3 Sensitivity analysis 313 

Sensitivity analysis was performed to assess the degree of importance of various forms of light (B, R, 314 
W, and Fr) and exogenous carbohydrates on shoot length, root length, number of nodes, number of 315 
shoots, and canopy surface area by determining the variable sensitivity ratio (VSR). VSR can be 316 
defined as the ratio of variable sensitivity error (VSE) to the RMSE of the developed model. A 317 
greater VSR shows a higher degree of importance. 318 

1.4 Optimization procedure 319 

In the current study, four different single-objective evolutionary optimization algorithms including 320 
BBO, ISA, SOS, and GA were separately employed to find optimal levels of input variables 321 
(Sucrose, B, R, W, and Fr) for maximizing each fitness function (shoot length, root length, number of 322 
nodes, number of shoots, and canopy surface area). Generally, evolutionary optimization algorithms 323 
consist of five main steps including creating an initial population, fitness computation, selection, 324 
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creating a new generation, and displaying the best solution (Fig. 4e). The details of each algorithm 325 
have been presented below.  326 

 2.4.1 Biogeography-Based Optimization (BBO) 327 

The term "Biogeography" refers to the study of ecosystems and the geographical distribution of 328 
species. BBO introduced by Simon (2008) is based on biogeographic concepts such as migration, 329 
evolution, adaptation, and extinction of organisms among habitats. In theory, appropriate regions for 330 
living organism’s settlement are defined by the habitat suitability index (HSI) that depends on several 331 
factors such as precipitation, temperature, area, and vegetative cover which are known as suitability 332 
index variables (SIVs). Indeed, HIS as a dependent variable is determined by SIVs as independent 333 
variables. Therefore, more living organisms can be accommodated in habitats with higher values of 334 
HIS and vice versa, lower HSI values support fewer organisms. Subsequently, a stronger tendency 335 
for living organisms to emigrate from the habitat to find new places with lower population density 336 
and more suitable conditions can be seen by increasing the number of species in a habitat.  337 

The highest λ can be seen when there are no species in the habitat. The λ decreases by increasing the 338 
number of species in the habitat and, finally, the λ becomes zero when the habitat capacity is 339 
completed (the maximum number of species in the habitat equals Smax). On the other hand, the μ 340 
enhances by increasing the number of species in the habitat until the habitat becomes empty. Hence, 341 
the equilibrium number of species in the habitat can be seen when λ equals μ. Generally, λ and μ can 342 
be determined based on the following equations: 343 

� �  % &  ! ''��
# 
(15) 

 344 

( �  � &  !)   ''��
# 
(16) 

 345 
Where S is the number of species, I shows the maximum rate of immigration, and E is the maximum 346 
rate of emigration. 347 

In the BBO method, habitat and SIVs play the role of solution and the decision variables, 348 
respectively. Therefore, the HSI can be considered as the objective function in this optimization 349 
algorithm. If there is a particular graph with E=I for each solution, HSI has a direct relationship with 350 
S, in which case HSI values can be used instead of S. The step-by-step procedure of the ISA method 351 
has been presented in Figure 5. 352 

With a specific probability Pmod, different solutions can help each other for improvement. If the Si is 353 
selected as an improvement, the λ is employed to adjust its SIVs. Subsequently, the μ relevant to 354 
other solutions is applied to choose the improved solution. The SIVs of the Si solution are then used 355 
for randomly replacing SIVs from selected solutions. The suitable values of μ can be arbitrarily 356 
considered by using an arithmetic progression, with the common difference of successive members 357 
equal to 1/(population size −1), between 0 and 1. After calculation of μ, λ can be determined as 358 
λ=1−μ. 359 
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For lack of elitism, all solutions should be modified at all steps. However, modifying the amount of 360 
any solution is conversely related to its HSI. A roulette wheel is used for choosing the modifier 361 
solution which is based on a probability proportional to the μ. Transferring SIVs, as an inferior 362 
strategy, from one solution to another solution restricts the search choices within the decision space. 363 
Therefore, the following equation has been recommended for replacing SIVs: 364 

'�*�,�
��� �  '�*�,� � + ,'�*�,�  � '�*�,�- (17) 

 365 

Where ./0�,���� equals mth modified SIV of the ith solution, 1 is a parameter between 0 and 1, which is 366 
determined by the user, ./0�,� is  m

th SIV of the j
th solution, and ./0�,� equals m

th SIV of the i
th 367 

solution. 368 

Severe catastrophes such as natural hazards, the spreading of infectious diseases, and other 369 
catastrophes can quickly change the HSI of a habitat. These unfavorable conditions act like mutations 370 
in GA. 371 

 2.4.2 Interior Search Algorithm (ISA) 372 

The ISA method introduced by Gandomi, (2014) is based on the concepts of interior design and 373 
decoration using mirrors, such that, several mirrors can be used to create a more decorative 374 
environment. To meet decoration project goals, it is necessary to satisfy the desires of the clients’ 375 
desires using available resources. The interior design commences with centering bounded elements to 376 
create a more appealing interior vista based on client approval. The ISA method is inspired by this 377 
repetitive process to solve optimization problems. With this algorithm, an element can only be moved 378 
to a position allowing a more decorative view (better fitness) while satisfying customer resource and 379 
need demands (constraints). 380 

The most important step of interior design is positioning the mirrors by the fittest and most striking 381 
elements to highlighting their attractiveness. Generally, the elements are classified in two ways (i) the 382 
composition category, which is applied for composition optimization, and (ii) the mirror category, 383 
which is employed for mirror search. Therefore, the ISA method can be explained as follow. 384 

1) Create the position of elements between upper bound (UB) and lower bound (LB) randomly and 385 
determine their fitness value. 386 

2) Discover the element with minimum objective function in minimization problem (the fittest 387 
element) in jth iteration. 388 

3) Apply a random variable r1 (ranging between 0 and1 for each element) and α as a threshold value 389 
(α is also a value between 0 and 1) to divide other elements, except the fittest element, into mirror 390 
category and composition category. Elements with α ≤�r1 go to the composition category; 391 
otherwise, they go to the mirror category. Since a is the only parameter of the ISA method, it is 392 
necessary to carefully tune α for obtaining balance between diversification and intensification.  393 

In the current study, a linear equation from 0.1 to 0.9 was used for determining the value of α during 394 
optimization iterations, meaning the α value modifies as iteration goes up towards its maximum 395 
number. This method provides a parametric optimization algorithm in which the algorithm can 396 
automatically adjust its parameter. As the iteration approaches the highest iteration number, the α 397 
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value reaches 0.9. Subsequently, the optimization procedure slowly shifts to mirror search to promote 398 
exploitation at the end of repetitions. 399 

4) For the fittest element, it is beneficial to lightly change positions using the random walk for a local 400 
search around the fittest element. The following equation can be used for calculating the fittest 401 
element. 402 


��

� �  
��

��� � �� &  (  (18) 

Where, 2��

�   is the fittest element, λ is scale factor = 0.01(UB�−�LB), and rn presents vector of 403 
normally distributed random numbers. 404 

5) For the composition category, each element in this category is randomly displaced. The following 405 
equation is used for determining the changes in UB and LB: 406 


�

� �  3�� � �4��   3��� &  �5  (19) 

 407 

Where 2�

� shows ith element in the jth iteration, UB� and 23� represent upper and lower bounds of the 408 
class in jth iteration, respectively, and r2 is random value between 0 and 1. 409 

6) For the mirror category, a mirror is randomly placed between the fittest element and each 410 
composition element. The following equation is applied for calculating the position of a mirror for 411 
the ith element of the jth iteration: 412 


�,�

� �  �6
 �

��� � �)  �6� &  
��

�   (20) 

 413 

Where 2�,�

�  equals the position of a mirror for the ith element of the jth iteration, and r3 is a random 414 
value between 0 and 1. 415 

The virtual location of the element (the image of the element in the mirror) depends on the position 416 
of the mirror and is calculated based on the following equation: 417 


�

� �  5
�,�

�  
 �

���  (21) 

 418 

7) The virtual elements and fitness values of the new positions of the elements should be determined. 419 
The positions should be updated if their finesses are improved. It can be calculated based on the 420 
following equation (for a minimization problem): 421 
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 422 

8) If any of the termination criteria are not satisfied, the steps should be repeated from step 2. The 423 
step-by-step procedure of the ISA method has been presented in Figure 6. 424 

 2.4.3 Symbiotic organisms search (SOS) algorithm 425 

The SOS introduced by Cheng and Prayogo (2014) can be considered a nature-inspired optimization 426 
method. The SOS algorithm simulates three various interactions of symbioses amongst species of an 427 
ecosystem. Much like the majority of evolutionary optimization algorithms, SOS creates an 428 
ecosystem as an initial population plus particular operators through an iterative method to find a 429 
near-optimal solution among candidate organisms as possible solutions within the promising space of 430 
a search area.  However, the SOS method does not reproduce offspring. Step-by-step SOS procedure 431 
methods are presented in Figure 7. 432 

After defining the maximal number of iterations and the number of species, the initial ecosystem is 433 
specified by generating a uniform random number between the upper and lower values of ecosystem 434 
size and a design variable (D) number. After that, Xbest as the best current solution should be 435 
determined. In a process, named mutualism, two randomly chosen species along with Xbest participate 436 
in a dialectic relationship that is profitable for both. New candidate solutions are generated based on 437 
the following equations: 438 


���� �  
�  � �
�� �=, )�  &  �
����   ?* & �@�� (23) 

 439 


���� �  
�  � �
�� �=, )� & �
����   ?* & �@�� (24) 

Where rand (0,1) shows a vector of random numbers, and the mutual vector (MV) equals the average 440 
value of xj and xi which enables the organisms to be updated concurrently rather than separately. In a 441 
mutualistic symbiosis between two species within nature, one species might gain a great advantage 442 
while the other receives no significant profit. This is presented by BF1 and BF2, which are randomly 443 
specified as either 1 or 2 ([BFi = Rand (rand (0, 1) +1]; i = 1 and 2) to display the level of profits 444 
obtained from the relationship. 445 

In the next step, the entire population is updated. Subsequently, the old candidate solutions xj and xi 446 
are compared with the new ones. More fit organisms are chosen as new solutions for the next 447 
iteration. The selections and comparisons start and end with the counter 1 and the counter equal to 448 
the population size (npop), respectively. For each i, the solution j is randomly chosen within the new 449 
population. Afterward, fitter organisms take part in the next step which is named commensalism. In 450 
commensalism, although one organism gains profits, the other remains neutral. Similar to the 451 
previous step, xj is randomly chosen from the population to interact with xi. While xi attempts to get 452 
profits from the engagement, xj remains unaffected. If the new fitness value shows better 453 
performance than the previous one, the following equation is employed for updating xi: 454 
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 455 

In the third step, which is named parasitism, the mutation operator of the SOS is required. In this 456 
step, xj and xi are the artificial host and parasite, respectively. In parasitism, one organism receives 457 
profits while the other is harmed. The sign of the parasite vector (PV) is that it competes with other 458 
randomly chosen dimensions instead of its parent with a series between upper and lower bounds. In 459 
this step, an initial parasite vector is produced by multiplying organism xj. Some of the decision 460 
variables from the parasite vector are randomly changed to recognize the parasite vector from xj. A 461 
random number should be produced in the range of [1, decision variable number] to describe the total 462 
number of changed variables. A uniform random number is produced for each dimension to achieve 463 
the position of the changed variables. Finally, a uniform distribution within the search area is needed 464 
for changing the variables and providing a parasite vector for the parasitism step. If the parasite 465 
vector displays better performance than xj it becomes part of the population, whereas if xj is not 466 
outperformed the parasite vector, PV eliminates from the population. The parasite vector is produced 467 
by changing xj in random dimensions with random numbers rather than making small modifications 468 
in xj. If the current xj and parasite vector are not the last member of the population, the SOS returns to 469 
the mutualism step that chosen Xbest until obtaining a specified stopping criterion. 470 

 2.4.4 Genetic algorithm (GA) 471 

The GA, introduced by Holland (1992) is based on the Darwinian concepts of genetics and natural 472 
selection.  Before applying the GA, some parameters such as crossover fraction, selection method, 473 
mutation rate, etc… should be specified. Subsequently, a set of possible answers are generated. The 474 
GA considers a set of chromosomes containing genes as an initial population. The genes represent 475 
the number of problem dimensions. During the optimization process, the genetic operators (e.g., 476 
Roulette Wheel and Tournament Selection) of the mutation and crossovers improve these genes.  477 

Based on the competence of the chromosomes’ corresponding objective function, genes are selected 478 
to transfer to the next generation. The crossover operator replaces a number of genes from two 479 
chromosomes with each other. Moreover, the mutation operator changes some genes randomly. The 480 
elitism parameter is used to improve the chance of choosing the best chromosomes, then increase the 481 
convergence of the algorithm. When creating each new generation, three operators (i.e., crossover, 482 
selection, and mutation) regulate the optimization process in a way that the generated chromosomes 483 
improve the objective function value at each repetition until the optimization process will be 484 
completed by satisfying one of the termination criteria. The step-by-step procedure of the GA method 485 
has been presented in Figure 8. 486 

1.5 Validation experiment 487 

To evaluate the efficiency and reliability of the hybrid GRNN-evolutionary optimization algorithms, 488 
the predicted-optimized treatments obtained from evolutionary optimization algorithms (GA, ISA, 489 
SOS, and BBO) were separately evaluated in the lab as the validation experiment (Figure 9). The 490 
validation experiment was performed based on a completely randomized design with 4 replications. 491 
Effectiveness of optimized treatments were assessed by comparing error bars, representing standard 492 
error of means, as presented in Figure 4g,h.  493 

2 Results 494 
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2.1 Effects of light and carbohydrate sources on cannabis shoot growth and development 495 

While this experiment was designed specifically for machine learning applications and standard 496 
statistical comparisons cannot be made, a wide range of responses were observed through the 497 
different treatments applied (Table 1). For instance, the greatest shoot length was acquired from 25 498 
µmol/m2/s W + 25 µmol/m2/s Fr + 3 % Sucrose (154.68 ± 51.228 mm), while shoot length was most 499 
stunted when grown with 100 µmol/m2/s B + 1 % Sucrose (27.70 ± 2.311 mm). Greatest root length 500 
was achieved with 33.33 µmol/m2/s R + 33.33 µmol/m2/s B + 33.33 µmol/m2/s Fr + 3 % Sucrose 501 
(477.10 ± 287.094 mm), though no roots emerged from 100 µmol/m2/s B + 1 % Sucrose, or 50 502 
µmol/m2/s W + 50 µmol/m2/s Fr + 1 % Sucrose specimens, and lowest root lengths were observed 503 
from those of the 100 µmol/m2/s W + 1 % Sucrose (4.36 ± 4.363 mm) treatment. Plantlets developing 504 
the most nodes came from 33.33 µmol/m2/s R + 33.33 µmol/m2/s B + 33.33 µmol/m2/s Fr + 3 % 505 
Sucrose (11.50 ± 2.901), while the fewest nodes were observed in 100 µmol/m2/s B + 1 % Sucrose 506 
(5.75 ± 0.479) treated plantlets. The largest canopy surface area was attained by plantlets grown 507 
under 50 µmol/m2/s R + 50 µmol/m2/s B + 3 % Sucrose (13061.97 ± 10839.642 mm2), whereas 508 
smallest canopy was observed in 100 µmol/m2/s B + 1 % Sucrose (493.01 ± 111.615 mm2), 100 509 
µmol/m2/s W + 1 % Sucrose (519.06 ± 182.411 mm2). Results for the preliminary experiment are 510 
outlined in Table 1. Treatments consisted of single experimental units with 4 biological replicates 511 
each, which satisfied the models used, with high accuracy. 512 

Based on our observations (Table 1), a general trend is observed for appreciable shoot length when 513 
sucrose concentration is 3% (w/v), irradiance levels are in range of 50-100 µmol/m2/s, and when W is 514 
included in multi-spectral treatments. These treatments allowed long shoot length that developed 515 
between 32.44 ± 7.036 - 154.68 ± 51.228mm. Additionally, there was a broad tendency for multi-516 
spectral treatments with 75-100 µmol/m2/s that included R and 3% (w/v) sucrose to develop large 517 
canopy surface areas, which ranged from 2483.71 ± 627.011 - 13061.97 ± 10839.642 mm2 (Table 1). 518 

Of the 66 treatments tested, 50 µmol/m2/s W + 50 µmol/m2/s Fr + 1 % Sucrose noticeably 519 
accumulated phenolic compounds in the media, which was not observed in any other treatment. 520 
Additionally, 12 cultures produced plantlets with floral organs despite being grown under a long day 521 
photoperiod. Cultures included 25 µmol/m2/s B + 25 µmol/m2/s W + 1 % Sucrose, 25 µmol/m2/s R + 522 
75 µmol/m2/s B + 1 % Sucrose, 25 µmol/m2/s R + 75 µmol/m2/s B + 3 % Sucrose, 33.33 µmol/m2/s 523 
R +  33.33  + 33.33 Fr + 1 % Sucrose, 33.33 R + 33.33 B + 33.33 Fr + 3 % Sucrose, 25 µmol/m2/s R 524 
+ 75 µmol/m2/s B +  6 % Sucrose, 25 µmol/m2/s R + 25 µmol/m2/s B + 25 µmol/m2/s Fr + 25 525 
µmol/m2/s W + 6 % Sucrose, 25 µmol/m2/s R + 25 µmol/m2/s B + 6 % Sucrose, 100 µmol/m2/s B + 6 526 
% Sucrose, 50 µmol/m2/s B + 6 % Sucrose, 25 µmol/m2/s B + 25 µmol/m2/s W + 6 % Sucrose, 50 527 
µmol/m2/s + 6 % Sucrose, 50 µmol/m2/s R + 50 µmol/m2/s B + 3 % Sucrose, 50 µmol/m2/s W + 50 528 
µmol/m2/s Fr + 3 % Sucrose.  529 

50 µmol/m2/s B treatments, for the most part, showed higher values relating to developmental 530 
features than 100 µmol/m2/s B (Table 1). This is likely due to malfunctioning 100 µmol/m2/s B 531 
lights, which were repaired within a few days. However, we nonetheless attribute the delayed 532 
development of 100 µmol/m2/s B treatments to the brief period of light malfunction. 533 

2.2 Data modeling through MLP, GRNN, and ANFIS 534 

Machine learning algorithms including MLP, GRNN, and ANFIS were employed to model and 535 
predict cannabis shoot growth and development traits (shoot length, root length, number of nodes, 536 
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number of shoots, and canopy surface area) as target variables based on five input variables (Sucrose, 537 
B, R, W, and Fr). R2, RMSE, and MBE were used to assess the prediction performance of the 538 
developed machine learning algorithms (Table 2). The GRNN model presented higher R2 as one of 539 
the most important performance indices in comparison to MLP or ANFIS in both training and testing 540 
processes for all shoot growth and development traits including shoot length (R2 > 0.96 for GRNN vs. 541 
R

2 > 0.58 for ANFIS or R
2 > 0.95 for MLP), root length (R2 > 0.91 for GRNN vs. R

2 > 0.58 for 542 
ANFIS or R2 > 0.89 for MLP), number of nodes (R2 > 0.74 for GRNN vs. R2 > 0.54 for ANFIS or R2 543 
> 0.39 for MLP), number of shoots (R2 > 0.71 for GRNN vs. R2 > 0.50 for ANFIS or R2 > 0.42 for 544 
MLP), and canopy surface area (R2 > 0.94 for GRNN vs. R2 > 0.64 for ANFIS or R2 > 0.92 for MLP) 545 
(Table 2). Also, higher RMSE and MBE for GRNN in comparison to MLP and ANFIS for all studied 546 
traits indicated that the assessed results were highly accurate and correlated, showing the good 547 
performance of the developed GRNN models (Table 2). Moreover, the regression lines displayed a 548 
good fit correlation between experimental and predicted data for all the shoot growth and 549 
development traits in both training and testing processes (Fig. 10). 550 

2.3 Determining the importance of each input on cannabis shoot growth and development 551 

To determine the importance of each input variable on the objective function (studied parameter 552 
including shoot length, root length, number of nodes, number of shoots, and canopy surface area) 553 
sensitivity analysis was performed by calculating VSR. The results showed that both shoot length 554 
and  node number were more sensitive to Sucrose followed by B, Fr, R, and W, while root length was 555 
more sensitive to Sucrose followed by R, Fr, W, and B light (Table 3). Also, the results demonstrated 556 
more sensitivity of shoot number to Sucrose followed by B, red, Fr, and W color (Table 3). 557 
Moreover, Sucrose> R> B> W> Fr were ranked for canopy surface area (Table 3). 558 

2.4 Optimization process via GA, SOS, ISA, and BBO 559 

In the present study, four different evolutionary optimization algorithms including BBO, ISA, SOS, 560 
and GA were separately used to determine the optimal level of Sucrose, B, R, W, and Fr for 561 
maximizing each fitness function (shoot length, root length, number of nodes, number of shoots, and 562 
canopy surface area). Although all optimization algorithms predicted the same best fitness function 563 
value, they found a different optimal level of inputs for each fitness function (Table 4). For instance, 564 
the maximum shoot length (160.78 mm) would be achieved from 15.412 µmol/m2/s B + 9.412 565 
µmol/m2/s R + 15.997 µmol/m2/s W + 43.271 µmol/m2/s Fr + 3.142 % Sucrose based on the BBO, 566 
4.460 µmol/m2/s B + 19.051 µmol/m2/s R + 27.337 µmol/m2/s W + 39.472 µmol/m2/s Fr light + 567 
3.157 % Sucrose based on the SOS, 0.439 µmol/m2/s B + 18.494 µmol/m2/s R + 36.234 µmol/m2/s W 568 
+ 33.122 µmol/m2/s Fr + 3.319 % Sucrose based on the ISA, or 2.937 µmol/m2/s B + 0.270 569 
µmol/m2/s R + 13.036 µmol/m2/s W + 30.605 µmol/m2/s Fr light + 3.505 % Sucrose based on the GA 570 
(Table 4). Also, 52.563 µmol/m2/s B + 84.052 µmol/m2/s R + 26.262 µmol/m2/s W + 22.456 571 
µmol/m2/s Fr light + 3.809 % Sucrose based on the BBO, 54.688 µmol/m2/s B + 95.974 µmol/m2/s R 572 
+ 30.099 µmol/m2/s W + 24.543 µmol/m2/s Fr light + 3.664 % Sucrose based on the SOS, 44.889 573 
µmol/m2/s B + 99.642 µmol/m2/s R + 49.994 µmol/m2/s W + 24.674 µmol/m2/s Fr light + 3.285% 574 
Sucrose based on the ISA, or 37.646 µmol/m2/s B + 83.928 µmol/m2/s R + 17.507 µmol/m2/s W + 575 
1.811 µmol/m2/s Fr + 3.083 % Sucrose based on the GA would result in the highest canopy surface 576 
area (7168.05 mm2) (Table 4).  577 

2.5 Determining the reliability of the developed models 578 

The optimized-predicted results from each evolutionary optimization algorithm for shoot length and 579 
canopy surface area as fitness functions were experimentally tested in a validation experiment to 580 
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evaluate the reliability of the developed models. Based on the validation experiment results, the 581 
differences among evolutionary optimization algorithms (GA, ISA, BBO, and SOS) and optimized-582 
predicted results for both shoot length (Fig. 4f) and canopy surface area (Fig. 4g) were negligible, 583 
which demonstrated the reliability of the developed models. However, the maximum shoot length 584 
(206.76 ± 41.542 mm) (Fig. 4h) and canopy surface area (8193.49±2102.624 mm2) (Fig. 4i) were 585 
achieved from the GRNN-SOS, while GRNN-BBO resulted in the lowest shoot length (181.83 ± 586 
39.676 mm) and canopy surface area (5745.34 ± 919.848 mm2). Therefore, it seems that the SOS has 587 
better performance than the other optimization algorithms. 588 

3 Discussion 589 

As with any in vitro culture system, many intrinsic (e.g., genotype, type and age of explant) and 590 
extrinsic (e.g., basal salt medium, vitamins, PGRs, gelling agent, carbohydrate source, additives, 591 
temperature, and light) factors influence in vitro shoot growth and development.  Fortunately, due to 592 
the highly controlled nature of plant tissue culture, most of these factors can be manipulated to 593 
evaluate their impact on system optimization.  Historically, micropropagation systems were refined 594 
using traditional statistical models to sequentially manipulate and optimize single factors. This 595 
approach often requires hundreds or even thousands of treatments to be tested, and even then 596 
sequential optimization does not account for interactions and can miss the best combinations (García-597 
Pérez et al., 2020; Hameg et al., 2020). Due to the cost and time requirements, most species are 598 
cultured in conditions optimized for other species with minor modifications and are not fully 599 
optimized for any given application. In our study, we demonstrate that specific growth responses of 600 
in vitro cannabis can be directed by manipulating abiotic factors such as light intensity, spectrum, 601 
and exogenous carbon availability, and that machine learning approaches provide an effective 602 
approach to optimize these factors for specific outcomes. It is possible that these modifications could 603 
trigger developmental changes by regulating photosynthetic activity (Hdider and Desjardins, 1994), 604 
or by regulating intrinsic concentrations of phytohormones (Premkumar et al., 2001). Additional 605 
experiments must be completed to indicate the precise mechanisms by which dynamic physiological 606 
responses occur.  Ultimately, we clearly show that plant growth and development can be influenced 607 
by light quality and sucrose levels in the absence of PGRs. 608 

Efficient protocol development is a long-standing challenge in the field and more advanced statistical 609 
models using surface response curves have been applied with some success (Niedz and Evens, 2016; 610 
Niedz and Marutani-Hert, 2018; Pence et al., 2020). While these methods are more efficient than 611 
sequential optimization and can account for interactions among factors, they are still limited in the 612 
number of factors that can be included in a single experiment, require several assumptions to be met 613 
that are often not possible to achieve, require significant numbers of treatments, and rely on relatively 614 
simple interactions that can be compared using regression analyses. An alternative to address the 615 
inherent complexity of plant tissue culture systems is to apply machine learning methodology. This 616 
approach leverages modern computing power and developments in artificial intelligence to efficiently 617 
recognize patterns in complex and disorderly datasets, typical of what is observed in plant tissue 618 
culture (Hesami et al., 2021; Hesami and Jones, 2020). Machine learning algorithms can then be 619 
combined with optimization algorithms to decipher complex interactions and predict theoretically 620 
optimized combinations of factors for desired outcomes. The combination of machine learning and 621 
optimization algorithms has the potential to overcome many of the challenges associated with 622 
optimizing in vitro plant systems and enable development of more effective protocols using fewer 623 
treatments. Ultimately, this approach can be used to change the face of plant tissue culture 624 
advancements by enhancing the viability of optimization for specific species, or even individual 625 
genotypes. 626 
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Here, ANNs (MLP and GRNN) and neuro-fuzzy logic (ANFIS) were employed and compared to 627 
model and predict the effects of light quality and carbohydrate supply on growth and development of 628 
in vitro cannabis plants. Based on our results, using the stated parameters, GRNN had better 629 
performance than either MLP or ANFIS. Although there are no studies in plant tissue culture 630 
comparing the predictive performances of neuro-fuzzy logic systems and ANNs, several studies in 631 
other fields have demonstrated that GRNN often performs better than MLP or ANFIS. For instance, 632 
Sridharan (2021) reported that the prediction accuracy of GRNN was better than MLP and ANFIS 633 
for modeling and predicting global solar irradiance. Similar results were also reported by Ausati and 634 
Amanollahi (2016) who showed GRNN performed better than ANFIS and MLP for modeling and 635 
predicting air pollution. 636 

In the present study, four evolutionary optimization algorithms (BBO, GA, ISA, and SOS) were 637 
individually linked to the GRNN to determine optimal levels of Sucrose, B, R, W, and Fr for 638 
maximizing each fitness function (shoot length, root length, number of nodes, number of shoots, and 639 
canopy surface area). Based on mean standard errors reported in our results, there is no difference in 640 
the predicted values of fitness functions among different optimization algorithms. Although the 641 
results of the validation experiments showed that the differences in the performance of the 642 
optimization algorithms were negligible, SOS led to the highest level of studied fitness functions. For 643 
instance, GRNN-SOS showed that using the theoretical optimal combination of light quality and 644 
sucrose levels, average shoot length and canopy surface area were 206.76 ± 41.542 mm and 8193.49 645 
± 2102.624 mm2, respectively. Although no studies exist for using and comparing dissimilar 646 
optimization algorithms for in vitro culture optimization, several studies previously showed that SOS 647 
can be considered one of the most powerful of the evolutionary optimization approaches (Bozorg-648 
Haddad et al., 2016; Cheng and Prayogo, 2014). Bozorg-Haddad et al., (2016) compared GA and 649 
SOS for optimization of reservoir operation. They run these two algorithms 10 times and reported 650 
that there was no significant difference between the performances of GA and SOS, however, SOS 651 
calculated higher fitness function values than GA in all 10 runs. Similar to this result, the results of 652 
our validation experiment showed that SOS resulted in a higher value of fitness function in 653 
comparison with other algorithms. 654 

Based on the sensitivity analysis, sucrose was the most important factor for all traits studied (shoot 655 
length, root length, shoot number, node number, and canopy surface area). This likely reflects the 656 
mixotrophic nature of in vitro plants and limitations the sealed environment (depletion of CO2, high 657 
relative humidity, etc.) places upon their photosynthetic capacity (De La Viña et al., 1999; Nguyen et 658 
al., 2001; Shin et al., 2013). Due to these limitations, supplemental sucrose appears to be critical to 659 
support plant growth and development. It is likely that different results may be obtained if this 660 
experiment were conducted using vented lids or forced air, which would improve potential 661 
photosynthesis and increase the relative importance of light quality. 662 

In our experiment, evolutionary optimization algorithms predicted that ~3 % sucrose would result in 663 
the highest shoot growth and development. A plethora of previous studies have found  2–4 % 664 
sucrose, in particular 3 % (w/v), to be optimal for various species and this has become a standard for 665 
most micropropagation systems (reviewed by Yaseen et al., 2013). For instance, the results of 666 
GRNN-SOS showed that 3.157 % sucrose would lead to the highest shoot length. Similar to our 667 
results, Romano et al. (1995) and Baskaran and Jayabalan (2016) respectively studied different levels 668 
of in vitro sucrose on shoot growth and development of Quercus suber L. and Eclipta alba (L.) 669 
Hassk. They reported that 3% sucrose was optimal for maximizing shoot length in vitro. Although 670 
the effect of sucrose concentration on cannabis micropropagation needs more attention, previous 671 
reports generally use 3% (w/v) for shoot growth and development (reviewed by Hesami et al., 2021).  672 
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These results support the standard use of 3% sucrose for micropropagation, but more importantly 673 
demonstrate the ability of machine learning techniques to optimize environmental factors in tissue 674 
culture systems using a relatively small number of treatments.  675 

Though sucrose is identified as the most important factor in plant growth and development in this 676 
study, light intensity and spectrum also play important roles for in vitro morphogenic and 677 
developmental processes (Batista et al., 2018). Different photoreceptors recognize the quality and 678 
quantity of light (e.g., phytochromes absorb red and far-red, phtotropins and cryptochromes absorb 679 
blue light), and subsequently use this information to direct photomorphogenic functions (Li et al., 680 
2012; Parihar et al., 2016). Several studies have previously shown the impact of light quality and 681 
quantity on different tissue culture systems for shoot growth and development (Hung et al., 2016 ), 682 
somatic embryogenesis (Ferreira et al., 2017; Hesami et al., 2019), rhizogenesis (Gago et al., 2014), 683 
and secondary metabolite production (Dutta Gupta and Karmakar, 2017; Silva et al., 2017). 684 
However, each in vitro developmental stage requires a specific light condition (Batista et al., 2018). 685 
Our sensitivity analysis showed that, among light treatments, B was the most important factor for 686 
shoot length, shoot number, and node number, while R had the highest degree of importance on root 687 
length and canopy surface area. The importance of B and R on in vitro shoot growth and 688 
development has been previously confirmed in different plants such as Myrtus communis L. (Cioć et 689 
al., 2018), Plectranthus amboinicus (Lour.) Spreng (Silva et al., 2017), Pfaffia glomerata (Spreng.) 690 
Pedersen (Silva et al., 2020), Achillea millefolium L. (Alvarenga et al., 2015), and Stevia rebaudiana 691 
Bertoni (Ramírez-Mosqueda et al., 2017).  692 

Light intensity is another important parameter that should be optimized for each in vitro culture 693 
stage. Through GRNN-SOS, the predicted optimal spectrum included 4.460 μmol/m2/s B + 19.051 694 
μmol/m2/s R + 27.337 μmol/m2/s W + 39.472 μmol/m2/s Fr light + 3.157 % Sucrose to maximize 695 
shoot length.  In total, this provides about 50.8 μmol/m2/s PAR plus 39.472 μmol/m2/s Fr. In line 696 
with our results, Silva et al. (2017) reported that light intensity below 51 μmol/m2/s resulted in the 697 
highest shoot length in P. amboinicus. Similar results were also reported by  Alvarenga et al (2015) 698 
for A. millefolium.  However, using GRNN-SOS to predict the optimal spectrum to maximize canopy 699 
surface area, the conditions included 54.688 μmol/m2/s B + 95.974 μmol/m2/s R + 30.099 μmol/m2/s 700 
W + 24.543 μmol/m2/s Fr + 3.664 % sucrose, for a total of 180.8 μmol/m2/s PAR plus 24.5 701 
μmol/m2/s Fr. Alternatively, GRNN-BBO conditions included 52.563 μmol/m2/s B + 84.052 702 
μmol/m2/s R + 26.262 μmol/m2/s W + 22.465 μmol/m2/s Fr + 3.809 % sucrose, totaling 162.9 PAR + 703 
22.5 μmol/m2/s Fr, which ultimately resulted in the lowest canopy surface areas. Here, the difference 704 
between GRNN-SOS and GRNN-BBO relating to Fr fluence is 2.1 μmol/m2/s, while the total 705 
difference in PAR fluence is 17.9 μmol/m2/s, 11.9 μmol/m2/s of which is the dissimilarity of R 706 
intensity. This leads us to speculate that PAR intensity, specifically R, is an important factor 707 
governing canopy development. This is confirmed with the sensitivity analysis ranking, as R is the 708 
most important spectra for this growth parameter. Alternative wavelengths of light can be efficiently 709 
absorbed at different depths within the leaf tissue. This can also be enhanced with increasing light 710 
intensity. While certain wavelengths of green light can penetrate deeper into leaves, R and B can 711 
effectively be absorbed toward the leaf surface (Zheng and Van Labeke, 2017), triggering 712 
phytochrome and cryptochrome –mediated re-localization of phytohormones for photo-713 
morphogenesis (Miler and Zalewska, 2006). Although the optimal light intensity varies by species, 714 
most micropropagation systems use light levels ranging from 40-80 μmol/m2/s PAR (Miler et al., 715 
2019; Murphy and Adelberg, 2021; Nhut et al., 2003). However, some species perform better at 716 
higher fluence rates, for example, Actinidia deliciosa (Gago et al., 2014), Lippia gracilis (Lazzarini et 717 
al., 2018), and Solanum tuberosum (Kulchin et al., 2018). In general, cannabis is known to grow best 718 
in vivo under higher light levels (Murphy and Adelberg, 2021; Wróbel et al., 2020), with yields 719 
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increasing linearly up to at least 1600 µmol/m2/s PAR (Chandra et al., 2008; Lata et al., 2016; 720 
Rodriguez-Morrison et al., 2021), depending on the culture system. As such, the prediction to use 721 
such high light levels may reflect the nature of the species. Our validation experiment demonstrates 722 
that cannabis responded to these high light levels as predicted. 723 

Similarly, in our initial experiment, we observed higher intensities of R in combination with equal or 724 
lower intensity of B or W to be beneficial to canopy development in the presence of 3 % Sucrose. 725 
Unlike some other treatments, 50 µmol/m2/s R + 50 µmol/m2/s B + 3 % Sucrose, with the largest 726 
canopy surface area, did not give largest averages in any additional growth parameters measured. 727 
This is counterintuitive on the premise that canopy surface area is a metric of leaf size in addition to 728 
leaf number. We might expect highest canopy surface area treatments to be mutually high in other 729 
shoot growth parameters such as shoot length, number of nodes, or number of shoots. R significantly 730 
impacts endogenous action of gibberellic acid which is involved in cell elongation, root inhibition, 731 
and stimulating mitosis in meristematic cells (Manivannan et al., 2015) for replication. Gibberellic 732 
acid action is known to trigger anisotropic responses for leaf expansion in monocots (Sprangers et al., 733 
2020; Xu et al., 2016), though R can impart different effects on leaf morphology for different plants 734 
in vitro. B increased leaf thickness, leaf numbers and leaf areas compared to R, which reduced leaf 735 
thickness and area in cultured Alternanthera brasiliana (Macedo et al., 2011). Similarly, B mutually 736 
amplified leaf thickness and leaf area of Ficus benjamina (Zheng and Van Labeke, 2017), and 737 
Cucumis sativus  in vivo, as well as micropropagated Solanum tuberosum L. (Chen et al., 2020). B 738 
also had a tendency to increase leaf area of Cordyline australis and Sinningia speciosa in vivo (Zheng 739 
and Van Labeke, 2017). Since we observed opposite influences of B, we can speculate that 740 
influences of this spectrum to be species-dependent. Wei et al. (2021) found that LED-treated hemp 741 
plants produced smaller leaf areas than high pressure sodium treatments, though the LED treatments 742 
with higher R:B at higher intensities produced larger leaf areas than treatments of lower R:B ratios at 743 
higher or lower intensities. They also found leaf areas to bear a significantly positive correlation leaf 744 
number, though no additional growth responses or treatments were significantly correlated with leaf 745 
area (Wei et al., 2021). These results correspond more similarly with the data obtained in our study, 746 
though it’s difficult to imply for certain if in vitro medicinal cannabis responds to light quality and 747 
intensity with the same general trend when influenced by sucrose in a sub-optimal gaseous 748 
environment. It is also difficult to infer molecular mechanisms for such in vitro plant responses, since 749 
they are beyond the scope of the presented study. Thus, subsequent experiments should be devised to 750 
test molecular mechanisms of the growth parameters measured to further elucidate the molecular 751 
devises contributing to the factors observed.  752 

Our preliminary experiment also indicated shade avoidance-like responses observed when comparing 753 
R + B + Fr + 3 % Sucrose treatments at different light intensities. Higher light intensity generally 754 
produced shorter shoots with more nodes versus longer shoots with fewer nodes when irradiance was 755 
lower. At higher light intensities, R + B + Fr + 6 % Sucrose specimens also averaged longer stems 756 
with more nodes than at 1% Sucrose, though at low light intensity R + B + Fr + 1 % Sucrose grew 757 
longer stems with more nodes than 6 % plants of the same light treatment. These observations imply 758 
that that there is a complex interaction between sugar and light signaling whereby the impact of sugar 759 
can allow plants to dynamically adjust to higher light intensities (Tichá et al., 1998), or impede 760 
certain physiological responses when exogenous carbon is too high and abiotic factors are sub-761 
optimal (Roh and Choi, 2004). However, in all cases, greatest averages were achieved with 3 % 762 
sucrose, which suggests that sugar concentrations above 4 % and below 2 % can have diminishing 763 
returns on shoot development and number (Sivanesan and Park, 2015). This observation supports the 764 
widespread practice of using 3% sucrose in plant tissue culture systems, and the results of our 765 
sensitivity analysis. Gago et al. (2014) modeled 14 growth parameters of in vitro kiwifruit based on 766 
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Sucrose concentration and irradiance, using Neuro-fuzzy logic. They found an in vitro sucrose 767 
concentration of 2.3 % or higher to be indispensable in achieving many of the optimal growth 768 
parameters investigated, either independently or in interaction with light intensity. Dynamic 769 
interactions between light and exogenous sugar are important for evoking many additional 770 
physiological responses relating to light attenuation and metabolism (Gago et al., 2014; Roh and 771 
Choi, 2004; Tichá et al., 1998).  772 

Lalge et al. (2017) observed that taller cannabis clones developed with W compared to B + R LEDs 773 
when grown in controlled climates. The optimal levels of R:Fr in promoting stem elongation has 774 
been well documented (Ballaré and Pierik, 2017; Ma and Li, 2019; Trupkin et al., 2014). Though B 775 
also impacts stem growth (Ma and Li, 2019; Magagnini et al., 2018; Snowden et al., 2016), it can 776 
sometimes have the opposite influence of R:Fr, resulting in more compact phenotypes (Magagnini et 777 
al., 2018). The optimized combinations R:Fr in addition to B could have ultimately impacted shoot 778 
elongation of the treatments assessed (Cope and Bugbee, 2013). Emission of low B from warm W 779 
LEDs can amplify stem elongation and leaf expansion, while high B from cold W LEDs can have the 780 
opposite effect, resulting in more compact specimens. Results from our preliminary experiment 781 
provide evidence that appropriate levels of R:Fr can greatly influence stem elongation to a greater 782 
degree than B (Magagnini et al., 2018). The reduction of photosynthetically active radiation resulting 783 
from shading limits the amount of R, B, and Fr received by the canopy, though the degree of R 784 
reduction tends to be far greater than  that of Fr (Xu et al., 2020). Hence, low irradiance and 785 
wavelength perception work mutually to allow shoot elongation, perhaps in combination with the 786 
influence of exogenous sucrose. In agreement with these principles, the predicted optimal conditions 787 
for shoot elongation included low R:Fr ratios, including Fr intensities ranging from 30.6 – 43.3 788 
µmol/m2/s and R between 0.3 – 19.1 µmol/m2/s. Likewise, shoot elongation was maximized under 789 
relatively low PAR light levels from 15.7 – 80.8 µmol/m2/s, while canopy area and number of nodes 790 
were predicted to be greater with low levels of Fr (1.8 – 24.7 µmol/m2/s and 8.8 – 19.9   µmol/m2/s, 791 
respectively) and higher PAR (139.1 – 194.5 µmol/m2/s, and 150.3 – 203.8 µmol/m2/s, respectively)   792 
fluence rates. As with previous literature, it appears that in vitro cannabis plants produce longer 793 
stems with fewer nodes and more narrow leaves when cultured at low light levels and higher amounts 794 
of Fr. These results demonstrate that in vitro cannabis plants respond to light signals similar to what 795 
would be expected in vivo. Further, the ability of machine learning and optimization algorithms to 796 
make predictions that agree with the general body of literature further supports the ability to 797 
recognize complex patterns using relatively quickly with few treatments. Thus, balances between 798 
alternative light spectra, their intensities and exogenously supplied carbohydrates are critical factors 799 
determining the outcome of many plantlet responses in vitro. 800 

The effect of light quantity and quality studied together in vitro has been perused for many years in 801 
micropropagation but have been hampered due to the limitations of lighting systems and difficulties 802 
in proper replication (Kim et al., 2004; Miler et al., 2019; Tanaka et al., 1998). Many previous 803 
experiments explored the influences of single or binary combinations light spectra and their 804 
intensities on in vitro plantlet development (Lian et al., 2002; Manivannan et al., 2015; Shukla et al., 805 
2017). Our study enlists novel LED technology combined with machine learning and optimization 806 
algorithms in an innovative system that assesses a vast assortment of sucrose concentrations and the 807 
cumulative impact of four different light qualities at a wide array of intensities to devise precision 808 
tissue culture protocols. Furthermore, for the first time, we suggest a superior machine learning and 809 
optimization algorithm approach for future plant tissue culture studies. Additionally, the results of the 810 
preliminary experiment exemplify that specific growth responses of in vitro cannabis can be directed 811 
by manipulating abiotic factors such as light intensity and quality in addition to exogenous carbon 812 
availability. This is further demonstrated by the results of the validation experiment. Such discoveries 813 
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have valuable implications for the development of cannabis tissue culture techniques in the absence 814 
of PGRs.   815 

Conclusion 816 

This machine learning –assisted, multivariable micropropagation study has demonstrated that distinct 817 
growth responses in cannabis can be shaped by changing the influences of sugar and light dynamics 818 
in the absence of PGRs. The development of alternative protocols to guide plant growth toward 819 
specific responses shows endless value for numerous in vitro applications. For instance, protocols to 820 
induce long stems, large internodes, many nodes, or many stems could be implemented when 821 
growing cultures for clonal propagation and sub-culturing, while cultures developing large root 822 
masses and large canopies could very well be more suited for ex vitro transfer. In addition, 823 
culmination of the protocols devised could be implemented, perhaps to trigger different 824 
developmental responses during different growth phases. Finally, the results obtained from this 825 
experiment allows us to recommend GRNN-SOS to be a more efficacious algorithm to study 826 
dynamic plant responses to multivariable stimuli in vitro for development of new methods, and 827 
optimization of current protocols. Rather than using traditional statistics to evaluate large datasets for 828 
making optimization predictions for tissue culture applications, the use of effective machine learning 829 
strategies for optimization of in vitro protocols should further be assessed as an alternative, or in 830 
combination with traditional statistical approaches to allow precision tissue culture practices.  831 
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Table 1. Effect of light and carbohydrate on in vitro Cannabis shoot growth and development. 
Input variables  Output variables 

Blue 
(µmol/m2/s) 

Red 
(µmol/m2/s) 

White 
(µmol/m2/s) 

Far-red 
(µmol/m2/s) 

Sucrose 
(%) 

 Shoot length 
(mm) 

Root length 
(mm) 

Node 
number 

Shoot 
number 

Canopy surface area 
(mm2) 

25 0 25 0 1  38.77±8.101 108.87±10.097 8.50±0.645 1.00±0.000 2309.42±314.907 

25 0 25 0 3  32.44±7.036 42.47±29.857 8.00±0.408 2.25±0.479 2028.24±598.380 

25 0 25 0 6  63.26±16.667 117.06±20.197 8.00±0.408 2.25±0.479 1885.75±385.882 

50 0 0 0 1  32.94±2.406 26.45±23.515 7.25±0.750 1.00±0.000 1848.11±214.644 

50 0 0 0 3  44.35±20.174 24.56±15.198 7.25±1.601 1.50±0.500 1495.87±757.315 

50 0 0 0 6  39.03±10.839 142.17±45.483 7.50±0.866 1.25±0.250 1589.48±578.975 

50 0 50 0 1  31.20±5.443 151.40±35.982 8.25±0.629 1.00±0.000 1717.80±582.898 

50 0 50 0 3  40.91±13.542 82.77±17.954 8.50±0.500 1.25±0.250 1802.86±390.860 

50 0 50 0 6  53.83±13.807 112.46±26.505 9.00±0.707 1.75±0.479 1880.05±744.967 

100 0 0 0 1  23.43±2.634 0.00±0.000 5.75±0.479 1.25±0.250 493.01±111.615 

100 0 0 0 3  22.95±2.991 15.04±8.855 6.75±0.479 1.00±0.000 650.45±126.813 

100 0 0 0 6  33.42±11.272 102.47±60.796 6.50±0.500 2.00±0.577 890.63±444.374 

12.5 12.5 12.5 12.5 1  43.13±9.839 97.61±34.009 7.25±0.479 1.50±0.289 2442.35±506.213 

12.5 12.5 12.5 12.5 3  59.60±10.319 89.45±31.042 7.75±0.854 1.75±0.250 3193.41±888.482 

12.5 12.5 12.5 12.5 6  64.51±38.597 63.48±34.099 8.25±2.016 1.75±0.479 2594.11±1648.261 

37.5 12.5 0 0 1  47.40±11.309 63.68±24.567 7.00±0.816 1.50±0.289 1519.41±345.197 

37.5 12.5 0 0 3  66.39±16.880 136.61±28.052 8.00±1.080 2.25±0.629 2177.63±519.451 

37.5 12.5 0 0 6  38.41±5.652 100.51±37.320 7.75±0.479 1.50±0.289 1698.48±448.503 

16.69 16.69 0 16.69 1  106.24±35.988 127.38±40.798 8.00±0.707 1.25±0.250 3350.76±789.191 

16.69 16.69 0 16.69 3  142.22±36.056 101.97±41.471 9.75±0.750 2.50±0.866 4355.61±1395.277 

16.69 16.69 0 16.69 6  38.89±11.084 46.67±29.388 6.75±0.854 1.25±0.250 1360.77±155.798 

25 25 0 0 1  57.72±14.566 149.92±35.873 8.75±1.181 1.00±0.000 3776.96±1017.968 

25 25 0 0 3  56.83±32.880 105.16±44.817 7.50±0.645 1.75±0.250 1737.36±1056.285 

25 25 0 0 6  61.38±9.666 38.72±23.529 8.25±0.946 2.00±0.408 1216.37±114.887 

25 25 25 25 1  87.11±22.707 134.47±48.218 8.75±0.854 1.75±0.250 6340.05±1284.607 

25 25 25 25 3  56.06±12.648 72.80±36.452 9.25±0.250 1.00±0.000 3117.44±887.353 

25 25 25 25 6  59.93±24.137 146.00±54.432 7.00±0.707 1.25±0.250 1829.20±645.785 

75 25 0 0 1  33.30±5.883 65.71±42.275 7.50±1.041 1.00±0.000 2560.02±620.724 

75 25 0 0 3  103.74±44.839 112.05±16.975 10.50±2.021 2.00±0.408 3964.16±1336.336 
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75 25 0 0 6  41.43±1.379 29.16±13.225 7.50±0.645 1.25±0.250 813.38±188.339 

33.33 33.33 0 33.33 1  36.42±6.816 150.89±51.445 8.75±0.854 1.25±0.250 2091.81±525.087 

33.33 33.33 0 33.33 3  98.40±44.716 477.10±287.094 11.50±2.901 1.00±0.000 2483.71±627.011 

33.33 33.33 0 33.33 6  85.94±16.989 147.32±7.069 9.25±0.854 1.75±0.250 7136.78±1770.492 

12.5 37.5 0 0 1  49.05±14.862 120.84±70.678 7.75±0.854 1.25±0.250 3232.08±1237.421 

12.5 37.5 0 0 3  32.11±3.359 10.84±10.841 7.00±0.000 2.00±0.408 2505.37±374.173 

12.5 37.5 0 0 6  50.48±11.078 122.62±37.803 8.25±0.479 2.25±0.946 1992.30±318.378 

0 50 0 0 1  77.72±11.483 97.43±36.702 8.25±0.479 1.25±0.250 2500.70±678.427 

0 50 0 0 3  99.81±31.278 158.00±58.672 7.75±0.946 1.75±0.479 3148.87±1255.456 

0 50 0 0 6  46.90±1.499 35.98±20.840 8.50±0.289 1.50±0.289 1383.03±349.575 

50 50 0 0 1  29.51±6.815 77.13±45.344 8.50±0.866 1.25±0.250 2447.43±737.653 

50 50 0 0 3  68.50±16.044 73.50±26.470 8.75±0.629 2.25±0.479 13061.97±10839.642 

50 50 0 0 6  55.40±24.082 29.79±29.794 9.00±0.707 2.00±0.408 1963.27±1336.004 

0 50 25 0 1  63.01±11.807 87.61±55.464 9.00±0.707 1.50±0.289 2763.95±630.766 

0 50 25 0 3  130.47±48.757 152.19±40.475 9.75±1.181 1.25±0.250 6939.43±2672.142 

0 50 25 0 6  91.80±61.557 132.78±92.911 9.50±1.555 1.75±0.750 3000.23±1620.640 

0 50 50 0 1  55.39±6.538 47.25±33.256 8.50±0.866 1.00±0.000 3123.43±594.904 

0 50 50 0 3  73.49±16.669 159.08±45.374 9.50±0.645 1.75±0.479 5721.65±2203.448 

0 50 50 0 6  78.72±27.594 91.01±34.488 8.50±0.500 1.50±0.289 3337.97±1156.575 

25 75 0 0 1  49.02±6.926 121.57±43.981 8.50±0.866 1.00±0.000 3843.37±1073.415 

25 75 0 0 3  78.73±21.040 79.38±39.101 10.50±1.190 1.00±0.000 6154.32±1303.577 

25 75 0 0 6  55.71±17.245 75.76±27.694 9.00±0.408 1.25±0.250 2682.36±913.655 

0 100 0 0 1  48.72±17.838 152.42±43.433 8.00±0.816 1.25±0.250 1642.67±438.197 

0 100 0 0 3  101.24±32.678 207.67±41.674 7.50±0.289 1.25±0.250 1529.03±407.505 

0 100 0 0 6  84.14±37.295 143.37±84.434 8.25±0.854 2.00±0.408 915.09±717.054 

0 0 25 25 1  76.46±34.634 160.01±49.307 7.75±0.750 1.25±0.250 2370.35±467.347 

0 0 25 25 3  154.68±51.228 171.42±17.863 8.50±1.041 1.50±0.289 2707.43±652.476 

0 0 25 25 6  86.78±29.794 86.57±38.613 8.00±0.408 1.25±0.250 2782.91±1022.655 

0 0 50 0 1  39.50±5.238 128.04±12.026 8.50±0.289 1.25±0.250 2751.85±906.598 

0 0 50 0 3  35.85±6.990 74.44±27.158 8.25±0.479 1.50±0.289 1706.28±611.107 

0 0 50 0 6  82.77±43.133 72.39±41.802 8.00±1.000 1.50±0.289 2249.33±1412.720 

0 0 50 50 1  38.61±6.648 0.00±0.000 8.75±0.479 1.00±0.000 2169.51±649.210 
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0 0 50 50 3  136.64±29.794 148.92±23.789 8.75±0.629 2.00±0.408 3411.27±345.452 

0 0 50 50 6  36.78±0.374 4.40±4.396 8.00±0.408 1.25±0.250 859.96±78.081 

0 0 100 0 1  27.70±2.311 4.36±4.363 7.25±0.479 1.50±0.289 519.06±182.411 

0 0 100 0 3  39.88±3.684 9.05±5.546 8.00±0.707 1.00±0.000 1954.42±506.636 

0 0 100 0 6  101.32±35.475 177.03±26.461 8.00±1.080 3.00±0.577 2593.13±526.681 

Values in each column represent means ±Standard error. 
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Table 2. Performance indices of different machine learning algorithms (MLP, GRNN, and ANFIS) for modeling and predicting shoot length, root length, number of 
nodes, number of shoots, and canopy surface area of Cannabis. 

Model 
Performance 

index 

Shoot length  Shoot number  Node number  Root length  Canopy surface area 

Training Testing  Training Testing  Training Testing  Training Testing  Training Testing 

MLP 

R2 0.972 0.954  0.625 0.421  0.717 0.390  0.938 0.900  0.953 0.928 

RMSE 4.929 6.927  0.396 0.632  0.702 1.202  15.112 15.956  277.487 340.538 

MBE -0.090 1.673  0.009 -0.001  0.017 0.260  0.001 2.259  30.952 25.016 

GRNN 

R2 0.983 0.964  0.733 0.714  0.791 0.744  0.941 0.914  0.962 0.944 

RMSE 3.879 6.081  0.347 0.606  0.594 0.933  14.754 14.972  248.737 300.911 

MBE 0.001 1.540  0.001 0.012  -0.001 0.063  0.001 2.581  0.001 2.388 

ANFIS 

R2 0.770 0.590  0.647 0.501  0.767 0.549  0.781 0.589  0.733 0.644 

RMSE 17.538 23.327  0.407 0.557  0.650 0.942  41.881 39.007  1282.011 1282.697 

MBE -4.549 -5.508  0.006 -0.065  -0.003 0.037  5.962 8.546  -26.525 -32.037 

ANFIS: adaptive neuro-fuzzy inference system; GRNN: generalized regression neural network; MBE: mean bias error; MLP: multi-layer perceptron; R2: coefficient of 
determination; RMSE: root mean square error. 
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Table 3. Importance degree of light (blue, red, white, and far-red) and carbohydrate sources on shoot length, root length, 
number of nodes, number of shoots, and canopy surface area of Cannabis through sensitivity analysis. 

Trait Item Blue Red White Far-red Sucrose 

Shoot length  
VSR 3.005 1.957 1.647 2.141 5.191 

Rank 2 4 5 3 1 

Root length 
VSR 1.54 2.211 1.669 1.909 3.887 

Rank 5 2 4 3 1 

Node number 
VSR 1.379 1.257 1.065 1.288 1.597 

Rank 2 4 5 3 1 

Shoot number 
VSR 1.554 1.217 1.105 1.168 1.651 

Rank 2 3 5 4 1 

Canopy surface 
area 

VSR 1.662 2.616 1.657 1.622 3.693 

Rank 3 2 4 5 1 

VSR: variable sensitivity ratio 
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Table 4. The results of optimization process via different evolutionary optimization algorithms (BBO, SOS, ISA, and GA).  

Fitness function 
Optimization 

algorithm 

Optimal level of input variables 
Predicted fitness function 

value  Blue 
(µmol/m2/s) 

Red 
(µmol/m2/s) 

White 
(µmol/m2/s) 

Far-red 
(µmol/m2/s) 

Sucrose 
(%) 

Shoot length (mm) 

BBO 15.412 9.412 15.997 43.271 3.142 160.78 
SOS 4.460 19.051 27.337 39.472 3.157 160.78 
ISA 0.439 18.494 36.234 33.122 3.319 160.78 
GA 2.937 0.270 13.036 30.605 3.505 160.78 

Root length (mm) 

BBO 5.756 87.381 31.523 19.343 3.504 262.21 
SOS 0.508 79.897 4.733 17.209 3.673 262.21 
ISA 3.779 81.519 25.386 13.321 3.634 262.21 
GA 5.797 98.198 36.208 1.237 3.507 262.21 

Node number 

BBO 62.998 92.238 48.520 8.830 3.709 12.25 
SOS 57.682 87.192 45.468 19.924 3.711 12.25 
ISA 46.845 90.135 20.969 16.824 3.220 12.25 
GA 50.960 88.355 11.000 11.673 3.709 12.25 

Shoot number 

BBO 16.581 36.686 0.592 19.995 2.909 3.75 
SOS 15.930 21.183 9.723 24.304 2.372 3.75 
ISA 21.336 29.584 0.332 17.387 2.174 3.75 
GA 25.303 25.471 0.262 18.125 3.160 3.75 

Canopy surface area 
(mm2) 

BBO 52.563 84.052 26.262 22.456 3.809 7168.05 
SOS 54.688 95.974 30.099 24.543 3.664 7168.05 
ISA 44.889 99.642 49.994 24.674 3.285 7168.05 
GA 37.646 83.928 17.507 1.811 3.083 7168.05 

BBO: biogeography-based optimization; GA: genetic algorithm; ISA: interior search algorithm; SOS: symbiotic organisms search. 
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Figure Captions 1141 

Figure 1. A schematic representation of factors influencing in vitro culture. 1142 

Figure 2. A schematic representation of different classes of machine learning algorithms. 1143 

Figure 3. Spectral analyses of light treatments from the initial experiment. Images indicate relative 1144 
amounts of fluencies emitted per treatment. Light spectra presented were obtained using Li-Cor LI-1145 
180 spectrometer. Presented are (a) 25 µmol/m2/s B + 25 µmol/m2/s W, (b) 50 µmol/m2/s B + 50 1146 
µmol/m2/s W, (c) 50 µmol/m2/s B, (d) 100 µmol/m2/s B, (e) 12.5 µmol/m2/s R + 12/5 µmol/m2/s B + 1147 
12.5 µmol/m2/s Fr + 12.5 µmol/m2/s W, (f) 12.5 µmol/m2/s R + 37.5 µmol/m2/s B, (g) 16.67 1148 
µmol/m2/s R + 16.67 µmol/m2/s B + 16.67 µmol/m2/s Fr, (h) 25 µmol/m2/s R + 25 µmol/m2/s B + 25 1149 
µmol/m2/s Fr + 25 µmol/m2/s W, (i) 25 µmol/m2/s R + 25 µmol/m2/s B, (j) 25 µmol/m2/s R + 75 1150 
µmol/m2/s B, (k) 25 µmol/m2/s R + 25 µmol/m2/s W, (l) 33.33 µmol/m2/s R + 33.33 µmol/m2/s B + 1151 
33.33 µmol/m2/s Fr, (m) 37.5 µmol/m2/s R + 12.5 µmol/m2/s B, (n) 50 µmol/m2/s R + 50 µmol/m2/s 1152 
B, (o) 50 µmol/m2/s R + 50 µmol/m2/s W, (p) 50 µmol/m2/s R, (q) 75 µmol/m2/s R + 25 µmol/m2/s 1153 
B, (r) 100 µmol/m2/s R, (s) 25 µmol/m2/s W + 25 µmol/m2/s Fr, (t) 50 µmol/m2/s W + 50 µmol/m2/s 1154 
Fr, (u) 50 µmol/m2/s W, and (v) 100 µmol/m2/s W. 1155 

Figure 4. Step-by-step methodology of the current study, including (a) data obtained, (b-d) data 1156 
modeling through multilayer perceptron (MLP), generalized regression neural networks (GRNN), 1157 
and adaptive neuro-fuzzy inference system (ANFIS), respectively, (e) main steps of optimization 1158 
process through different optimization algorithms, (f,g) results of the validation experiment for shoot 1159 
growth and canopy surface area, respectively, and (h,i) shoot growth and canopy surface area 1160 
obtained from symbiotic organisms search (SOS). 1161 

Figure 5. A schematic representation of biogeography-based optimization (BBO) algorithm.  1162 

Figure 6. A schematic representation of interior search algorithm (ISA) algorithm. 1163 

Figure 7. A schematic representation of symbiotic organisms search (SOS) algorithm. 1164 

Figure 8. A schematic representation of genetic algorithm (GA). 1165 

Figure 9. Spectral analyses of light treatments from the validation experiment. Images demonstrate 1166 
relative amounts of fluencies emitted per treatment. Light spectra presented were obtained using Li-1167 
Cor LI-180 spectrometer. Presented are optimized light treatments for (a) GA shoot length, (b) GA 1168 
canopy surface area, (c) GA number of shoots, (d) GA number of nodes, (e) BBO canopy surface 1169 
area, (f) BBO shoot length, (g) ISA shoot length, (h) ISA number of nodes, (i) ISA root length, (j) 1170 
ISA number of shoots, (k) SOS shoot length, (l) ISA canopy surface area, (m) SOS root length, (n) 1171 
BBO number of nodes, (o) SOS canopy surface area, (p) SOS number of nodes, (q) BBO number of 1172 
shoots, and (r) SOS number of shoots. 1173 
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Figure 10. Scatter plot of experimental data versus predicted data of (a) shoot length, (b) root length, 1175 
(c) node number, (d) shoot number, and (e) canopy surface area in in vitro Cannabis shoot growth 1176 
and development, using generalized regression neural network (GRNN) in both training and testing 1177 
subsets. 1178 
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