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Abstract

Background: Interactions among genetic loci are believed to play an important role in disease risk. While many

methods have been proposed for detecting such interactions, their relative performance remains largely unclear,

mainly because different data sources, detection performance criteria, and experimental protocols were used in the

papers introducing these methods and in subsequent studies. Moreover, there have been very few studies strictly

focused on comparison of existing methods. Given the importance of detecting gene-gene and gene-environment

interactions, a rigorous, comprehensive comparison of performance and limitations of available interaction

detection methods is warranted.

Results: We report a comparison of eight representative methods, of which seven were specifically designed to

detect interactions among single nucleotide polymorphisms (SNPs), with the last a popular main-effect testing

method used as a baseline for performance evaluation. The selected methods, multifactor dimensionality reduction

(MDR), full interaction model (FIM), information gain (IG), Bayesian epistasis association mapping (BEAM), SNP

harvester (SH), maximum entropy conditional probability modeling (MECPM), logistic regression with an interaction

term (LRIT), and logistic regression (LR) were compared on a large number of simulated data sets, each, consistent

with complex disease models, embedding multiple sets of interacting SNPs, under different interaction models. The

assessment criteria included several relevant detection power measures, family-wise type I error rate, and

computational complexity. There are several important results from this study. First, while some SNPs in

interactions with strong effects are successfully detected, most of the methods miss many interacting SNPs at an

acceptable rate of false positives. In this study, the best-performing method was MECPM. Second, the statistical

significance assessment criteria, used by some of the methods to control the type I error rate, are quite

conservative, thereby limiting their power and making it difficult to fairly compare them. Third, as expected, power

varies for different models and as a function of penetrance, minor allele frequency, linkage disequilibrium and

marginal effects. Fourth, the analytical relationships between power and these factors are derived, aiding in the

interpretation of the study results. Fifth, for these methods the magnitude of the main effect influences the power

of the tests. Sixth, most methods can detect some ground-truth SNPs but have modest power to detect the whole

set of interacting SNPs.

Conclusion: This comparison study provides new insights into the strengths and limitations of current methods for

detecting interacting loci. This study, along with freely available simulation tools we provide, should help support

development of improved methods. The simulation tools are available at: http://code.google.com/p/simulation-

tool-bmc-ms9169818735220977/downloads/list.
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Background
Genome-wide association studies (GWAS) have been

widely applied recently to identify SNPs associated with

common human diseases [1-9], including cardiovascular

diseases [6,10-13], diabetes [6,14-18], lupus [19-21],

autoimmune diseases [22], autism [23], and cancer

[24-27]. However, with few exceptions [13,15,17,24], the

discovered genetic variants with significant main effects

account for only a small fraction of clinically important

phenotypic variations for many traits [5,28]. While there

are multiple causes for missing some well-known

genetic risk factors or disease heritability (including e.g.,

rare variants not genotyped in a GWAS study), a fre-

quently cited reason is that most common diseases have

complex mechanisms, involving multi-locus gene-gene

and gene-environment interactions [5,28-31]. For detect-

ing interacting loci in high dimensional GWAS data

with sufficient power and computational feasibility,

some pioneering work, with promising results, has been

reported, encompassing: i) real GWAS study papers, as

cited above; ii) interaction detection methodology

[32-44]; iii) theoretical papers that characterize the prin-

ciple problem (interaction detection) and its challenges

[30,45-47]; iv) review and methods comparison papers

[29,31,47-51].

Novel Methods for Detecting Interacting SNPs

A variety of SNP interaction detection methods have

been recently proposed. In particular, multifactor

dimensionality reduction (MDR) [33] measures the asso-

ciation between SNPs and disease risk using prediction

accuracy of selected multifactor models. Full interaction

model (FIM) [41] applies logistic regression, 3 usingd-1

binary variables constructed based on a d-SNP subset.

Information gain (IG) [34,52] measures mutual informa-

tion to assess multi-locus joint effects. Bayesian epistasis

association mapping (BEAM) [32] treats the disease-

associated markers and their interactions via a Bayesian

partitioning model and computes, via Markov chain

Monte Carlo (MCMC), the posterior probability that

each SNP set is associated with the disease. SNP har-

vester (SH) [39] proposes a heuristic search to reduce

computational complexity and detect SNP interactions

with weak marginal effects. Random forest (RF) [44] is

an ensemble classifier consisting of many decision trees,

each tree using only a subset of the available features

for class decision making. Thus, the detected features

(SNPs) are the ones most frequently used by trees in the

ensemble. Logic regression (LOR) [36] identifies interac-

tions as Boolean (logical) combinations of SNPs. In [42],

an extension of logic regression was also proposed to

identify SNP interactions explanatory for the disease sta-

tus, with two measures devised for quantifying the

importance of these interactions for the accuracy of

disease prediction. Treating SNPs and their interaction

terms as predictors, penalized logistic regression (PLR)

[37] maximizes the model log-likelihood subject to an

L2-norm constraint on the coefficients. Related to FIM

and PLR, adaptive group lasso (AGL) [43] adds all possi-

ble interaction effects at first and second order to a

group lasso model, with L1-norm penalized logistic

regression used to identify a sparse set of marginal and

interaction terms. Maximum entropy conditional prob-

ability modeling (MECPM) [40], applying a novel, deter-

ministic model structure search, builds multiple,

variable-order interactions into a phenotype-posterior

model, and is coupled with the Bayesian Information

Criterion (BIC) to estimate the number of interaction

models present. Logistic regression with an interaction

term (LRIT) has been widely applied to detect interac-

tions [35]. It treats the multiplicative term between

SNPs, along with individual SNP terms, as predictors in

the logistic regression model.

Evaluation of Methods to Detect Interacting SNPs

Despite strong current interest in this area and a num-

ber of recent review articles [29,31,47-51], no commonly

accepted performance standards for evaluating methods

to detect multi-locus interactions have been established.

For example, one might choose to evaluate power to

detect individual SNPs involved in interactions, or

power to precisely detect whole (multi-SNP) interac-

tions. Moreover, the relationship between the power to

detect interacting loci and the factors on which it

depends (penetrance, minor allele frequency (MAF),

main effects, and LD), while considered in some pre-

vious studies [32,41,43,45,53], has not been fully investi-

gated, either experimentally or analytically. Most

importantly, although some assessment and performance

comparison was undertaken both in the original papers

proposing new methods [32-34,39,41,43] and in the

comparison papers [49,50], it is difficult to draw defini-

tive conclusions about the absolute and relative perfor-

mance of these methods from this body of studies due

to the following: (1) each study was based on a different

simulation data set and a different set of experimental

protocols (including the detection power definition

used, the sample size, the number of evaluated SNPs,

and the computational allowance of methods). While

use of different data sets and protocols may be well-war-

ranted, as it may allow a study to focus on unique sce-

narios/application contexts not considered previously, it

also makes it difficult to compare the performance of

methods, excepting those head-to-head evaluated in the

same study. Some methods were found to perform quite

favorably in one study but poorly in others. For exam-

ple, MDR [33] performed well in the original simulation

study and the comparison paper [50], but poorly in
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subsequent studies [32,40,43]; (2) often, only simple

cases were tested, which may not reflect the realistic

application of a method. For example, a common prac-

tice is to include only a single interaction model in the

data [32-34,39,41,50], whereas common diseases are

usually complex, with multiple genetic causes [28], sug-

gesting that multiple interaction models should be pre-

sent. Our previous papers [40,54] considered multiple

interaction models, but an insufficient number of data

set replications to draw definitive conclusions on relative

performance of methods [50]. also evaluated multiple

interaction models, but only compared three methods,

evaluated only one interaction power definition, and did

not comprehensively evaluate the effects of penetrance,

MAF, main effects, and linkage disequilibrium (LD) on

power; (3) only limited interaction patterns were consid-

ered, e.g. 2-way interactions but no higher-order interac-

tions in [43,49]. This is an important limitation,

especially considering that data sets with 1000 or fewer

SNPs were evaluated in these studies - in such cases,

exhaustive evaluation of candidate pairwise interactions

is computationally feasible, whereas heuristic search,

which will affect detection power in practice, is necessi-

tated if either higher order interactions or much larger

SNP sets are considered. Thus, to more realistically

assess detection power, either higher order interactions

and/or more SNPs should be considered; (4) Perhaps

most critically, methods providing P-value assessments

[32,39,41] evaluated power for a given significance

threshold, but did not rigorously evaluate the accuracy

of the P-value assessment, i.e. whether the Bonferroni-

corrected P-value truly reflects the family-wise type I

error rate [55]. This evaluation is of great importance

for methods that use asymptotic statistics [32,39,41],

since it reveals whether or not the asymptotic P-value is

a reliable detection criterion. Specifically, the P-value

could be too liberal (in which case, more family-wise

errors than expected will occur in practice and the esti-

mated detection power is too optimistic) or too conser-

vative (in which case the detection power estimate is

too pessimistic). By not performing such assessment, it

is unclear even whether use of P-values is providing a

fair comparison of detection power between methods (i.

e., for the same family-wise error rate) in [32,39,41]. We

further note that although there were efforts to measure

the type I error rate in [32,43,50], the evaluations were

not based on the commonly used family-wise error rate,

but rather on another definition of type 1 error [32] that

does not directly reflect the Bonferroni-corrected P-

value; (5) In most past studies [32-34,39,41,43,50], only

a single definition of an interaction detection event

(and, thus, a single measure of detection power) was

used. However, this does not capture the full range of

relevant detection events for some applications of

GWAS. In particular, in some works an exact joint

detection event is defined, i.e. detection is successful

only if all SNPs involved in the interaction (and only

these SNPs) are jointly detected [43,50]. This is a strin-

gent definition that gives no credit to a method that

detects a subset of the interacting SNPs (e.g. 3 of the

SNPs in a 5-way interaction), even though such partial

detection is clearly helpful if e.g. one is seeking to iden-

tify a gene pathway, or if the remaining SNPs in the

interaction can be subsequently detected by applying

more sensitive (and computationally heavy) methods.

Exact detection is especially stringent when there are

multiple interactions present, with the disease risk effec-

tively divided between the multiple models. Finally, we

note that individual methods have their own inductive

biases and, thus, may perform better under different

detection criteria - one method may find more ground-

truth SNPs, while another may be more successful at

finding whole interactions. Use of multiple power defini-

tions can reveal these differences between methods; (6)

Most of the proposed methods (e.g. MDR, FIM, BEAM,

MECPM, SH) are designed to detect both main effects

and interaction effects, while to date they have only

been evaluated on data sets containing interactions. It is

thus also meaningful to measure how effective they are

at detecting SNPs with only main effects, and how many

false positive interactions they detect involving main

effect SNPs.

Finally, we note that there are very few true (strict)

comparison papers - most studies have focused on

developing new methods, with experimental evaluation

not the central paper focus. Two exceptions are [50]

and [49]. However, they both embedded only a single

interaction model in the data and considered data sets

with only 100 SNPs; Moreover, [50] evaluated only 2-

way and 3-way interaction detection, while [49] evalu-

ated only two-way interaction detection.

The aforementioned limitations of previous studies are

not surprising because of the following challenges asso-

ciated with comparison studies: (1) it is impractical to

evaluate methods on all of the (numerous possible)

interaction models; (2) multiple aforementioned factors

(MAF, penetrance, LD) jointly decide interaction effects,

which thus entails extensive study design, experimenta-

tion, and computational efforts; (3) many replicated data

sets are required to accurately estimate power and

family-wise type I error rate, further increasing compu-

tational burden; (4) computational costs of some meth-

ods are inherently high; thus a thorough evaluation of

these methods is a difficult hurdle; and (5) fair evalua-

tion criteria are not easily designed because distinct

methods have different inductive biases and produce dif-

ferent forms of output (e.g., some give P-value assess-

ments while others only provide SNP rankings); (6)

Chen et al. BMC Genomics 2011, 12:344

http://www.biomedcentral.com/1471-2164/12/344

Page 3 of 23



there is no consensus definition of power when seeking

to identify multiple sets of predictors that are jointly

associated with outcomes of interest.

Addressing the above challenges, a ground-truth based

comparative study is reported in this paper. The goals

are three-fold: (1) to describe and make publicly avail-

able simulation tools for evaluating performance of any

technique designed to detect interactions among genetic

variants in case-control studies; (2) to use these tools to

compare performance of eight popular SNP detection

methods; (3) to develop analytical relationships between

power to detect interacting SNPs and the factors on

which it depends (penetrance, MAF, main effects, LD),

which support and help explain the experimental results.

Our simulation tools allow users to vary the para-

meters that impact performance, including interaction

pattern, MAF, penetrance (which together determine

the strength of the association) and the sporadic disease

rate, while maintaining the normally occurring linkage

disequilibrium structure. Also, the simulation tools

allow users to embed multiple interaction models within

each data set. These tools can be used to produce any

number of test sets composed of user specified numbers

of subjects and SNPs.

Our comparison study, based on these simulation

tools, involves thousands of data sets and consists of

three steps, as graphically illustrated in Figure 1. Step 1

(with no ground-truth SNPs present) measures the

empirical family-wise type I error rate, which has not

been evaluated in many previous studies, and yet is criti-

cally important if the (e.g. P-value based) significance

threshold is used as the criterion for detecting interact-

ing SNPs.

In particular, foreshadowing our Step 1 results, we will

find that most methods (except LR) in this study that

produce P-values in fact produce conservative ones,

with the degree of conservativeness method-dependent.

Thus, using the same P-value threshold for all methods

will not ensure the methods are being fairly compared,

at a common family-wise error rate. Both for this rea-

son, and because some of the methods do not even pro-

duce P-values, in Step 2 we evaluate detection power as

a function of the number of top-ranked SNPs, rather

than for a specified P-value threshold. Accordingly, note

the logical structure in Figure 1, with the Step 1 results

helping us to determine how to evaluate detection

power in Step 2.

As aforementioned, Step 2 (with a variety of ground-

truth interaction models present) investigates power.

We formulate a more challenging, yet more realistic

situation than most previous studies by including multi-

ple ground-truth interaction models in each simulated

data set. These simulations are motivated in part by our

experience with complex genetic diseases such as

Comprehensive performance

evaluation of interaction

detection methods

Step 1: assess the

accuracy of P-value based

significance assessment

Step 2: assess

the detection power for

interacting SNPs

Compare power based on

statistical significance

Compare power based on

SNP ranking

Power definition 1:

Interaction

detection power

Power definition 2:

Exact interaction

detection power

Power definition 3:

Partial interaction

detection power

Power definition 4:

Individual SNP

detection power

Step 3: assess

the ability of methods to

detect main-effects

Different

conservativeness level

Compare family-wise error

rate to P value threshold

Compare the number of

false positive interactions

Simulation 1:

no ground-truth SNP

Simulation 2:

interacting SNPs only

Simulation 3:

main-effect SNPs only

Inappropriate

Simulation

Analytical results on the relation between

detection power and the factors (Penetrance, MAF, LD)

Figure 1 A flowchart for the performance evaluation of interaction detection methods.
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autoimmune diseases, diabetes and end-stage renal dis-

ease [18,19,56,57]. In total, ninety different interaction

models are investigated in this study, jointly determined

by 5 underlying interaction types and 3 parameters, con-

trolling penetrance, MAF, and LD. Step 3 investigates

the power to detect main effect SNPs, i.e. we investigate

how the methods (many of which are designed to detect

both interactions and main effect SNPs) perform when

only main effects are present in the data.

The main contributions and novelty of our compari-

son study are: (1) comprehensive comparison of state-

of-the-art techniques on realistic simulated data sets,

each of which includes multiple interaction models; (2)

new proposed power criteria, well-matched to distinct

GWAS applications (e.g., detection of “at least one SNP

in an interaction”); (3) evaluation of the accuracy of (P-

value based) significance assessments made by the

detection methods; (4) investigation of detection of

models with variable order interactions (up to 5th

order) in SNP data sets; (5) new analytical results on the

relationship between interaction parameters and statisti-

cal power; (6) investigation of the flexibility of interac-

tion-detection methods, i.e. whether (and with what

accuracy) they can detect both interactions and main

effects; (7) discoveries concerning relative performance

of methods (e.g., comparative evaluation of the promis-

ing recent method, MECPM). Since we are presenting a

diversity of results, both experimental and analytical, to

assist the reader in navigating our work, Figure 1 gives a

graphical summary of our experimental steps, the results

produced there from, and the connections between the

different results, both experimental and analytical.

Results
Experimental Design and Protocol

We selected eight representative methods for evaluation,

based on their reported effectiveness and computational

efficiency. Seven of them (MDR, FIM, IG, BEAM, SH,

MECPM and LRIT) are designed to detect interacting

loci, with the remaining one based on the widely-used

logistic regression model (LR). LR, using only main

effect terms, serves as a baseline method to compare

against all the interaction-detection methods, i.e., to see

whether they give any advantage over pure “main effect”

methods when the goal is simply to detect the subset of

SNPs that either individually, or via interactions, are

predictive of the phenotype. The description of the eight

methods is given in the “Methods” part.

Simulation Data Sets

Each data set contains individuals simulated from the

control subjects genotyped by the 317K-SNP Illumina

HumanHap300 BeadChip as part of the New York City

Cancer Control Project (NYCCCP). To facilitate this

investigation [40], a flexible simulation program was

written that generates user defined sample size, number

of SNPs, no missing data or missing data patterns con-

sistent with the observed missing data in the original

genome scan, and affected or unaffected disease status

under the null hypothesis (i.e., no associations in the

genome) or under the alternative hypothesis (i.e., hard-

coded penetrance functions). Missing data is filled in

completely at random and proportional to the allele fre-

quencies in the original data. The data sets were pro-

duced as follows. Consider a matrix with 223 rows

corresponding to NYCCCP individuals and 317,503 col-

umns corresponding to the 317,503 SNPs. The elements

of this matrix are the individual genotypes. The columns

were partitioned into blocks of 500 SNPs, i.e. 636

blocks, with the last block containing only 3 SNPs. The

simulated genome scan data for each individual was

obtained by random draws (with replacement) from a

real data matrix of 223 individuals and 636 blocks of

500 SNPs. Specifically, the simulated data for an indivi-

dual was generated by randomly selecting the first block

from the 223 individuals (rows), randomly selecting with

replacement the second block from the 223 individuals,

randomly selecting with replacement the third block

from the 223 individuals, and so on. Thus the data

retains the basic patterns of linkage disequilibrium (bro-

ken by strong recombination hotspots), missing data,

and allele frequencies observed in the original genome

scan data. The exception to this is only at the 635

breaks in the genome corresponding to the block

boundaries. Figure 2 visually illustrates this simulation

approach for randomly resampling genome scan data

starting from the real NYCCP scans. The simulations

presented here correspond to approximately 2000 sub-

jects simulated under the alternative hypothesis

described below and no missing data. Only autosomal

loci are considered in the data.

The eight methods were applied to sets of

1000~10,000 SNPs selected at random from the autoso-

mal loci. This number of SNPs is consistent with a

GWAS study following an initial SNP screening stage

and also with pathway-based association studies. When

selecting SNPs, we first removed those with genotypes

that significantly deviate from Hardy-Weinberg equili-

brium, and then selected the desired number of ground-

truth and “null” SNPs. For each replication data set,

ground-truth SNPs were randomly selected, according

to the requirements of MAF (within a narrow window

of tolerance), and “null” SNPs were chosen completely

at random. The simulations reported assume that the

disease risk is explained by several ground-truth interac-

tion models and the sporadic disease rate S, which

accounts for the missing heritability and other disease-

related factors. Let Pr(di), r = 1,2,...,R be the disease

probability generated by R interaction models for the ith
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subject. Assuming all disease factors act independently,

disease risk of this subject is then

P(di) = 1 −

R
∏

r=1

(1 − Pr(di))(1 − S). (1)

The simulation data sets have different ground truth

interaction models Pr(di), r = 1,2,...R and the sporadic

disease rate S for different steps. For Step 1, we did not

embed any ground truth SNPs in the data sets; for Step

2, we embedded five interaction models in each data set;

and for Step 3, we embedded five main-effect-only SNPs

in each data set. In all three steps, we adjusted the

sporadic rate S so that each data set has approximately

1,000 cases and 1,000 controls, the typical situation

(balanced cases and controls) in GWAS studies, e.g. in

Step 1, S = 0.5. The ground truth interaction models in

Step 2 and the ground truth main-effect-only SNPs will

be described later.

In Figure 3, we provide a flowchart detailing all of the

steps (as described above) used in producing our simu-

lated GWAS data sets.

The simulation approach used in this comparison

study is the same as that used in [40]. Our simulation

approach has one commonality with, but two main dif-

ferences from the simulation approaches used in the

previous methods and comparison study papers evaluat-

ing MDR, IG, FIM, SH, and BEAM [32-34,39,41,50].

Both in these papers and in our current study, all SNPs

are consistent with Hardy-Weinberg Equilibrium. How-

ever, in these previous papers, the simulated data were

purely synthetic, generated according to user-specified

allele frequencies [29-31,36,38,47]. By contrast, our

simulated data is obtained by resampling from real gen-

ome scan data and is thus more realistic, preserving the

allele frequencies and LD structure manifested by the

original genome scan data. Another resampling simula-

tion method was proposed in [58,59], but this approach

has not been used for evaluating the MDR, IG, FIM,

SH, and BEAM methods. Another important distinction

between our simulation method and other simulation

methods lies in the phenotype generation. In our simu-

lation, multiple interactions simultaneously exist in each

data set (which is reasonable considering complex dis-

ease mechanisms) and jointly decide the phenotype; by

contrast, other simulation methods usually embed only

one SNP interaction (i.e., single interaction model) in

each data set [32-34,39,41,50]. Also, we consider interac-

tions with interaction order from 2 to 5, while most

other simulations [33,34,39,41,50] only consider interac-

tions with interaction order up to 3.

As mentioned previously, our simulation study con-

sists of three main experimental steps, which we next

more fully describe.

Step 1: assess family-wise type I error rate

An accurate family-wise type I error rate is crucial for

methods that select candidate SNPs based on their P-

values and for reliably comparing methods. If the

family-wise type I error rate is either conservative or lib-

eral, the P-value loses its intended meaning and does

not reflect the actual false positive rate. That is, we will

not be able to control how many false positives are

detected by setting a (e.g. P-value based) threshold. For

example, a method with a lower family-wise type I error

Figure 2 A visual illustration of SNP “blocking” and random sampling, used for generating simulated individuals. “Ind i“ denotes the ith

real individual, and “Sim Ind” denotes the simulated individual. First, genomes of the real individuals are segmented into a number of blocks;

second, for each block, a genome segment is randomly drawn from the set of real individuals; finally, the randomly drawn genome segments,

for all blocks, are stitched together to form a simulated individual.
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rate than expected (based on the estimated P-value) sets

a threshold that overestimates the empirical false posi-

tive rate; thus, fewer false positives (than the target) will

be selected, likely also leading to fewer true associations

being identified.

BEAM, SH and FIM detect significant SNPs based on

P-values calculated from asymptotic distributions and

heuristic searches. Thus, based on the preceding discus-

sion, evaluating the accuracy of their P-value assess-

ments is not only of theoretical importance (how well

their proposed asymptotic distributions approximate the

real distribution), but also of great practical necessity in

applying these methods.

To evaluate the accuracy of P-value assessment, we

replicated 1,000 data sets by repeatedly randomly select-

ing 1,000 null SNPs from the SNP pool, i.e. to easily

assess family-wise type I error rate, no ground-truth

SNPs were embedded in these data sets.

Step 2: assess power

In step 2, each data set has N SNPs, with 15 ground-

truth SNPs and N-15 null SNPs, selected via the proce-

dure described in the “Simulation Data Sets“ subsection.

N is chosen to be either 1000 or 10,000 for different

experiments. There are several points to make regarding

the number of SNPs we consider. First, assuming

approximately 1000~10,000 SNPs is realistic for candi-

date gene and biological pathway studies where interac-

tion detection is needed. Second, considering GWAS

studies, a 0.15%~1.5% percentage of ground-truth SNPs

realistically models the output of first stage SNP screen-

ing/filtering (which greatly reduces the number of candi-

date SNPs) in the widely-applied 2-stage GWAS

detection process. Finally, the 1000~10,000 SNPs

considered here is much larger than the 100 SNPs in

the previous comparison study [49,50] and comparable

to that considered in several other recent papers.

The 15 ground-truth SNPs each participate in one of

5 ground-truth SNP interactions, which contribute inde-

pendently to the disease, as described by equation (1).

There are three standard factors that determine interac-

tions: penetrance, MAF and LD [3,7]. Penetrance is the

proportion of individuals with a specific genotype who

manifest the phenotype. For example, if all individuals

with a specific disease genotype show the disease pheno-

type, then the penetrance value is 1 and the genotype is

said to be “completely penetrant"; otherwise, it is

“incompletely penetrant” [3]. LD is the non-random

association of alleles of different linked polymorphisms

in a population [7]. MAF is the frequency of the least

common allele of a polymorphic locus. It has a value

that lies between 0 and 0.5, and can vary between popu-

lations [7]. The 5 ground-truth SNP interactions are

jointly determined by 5 basic model types and 3 (dis-

crete-valued) parameters, controlling the MAF, pene-

trance, and LD, which will be specified later. Based on

the choices for these 3 parameters, there are 3 × 3 × 2

= 18 possible parameter configurations (so the afore-

mentioned ninety models are generated by the 5 basic

model types, each with 18 different parameter settings).

Each configuration is applied simultaneously to the 5

basic models, thus yielding 5 fully specified interaction

models for a given data set. With some allowable ran-

domness in the 5 new interaction models, we generated

100 replication data sets for each configuration with N

= 1000, and 10 replication data sets for one typical con-

figuration with N = 10,000; thus we have in total 18 ×

Real SNP data

Individuals generated by segmenting

and random sampling

Generating

disease status

Selecting ground-truth

SNPs based on MAF

MAF Penetrance

Basic disease models

Randomly Selecting

null SNPs

Simulated data

x x

Sporadic

rate

Figure 3 A flowchart detailing all of the steps used in producing the simulated GWAS data sets.
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100+10 = 1,810 data sets in step 2, involving 18 × 5 =

90 interaction models.

The 5 basic models vary in interaction order, genetic

models (dominant, recessive, or additive), incomplete/

complete penetrance, MAF, and marginal effects. To

indicate the strength of interaction effects and main

effects for each basic model, we calculated the odds

ratio by dichotomizing the genotypes of each interaction

into a group with the lowest penetrance value (usually

with “0” penetrance) and another group with higher

penetrance values (the specific calculation can be found

in section S4 of the Additional file 1).

The 5 basic models are defined by the penetrance

tables and MAFs below. The penetrance function is the

probability of disease given the individual’s genotype.

Thus, the penetrance tables show the probability of

developing disease given the genotypes [3,60], with each

table entry being the disease probability conditional on

the specific single or multi-locus genotypes. The interac-

tion models are motivated by our experience studying

complex genetic traits where there are multiple loci con-

tributing to disease risk. Specifically, the simulation

study is motivated by our experience in autoimmune

diseases, diabetes and renal diseases where there are

some larger effects (e.g., human leukocyte antigen region

in autoimmune diseases such as systemic lupus erythe-

matosus, neonatal lupus, and juvenile arthritis [19]; and

gene APOL1 in end-stage renal disease in African

Americans [18]), and multiple modest to smaller effects

with 1.1 < odds ratios < 1.3. To date, there are few

robustly established (i.e., with convincing discovery evi-

dence on multiple replications in independent cohorts)

gene-gene interactions in the human disease literature.

Thus, we attempted to be consistent with the complex

genetic disease paradigm and assumed multiple loci,

several interacting, contribute to the risk of disease. We

examined combinations of SNPs in the lupus genome-

wide scan (Harley et al, 2008) to estimate some exam-

ples of potential two-locus interactions as well as con-

structed other higher-order interactions consistent with

traditional interpretations of Mendelian inheritance (i.e.,

dominant, additive or recessive genetic model) but span-

ning multiple loci. Some interactions are based on a

two-locus, common allele with a low penetrance model

as might be hypothesized in diabetes from the “thrifty

gene hypothesis” [56] and other multi-locus models are

modest penetrance models for the low frequency alleles.

Additional motivation comes from studies of epistasis

[57]. The five locus interaction is a conjectural one that

should challenge these analytic methods.

Basic model 1-.two-locus interaction under a domi-

nant model for the major allele. The model is for two

very common but low penetrant alleles. The MAFs at

these two loci are both 0.25. This model is expected to

generate 62 cases per 1000 subjects. The odds ratio is

1.16 for the joint interaction effect between A and B,

and 1.15 for main effects of both A and B. This model

simulates the situation of common disease where the

major allele is disease-related but with weak interaction

effects. “M1” denotes model 1. GA
11 denotes the homozy-

gous major allele genotype of SNP A; GA
12 denotes the

heterozygous genotype of SNP A; GA
22 denotes the

homozygous minor allele genotype of SNP A; likewise

for the notations in the other basic models.

M1 GA
11 GA

12 GA
22

GB
11 0.07 0.07 0

GB
12 0.07 0.07 0

GB
22 0 0 0

Basic model 2- two-locus interaction for common

alleles under a dominant genetic model at each locus.

The minor allele frequencies are 0.20 for locus A and

0.30 for locus B. This model is expected to generate 102

cases per 1000 subjects. The odds ratio is 3.79 for the

joint interaction effect between A and B, 1.89 for the

main effect of A and 1.56 for the main effect of B. This

model simulates the situation that the minor allele is

disease-related, and both interaction effects and main

effects are strong.

M2 GA
11 GA

12 GA
22

GB
11 0 0 0

GB
12 0 0.5 0.7

GB
22 0 0.7 0.7

Basic model 3- three-locus interaction, common

alleles, incomplete penetrance. The MAFs at the three

loci are 0.40 for A, 0.25 for B, and 0.25 for C. This

model is expected to generate 46 cases per 1000 sub-

jects. The odds ratio is 2.28 for the joint interaction

effect among A, B and C, 1.16 for the main effect of A,

1.25 for the main effect of B, and 1.25 for the main

effect of C.

M3 GA
11 GA

12 GA
22

GC
11 GC

12 GC
22 GC

11 GC
12 GC

22 GC
11 GC

12 GC
22

GB
11 0 0 0 0 0 0 0 0 0

GB
12 0 0 0 0 0.35 0.35 0 0.35 0.7

GB
22 0 0 0 0 0.35 0.7 0 0.7 0.7

Basic model 4- three-locus interaction among com-

mon alleles. The minor allele frequencies are 0.25 for A,

0.20 for B, and 0.20 for C. This model is expected to

generate 26 cases per 1000 subjects. The odds ratio is

5.79 for the joint interaction effect among A, B and C,

2.45 for the main effect of A, 1.06 for the main effect of

B, and 1.06 for the main effect of C. This model has
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strong interaction effects and a strong main effect at A,

but weak main effects at B and C. Two-SNP subsets of

the three-locus interaction, {A, B} and {A, C}, also have

strong effects.

Basic model 5- five-locus interaction among common

alleles. It assumes a MAF of 0.30 at each locus and has

a penetrance value of 0.63 if the minor allele is present

at each locus; and 0 otherwise. In equation form, the

penetrance function is:

P(D|GA
12 or 22 ∩ GB

12 or 22 ∩ GC
12 or 22 ∩ GD

12 or 22 ∩ GE
12 or 22) = 0.63; 0 otherwise,

where D means the subject gets disease. This model is

expected to generate 22 cases per 1000 subjects. The

odds ratio is 4.48 for the joint interaction effect among

the five loci, and 1.09 for the main effect at all five loci.

This model simulates the situation of significant high-

order interaction effects but weak main effects.

Three parameters are used to assess the robustness

of the various methods to variations in penetrance,

MAF, and LD, because i) as aforementioned, penetrance,

MAF, and LD jointly define the disease model, and thus

decide the disease status; ii) it is of interests, in the field

of SNP interaction detection, to explore how detection

power varies with these parameters [32,34,41,43,50]; iii)

we have derived the analytical relationships between

interaction effects and these parameters in the Addi-

tional file 1, so a simulation study using these para-

meters provides us the opportunity to validate the

analytical relationships in an empirical way. For each

basic model, we control its penetrance by multiplying

every value in the penetrance table by the penetrance

factor (multiplier) θ Î{1,1.3,1.4} (the larger θ is, the lar-

ger disease risk there will be); we discount the MAF by

multiplying the MAF of each SNP by a MAF factor b Î

{1,0.9,0.7} (the larger b is, the larger frequency the

minor allele will have); and to control the LD level, we

replace each ground-truth SNP by an “LD SNP”, which

has a certain correlation coefficient l Î{0.8,null} with

the ground-truth SNP (l = null means we do not replace

the ground-truth SNP). The “LD SNP” simulates the

realistic case where the ground-truth SNP is not directly

genotyped; in this case we may detect a SNP in LD with

the ground-truth SNP. For example, for basic model 2,

under parameters θ, b, l, the MAFs are 0.2 * b for locus

A and 0.3 * b for locus B, θ determines a new

penetrance function shown below, and if l = 0.8, we

replace A/B by a SNP correlated to A/B with correlation

coefficient 0.8.

GA
11 GA

12 GA
22

GB
11 0 0 0

GB
12 0 0.5 ∗ θ 0.7 ∗ θ

GB
22 0 0.7 ∗ θ 0.7 ∗ θ

The theoretical, analytical relationship among pene-

trance, MAF, and statistical significance of an interac-

tion model is investigated in the Additional file 1, with

these results also summarized in the “Experimental

Results” section.

Step 3: assess the power to detect SNPs with only main

effects

Most of the interaction-detection methods are designed

to find either interactions or main effects (e.g. MDR,

FIM, BEAM, MECPM and SH). Thus, it is meaningful

to see how these methods fare in detecting main effects

and also whether they detect false positive interactions

(which may involve either null and/or main effect SNPs)

when there are only main effects present.

In Step 3, we simulated 100 replication data sets, fol-

lowing a similar approach

as in Step 2. Each data set includes five main-effect

ground truth SNPs and 995 null SNPs. The penetrances

and MAFs for the five ground truth SNPs are:

SNP 1. Dominant model for the major allele, low

penetrance, MAF = 0.25.

S1 GA
11 GA

12 GA
22

0.666 0.666 0

SNP 2. Additive model for the minor allele, MAF =

0.3.

S2 GA
11 GA

12 GA
22

0 0.188 0.252

SNP 3. Additive model for the minor allele, MAF =

0.4.

S3 GA
11 GA

12 GA
22

0 0.068 0.084

SNP 4. Recessive model for the minor allele, high

penetrance, MAF = 0.25.

S4 GA
11 GA

12 GA
22

0 0 0.4128

SNP 5. Dominant model for the minor allele, low

penetrance, MAF = 0.3.
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S4 GA
11 GA

12 GA
22

0 0.043 0.043

Although SNP 1 and SNP 5 have relatively weaker

effects, we still included them because (1) they also

affect many subjects’ disease status, since a large propor-

tion of subjects carry the disease genotype of SNP1 and

SNP 5 (which simulates common-disease markers); (2)

our experimental results will show that these weak-effect

SNPs differentiate the performance of the methods.

Note that we configured the methods to detect both

main effects and interaction effects since, in practice, it

will not be known whether interactions are present or

not.

Design of Performance Measures

The performance of the methods is evaluated by the

accuracy of P-value assessment, various definitions of

power, reproducibility, and computational complexity.

A. Family-wise type I error rate (the accuracy of P-value

assessment)

There are 1,000 SNPs in each data set. Thus there are

multiple comparison effects, and the P-values obtained

by the methods are accordingly adjusted by Bonferroni

correction. In this way, the accuracy of P-value assess-

ment is represented by the family-wise type I error

rate: an error event occurs on a data set with no

ground truth SNPs if there are any (necessarily false)

positive detections. Since SH, MDR and FIM use Bon-

ferroni correction, we measure the accuracy of their P-

value assessments by how well the significance thresh-

old (P-value) agrees with the family-wise type I error

rate.

B. Various power definitions and the ROC curve

Power can be defined in several ways, depending on

what we desire to measure. We next give several power

definitions experimentally evaluated in the sequel.

Power to progressively detect interactions (Power defi-

nition 1) the frequency with which a model’s ground-

truth SNPs are ranked within the top K positions. Sev-

eral comments are in order here. First, it is important to

note that the significance threshold is not being applied

to define power because (1) the methods’ P-value assess-

ments are, as noted earlier, conservative (as shown in

the sequel), and (2) not all methods provides signifi-

cance assessments (e.g. IG and MECPM). Second, in our

experiments, the ranking of a SNP is decided by the

strength of effect of the most significant interaction that

includes this SNP. Third, note that each data set con-

tains multiple interaction models, with the detection

power measured separately for each model. In measur-

ing the power to detect SNPs in a given interaction

amongst the top K SNPs, we are only interested in

whether the ground-truth SNPs in the interaction are

ranked higher than null SNPs, not whether they are

ranked higher than ground-truth SNPs from other inter-

actions that are present. Accordingly, when measuring

the power to detect SNPs in a given interaction, we do

not rank ground-truth SNPs from other interactions,

but only rank SNPs from the given interaction and all

null SNPs. For an M-way interaction, let {xK(i), i =

1,2,...,100} be the number of its ground-truth SNPs

reported within the top K SNPs over the 100 replicated

data sets. The power for this interaction model is then

given by:

Power(K) =
1

100 · M

100
∑

i=1

xK(i) (2)

We can also define power over the entire ground-

truth SNP set by setting M = 15 and considering all

ground-truth SNPs in the ranking.

Power to precisely detect interactions (power defini-

tion 2: exact interaction power) for an M-way ground-

truth interaction, how likely it is detected amongst the

top K M-way candidates produced by a method. This

power definition evaluates the sensitivity to detect the

interaction as a whole, rather than as individual SNPs.

Again, similar to power definition 1, in evaluating the

top K M-way candidates, we only consider M-way com-

binations that include ground-truth SNPs from the

interaction of interest and null SNPs, i.e. we exclude M-

way SNP combinations involving any SNPs that partici-

pate in other ground truth interactions. Mathematically,

for an M-way interaction {s1,..., sM}, in the ith data set, if

{s1,..., sM} is detected within the top K M-way candi-

dates, x2, i(K) = 1; otherwise, x2, i(K) = 0. Power defini-

tion 2 is then given by:

Power(K) =
1

100

100
∑

i=1

x2,i(K)

Power to detect at least 1 SNP in the ground-truth

interaction (power definition 3: partial interaction

power) As revealed by the definitions of the interac-

tion models, a subset of the interacting SNPs may

have strong association to disease risk. Detecting an

interaction subset should be acceptable since this

gives a good “clue” to help further identify the com-

plete interaction. We thus give power definition 3 as

follows: for an M-way interaction model {s1,...,sM}, if

any SNP from {s1 , . . . ,sM} is within the top K SNPs

reported by the methods (excluding other ground-

truth SNPs that do not participate in this interaction

model), x3,i(K) = 1; otherwise, x3,i(K) = 0. Power defi-

nition 3 is then given by:
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Power(K) =
1

100

100
∑

i=1

x3,i(K).

Power to detect individual SNPs (power definition 4:

single SNP power) The power definitions above ignore

differences between SNPs within the same interaction, e.

g., differences in MAF, asymmetric penetrance table and

thus different main effects, which may largely affect

their potential for being detected. So it is also necessary

to see how well individual ground-truth SNPs with dif-

ferent MAFs, penetrances, and main effects, are detected

by the 5 methods. Accordingly, we give power definition

4 as follows. For a ground-truth SNP sj, j = 1,2,...,15, if sj
is within the top K SNPs reported (excluding the other

ground-truth SNPs), xi(K) = 1; otherwise, xi(K) = 0. The

single SNP power for sj is then given by:

Power(K) =
1

100

100
∑

i=1

xi(K).

ROC curve We also evaluate the methods via the ROC

curve, which shows how many ground-truth SNPs are

detected for a given false positive SNP count.

C. Reproducibility

The estimated power, even if high, could deviate signifi-

cantly across different data set replications, due to the

inherent randomness in our simulation approach. Thus,

we also want to see how reproducible the detection

power is over the data set replications. To evaluate this,

we measure the standard deviation of the estimated

power across the replicated data sets.

Reproducibility(K)

=

√

√

√

√

1

100

100
∑

i=1

(

xi(K) −
1

100

100
∑

i′

xi′ (K)

)2

D. Computational complexity

Computational complexity was measured by the execu-

tion time and memory occupancy of the methods for

the same platform.

Experimental Results

In Step 1, we evaluated the three methods with asymp-

totic statistics (FIM, BEAM and SH). In Step 2, we eval-

uated all eight methods (as described in the “Method”

section) on the 1000-SNP data sets, and six methods

(FIM, IG, BEAM, MECPM, SH and LR) on the 10,000-

SNP data sets - we do not evaluate MDR for the

10,000-SNP data sets because the high memory occu-

pancy of the MDR software prevents this evaluation. We

also evaluated six methods (MDR, FIM, BEAM,

MECPM, SH and LR) in Step 3 - we do not evaluate IG

and LRIT, because, by design, they only output multi-

locus interaction candidates, and thus are inappropriate

to be assessed in Step 3’s main effect evaluation. Specifi-

cally, IG and LRIT will necessarily have 0 true positives,

no matter how well they detect interactions involving

the main-effect-only SNPs, since in Step 3 only “singlet”

main effects are considered to be true positives. MDR,

BEAM, SH and MECPM were all implemented using

the authors’ freely available software. LR, LRIT, FIM and

IG were implemented using C++, with the software

freely available. The eight methods were tested on the

same platform: OS: Windows, CPU: 3G, RAM: 2G. The

parameters used by the respective methods follow their

default settings wherever possible. We only modified

one parameter when testing MDR: we used its heuristic

search (1 hour execution time limit) instead of exhaus-

tive search when testing MDR on the 1000-SNP data

sets in step 2, because exhaustive search of MDR

required huge memory and quite impractically high

computational cost - when implementing MDR with

exhaustive search, our machine crashed from running

out memory; moreover, the estimated exhaustive-search

MDR execution time for a 1000-SNP, 2000-sample data

set is 1.4 × 106 seconds (roughly 15 years) on our plat-

form. Here we compare the eight peer methods along

several performance fronts. The results are then further

evaluated and summarized in the “Discussion” section.

Accuracy of P-value assessment in step 1

Based on the definition in the subsection “Design of

Performance Measures”, we tested the accuracy of P-

value assessment for BEAM, SH, and FIM on the 1,000

data sets in step 1. Regarding the other methods, IG

and MECPM do not give significance assessments, while

the significance assessment of MDR is (necessarily)

accurate since it uses random permutation testing

(However, it should also be noted that MDR only evalu-

ates the significance of the top-ranking interaction.

Thus, in practice, MDR does not in fact use a P-value

to practically set an interaction detection threshold.).

The average family-wise type I error rates at different

significance thresholds were calculated. Since each inter-

action order has a different Bonferroni penalty, we sepa-

rately list the results for 1st, 2nd, and 3rd orders, shown

in Table 1. BEAM, SH and FIM all have accurate

family-wise type I error rates at 1st order, but give con-

servative results (empirical family-wise type I error rate

is less than expected) at 2nd and 3rd order. BEAM is

the most conservative and FIM the least. Thus, the P-

values generated by these methods are conservative, and

not to the same degree. Thus the estimation of power

(at the targeted type I error rate value) is likewise both

conservative and not truly comparable across the
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methods. There are multiple causes for this conserva-

tiveness, which we subsequently discuss.

Power (definition 1) and ROC curve in step 2

We measured power (definition 1) for each interaction

model and also for the entire 15-SNP ground-truth set.

Figure 4 and 5 show some of our results for 1000 SNPs

and 10,000 SNPs in each data set, respectively. Many

more results, under different parameter configurations,

are given in the Additional file 1.

For the 1000-SNP case (Figure 4), although the meth-

ods can detect some SNPs with strong interacting

effects (Figure 4(c), model 2), most of the methods

(MDR, BEAM, IG, FIM, SH, and LR) miss many other

ground-truth interacting SNPs at a low false positive

SNP count (i.e., for small K) (Figure 4(b), (d), (e) and 4

(f)); further increases in power are modest and are only

attained by accepting many more false positive SNPs.

Comparatively, MECPM performs quite well on most

interaction models (including the difficult five-way (Fig-

ure 4(f)) and the three-way interactions (Figure 4(d) and

4(e)), except for model 1 (Figure 4(b)). Only a partial

curve is shown for MECPM because MECPM uses the

BIC criterion to choose its model order (and, thus, the

number of interactions) [40]. Few true SNPs are added

as K is increased beyond the BIC stopping point –

MECPM has high specificity at the BIC stopping point

[40] (MECPM specificity = 0.99 for the whole ground

truth SNP set at the BIC stopping point). Accordingly,

MECPM execution was terminated shortly after the BIC

stopping point. From Figure 4(a), MECPM is overall the

best-performing method, with SH second, BEAM third,

FIM fourth, the baseline LR fifth, LRIT sixth, IG seventh

and MDR eighth. Individual methods perform more

favorably for certain models, e.g. IG performs well for a

3-way model (Figure 4(e)). Also, all methods tend to

detect more interacting SNPs with strong main effects

than those with weak main effects (power of all the

methods on models 2 and 3 is generally higher than on

models 1, 4, and 5). We give some explanation for these

results in the “Discussion” section.

For the 10,000-SNP case (Figure 5), we have similar

observations as in the 1000-SNP case, except that the

general performance of all methods is degraded. It is

worth noting that all the methods perform comparably

to their 1000-SNP detection power for model 2 (Figure

5(c)), and MECPM also performs comparably to its

1000-SNP detection power for models 3 and 4 (Figure 5

(d) and 5(e)). MECPM is the overall best-performing

method, with SH second, BEAM third, LR fourth, LRIT

fifth, FIM sixth and IG seventh.

Impact of penetrance, MAF, and LD on power (definition 1)

Figure 6 shows the power for different penetrance,

MAF, and LD factors. The power is calculated based on

the whole ground-truth SNP set. More detailed results

Table 1 The average family-wise type I error rates (step

1) for BEAM, SH and FIM under the significance

threshold of 0.1 (after Bonferroni correction). More

results can be found in the Additional file 1

family-wise type I error rate BEAM SH FIM

1st order 0.094 0.084 0.097

2nd order 0 0.026 0.032

3rd order 0 0.002 0.006
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Figure 4 Power evaluation (definition 1) of the eight methods on 100 replication data sets with parameter setting: θ = 1.4, b = 1, l =

null. (a) evaluates the power on the whole ground-truth SNP set, and (b) (c) (d) (e) (f) evaluate the power individually on the 5 interaction

models. Blue curve - SH, magenta curve - FIM, green curve - MDR, black curve - IG, cyan curve - MECPM, grey curve - LRIT, yellow curve - LR.
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are given in the Additional file 1. From Figure 6, a smal-

ler penetrance value or MAF significantly degrades the

power curves of the methods. Among the methods, SH

is most robust to changes in penetrance and MAF, and

IG is most sensitive to these changes.

Reproducibility of power (definition 1)

We measured the reproducibility by the standard devia-

tion of power across the 100 replication data sets. These

results are given in the Additional file 1.

Power (definition 1) to detect interacting SNPs for a fixed

significance threshold

Although the statistical significance level is unreliable

for measuring performance of the methods (as illu-

strated in Table 1), we want to give readers an empirical

sense of how the methods perform when using the sta-

tistical significance level to select candidate SNPs in the

step 2 experiment. These results, given in the Additional

file 1, show that using the same significance threshold,

the methods detect very different numbers of both true

positive and false positive SNPs. Moreover, considering

the balance of true positives and false positives achieved

by each of the methods, none of them performs

strongly.

Power to detect entire interactions (definition 2)

Based on power definition 2, we did experiments to

evaluate all the methods on the 1000-SNP data sets of

Step 2. Considering the high computational complexity

and the applicability of the methods, we compare the

power of IG, LRIT, FIM, SH and MDR on 2-way inter-

actions, the power of FIM, SH, and MDR on 3-way

interactions, and the power of MDR on 5-way interac-

tions. Figure 7 shows the results. Due to the limited

number of total interactions output by BEAM and

MECPM, we do not evaluate BEAM here, and list the

power of MECPM only at its stopping point: model 1 -

0, model 2 - 0.96, model 3 - 0.94, model 4 - 0, model 5

- 0.46.

We can observe that all the methods have poor per-

formance for models 1 and 4. For models 3 and 5, all

the methods fare poorly except for MECPM. For model

2, IG, LRIT and FIM have very good performance

(power = 1); MECPM also performs well (power =

0.96); while the other methods still perform poorly.

Power to detect at least 1 SNPin an interaction - partial

interaction detection (definition 3)

Based on power definition 3, we evaluated SH, BEAM,

IG, FIM, MDR, LRIT and MECPM. The major results

are shown in Figure 8. Due to the limited number of

total interactions output by MECPM at its stopping cri-

teria, we give a text description, instead of drawing a

curve, to show the power at its stopping point: model 1

- 0.17, model 2 - 1, model 3 - 0.98, model 4 - 0.97,

model 5 - 0.46. From Figure 8, BEAM, SH, FIM, LRIT

and MECPM obtain good results for models 2, 3, 4, 5.

We believe that these good results are partly due to the

relatively strong main effects of SNPs involved in these

interaction models. Note that there is a substantial

increase in power compared to Figure 7. Also, by com-

paring with the results for power definition 1 (Figure 4),

we can see that there is largely increased power for

(a)                                        (b)                                         (c)   

                     (d)                                        (e)                                          (f) 

Figure 5 Power evaluation (definition 1) of six methods on 10 replication data sets with parameter setting: θ = 1.4, b = 1, l = null. (a)

evaluates the power on the whole ground-truth SNP set, and (b) (c) (d) (e) (f) evaluate the power individually on the 5 interaction models. In

(c), all the methods have overlapped power curve at the upmost part of the figure. Magenta curve - FIM, black curve - IG, red curve - BEAM,

blue curve - SH, cyan curve - MECPM, grey curve - LRIT, yellow curve - LR.
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most models, indicating most interaction models can be

partly detected by the methods.

Power to detect individual SNP main effects (definition 4)

Based on Figure 9, we can confirm our previous state-

ment that main effects play an important role in deter-

mining whether or not a SNP can be detected. For

example, the two SNPs in model 2 (odds ratio: 1.89 in

the basic model) and SNP A (odds ratio: 2.45 in the

basic model) in model 4 have strong main effects, and

all the methods detect them well.

Also, we observe similar power for SNPs participating

in interactions with symmetric penetrance tables and

the same MAFs. For example, all the SNPs in model 1

and model 5 have similar power; likewise for SNPs B

and C in models 3 and 4. This observation is reasonable

since these SNPs not only have the same main effects,

but also have the same interaction effects.

For SNPs participating in interactions with a sym-

metric penetrance table but different MAFs, an interest-

ing (and perhaps unexpected) finding is that for model

2, the power to detect SNP A (MAF = 0.2), is greater

than the power to detect SNP B, which has a larger

MAF (MAF = 0.3). We give theoretical justification for

this result in section 1 of the Additional file 1.

Performance for step 3, the main-effect-only case

We used power definition 4 to evaluate performance of

the methods on the main-effect-only data sets in Step 3.

We did not include the IG and LRIT method in this

Step because IG and LRIT only detect multilocus inter-

actions, not single (main effect) SNPs; thus, for Step 3,

(a) =1.4, =1, l=null                    (b) =1.3, =1, l=null                  (c) =1, =1, l=null

(d) =1.4, =0.7, l=null             (e) =1.3, =0.7, l=null               (f) =1, =0.7, l=null    

(g) =1.4, =1, l=0.8                    (h) =1.3, =1, l=0.8                       (i) =1, =1, l=0.8    

(j) =1.4, =0.7, l=0.8              (k) =1.3, =0.7, l=0.8                  (l) =1, =0.7, l=0.8   

Figure 6 The impact of penetrance value (θ), MAF (b), and LD factor (l) on power for the whole ground-truth SNP set. Blue curve - SH,

magenta curve - FIM, green curve - MDR, black curve - IG, cyan curve - MECPM, yellow curve LR..
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                    (a) Model 1                                   (b) Model 2                                   (c) Model 3      

                   (d) Model 4                          (e) Model 5

Figure 7 Power evaluation (definition 2) of the methods on 100 replication data sets with parameter setting: θ = 1.4, b = 1, l = null. In

(a), FIM, IG, MDR and LRIT have power constantly equal to 0; in (b) FIM and IG and LRIT have power constantly equal to 1; in (d) SH, FIM and

MDR have power constantly equal to 0. Blue curve - SH, magenta curve - FIM, green curve - MDR, black curve - IG, grey curve - LRIT, yellow

curve - LR.

                (a) Model 1                                     (b) Model 2                                 (c) Model 3       

                  (d) Model 4                                   (e) Model 5

Figure 8 Power evaluation (definition 3) of the eight methods on 100 replication data sets with parameter setting: θ = 1.4, b = 1, l =

null. Blue curve - SH, magenta curve - FIM, green curve - MDR, black curve - IG, grey curve - LRIT, yellow curve - LR.
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involving only main effects, detected interactions, even

ones involving the main effect SNPs, are necessarily

false positive interactions. Figure 10 shows the power

curves, from which we observe that, except for MDR,

most methods (FIM, BEAM, SH, MECPM, LR) achieve

similar, good power at the beginning, with SH becoming

a bit better as K increases.

We also evaluated whether the methods detect false

positive interactions when there are only main effects.

Here we evaluated the 3 methods that give P-value

(a) Model 1, SNP A                       (b) Model 1, SNP B                      (c) Model 2, SNP A 

(d) Model 2, SNP B                      (e) Model 3, SNP A                   (f) Model 3, SNP B

(g) Model 3, SNP C                      (h) Model 4, SNP A                      (i) Model 4, SNP B 

(j) Model 4, SNP C                      (k) Model 5, SNP A                (l) Model 5, SNP B

(m) Model 5, SNP C                    (n) Model 5, SNP D                 (o) Model 5, SNP E  

Figure 9 The power to detect individual SNPs, for parameter θ = 1.4, b = 1, l = null. Blue curve - SH, magenta curve - FIM, green curve -

MDR, black curve - IG, cyan curve -MECPM, grey curve - LRIT, yellow curve - LR.
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assessments, looking at the number of false positive

interactions detected under the P-value of 0.1 after Bon-

ferroni correction. Table 2 lists the results, from which

we can see that BEAM and SH are quite good at inhibit-

ing false positive interactions caused by marginal effects,

but FIM produces many false positive interactions.

Computational complexity and memory occupancy

Computational complexity for the eight methods was

evaluated for the same platform: OS: Windows, CPU:

3G, RAM: 2G. SH, IG, FIM, LR, LRIT, MECPM and

BEAM do not require much memory, but the exhaustive

search used by MDR requires an impractical amount of

memory for a large number of SNPs. Thus, as noted

earlier, we applied the heuristic search option in the

MDR software, with a 1 hour time limit to avoid mem-

ory overflow. Figure 11(a) shows that, as expected, most

methods’ execution times increase linearly with sample

size. The exception is BEAM execution, which grows

more quickly. Figure 11(b) shows execution times for

different numbers of SNPs. SH obtains the highest effi-

ciency (~ linearly increasing execution time); IG and

BEAM are more time consuming (~ quadratically

increasing); and FIM is most time-consuming (~ cubic

in the number of SNPs). Besides Figure 11(b), we also

list execution time of LR, LRIT and MECPM (at

MECPM’s stopping point): the execution time of LR on

1000-SNP data and 10000-SNP data is 1 second and 10

seconds, respectively; the execution time of LRIT on

1000-SNP data and 10000-SNP data sets is 24 seconds

and 576 seconds, respectively; the execution time for

MECPM on the 1000-SNP data and 10,000 SNP data

was 7033 seconds and 25944 seconds, respectively.

Compared with Figure 11(b), we can see that MECPM’s

computation complexity is, relatively, quite high for

1000 SNPs, but is in fact lower than that of several of

the other methods for 10,000 SNPs.

Discussion
General Summary of the Study and Its Results

We report a comparison of eight representative meth-

ods, multifactor dimensionality reduction (MDR), full

interaction model (FIM), information gain (IG), Bayesian

epistasis association mapping (BEAM), SNP harvester

(SH), maximum entropy conditional probability model-

ing (MECPM), logistic regression with an interaction

term (LRIM), and logistic regression (LR). The first

seven were specifically designed to detect interactions

among SNPs, and the last is a popular main-effect test-

ing method serving as a baseline for performance eva-

luation. The selected methods were compared on a

large number of simulated data sets, each, consistent

with complex disease models, embedded with multiple

sets of interacting SNPs, under different interaction

models. The assessment criteria included several rele-

vant detection power measures, family-wise type I error

rate, and computational complexity. The principal

experimental results are as follows: i) while some SNPs

in interactions with strong effects are successfully

detected, most of the methods miss many interacting

SNPs at an acceptable rate of false positives; in this

study, the best-performing method was MECPM; ii) the

statistical significance assessment criteria, used by some

of these methods to control the type I error rate, are

quite conservative, which further limits their power and

makes it difficult to fairly compare them; iii) the power

varies for different models as a function of penetrance,

minor allele frequency, linkage disequilibrium and mar-

ginal effects; iv) analytical relationships between power

and these factors are derived, which support and help

explain the experimental results; v) for these methods

the magnitude of the main effects plays an important

role in whether an interacting SNP is detected; vi) most

methods can detect some ground-truth SNPs, but fare

modestly at detecting the whole set of interacting SNPs.

Based on the simulation data sets used in this study,

which include multiple interaction models present in each

data set in Step 2, most of the methods miss some

interacting SNPs, leading to only moderate power at low

false positive SNP counts (Figures 4, 5)

Compared to the promising powers achieved for the

simulation studies reported in the methods’ respective

papers, the degraded performance seen in this compara-

tive study for most methods is attributed to the more

difficult yet likely more realistic simulation data that we

Figure 10 Power evaluation of 6 methods (using power

definition 1) on main-effects-only data (step 3). Blue curve - SH,

magenta curve - FIM, green curve - MDR, cyan curve - MECPM,

yellow curve - LR.

Table 2 The average number of false positive

interactions (step 3) for BEAM, SH and FIM under the

significance threshold of 0

number of false positives BEAM SH FIM

2nd order 0 0 2.21

3rd order 0 0 64.19
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used. The methods (excepting LR and MECPM) were

previously reported as powerful on simulation data sets

including only a single, strong ground-truth interaction,

but our study included 5 interactions present in each

data set to simulate multiple genetic causes for complex

diseases. The disease risk is thus effectively divided

among the 5 interaction models, giving each a weaker

(less easily detected) effect.

Main effects play an important role in whether a ground-

truth SNP is detected at low false positive SNP counts

Another notable finding is that the main effects of the

interacting SNPs affect their likelihood of being detected

at low false positive SNP counts by most methods. For

interaction models with very weak marginal effects

(models 1 and 5), all the methods have low power (see

Figure 4(b) and 4(f)). Although some methods (e.g. SH)

emphasize the detection of interactions with weak mar-

ginal effects, their results on these models are very mod-

est. Heuristic search strategies used by the methods

count on at least one SNP in the interaction having a

relatively strong effect; this explains why model 1, with-

out strong main effects, is difficult to detect. Moreover,

the huge search space for 5-way interactions makes it

easy for heuristic search strategies to miss model 5.

For the same interaction model, different levels of power

are achieved by the eight methods

For each interaction model, the power varies across

methods because of the quite different detection princi-

ples applied by the methods. For example, IG and LRIT,

which are based on pairwise SNP statistics, can detect

2-way interaction effects well (see models 2 and 4,

where model 4 can be considered as two overlapped 2-

way interactions), but IG and LRIT gets poorer results

for higher-order models. For the difficult 5-way interac-

tion, only MECPM gave promising results.

Power on the whole ground-truth SNP set - MECPM

performs the best, while MDR performs the worst

From Figure 4(a), MECPM achieves the best perfor-

mance; BEAM, SH, FIM, LR, LRIT and IG have similar

and moderate performance; MDR performs the worst,

among the eight methods we tested. From Figure 6, SH

outperforms BEAM and FIM for weaker effects (i.e., for

discounted penetrance values and MAF). Here we briefly

discuss how these performance differences are a product

of the different methodologies employed.

Power may be degraded by an insufficiently sensitive

ranking criterion, by the heuristic search strategy used,

or by a suboptimal output design of a method. The

high computational complexity of MDR necessitates

using its heuristic search option to keep the running

time/memory usage in a reasonable range. This heuris-

tic search forces a significantly reduced search space,

and hence the performance of MDR is expected to be

degraded.

The ranking criterion of IG detects pure interaction

effects (see equation (4) and the definition of mutual

information). However, what really affects disease risk is

a combination of both pure interaction effects and main

effects. Additionally, IG is only explicitly designed to

detect 2-way interactions, and thus may have difficulty

detecting higher order ones.

Comparatively, MECPM, BEAM, FIM and SH have

less critical limitations, with these mainly in the sensitiv-

ity of their ranking criteria and their use of heuristic

search – e.g., the difficulty for heuristic search to pick

up interactions with weak marginal effects and high-

order interactions due to the large search space
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                                (a)                                                               (b) 

Figure 11 Execution time (sec) of 4 methods for: (a) number of SNPs = 1,000; (b) number of subjects = 2,000. Due to limited space in

(b), we list hereby the execution time of the methods on 2000-subject 10,000-SNP data: SH - 962 seconds, IG - 18291 seconds, BEAM - 36423

seconds, FIM - 91251 seconds.
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(Consider a contingency table with 35 = 243 cells for a

5-way interaction.).

The performance of the methods is sensitive to changes

in penetrance value, MAF, and LD

From Figure 6, the seven methods all have clearly

decreased power when we reduce penetrance values and

the MAF, or replace ground-truth SNPs by surrogates

in LD with them. Among the methods, SH is the most

robust while IG is the most sensitive to these factors.

Besides our empirical results, a theoretical analysis of

how power changes with penetrance or MAF is given in

the Additional file 1. The analytical results, which are

consistent with (and thus support and explain) our

experimental results are as follows: 1) increasing the

penetrance of an interaction model results in both a

stronger (more easily detected) joint interaction effect

and in stronger marginal effects of the participating

SNPs; 2) increasing the frequency of a disease-related

genotype results in a stronger joint effect, under certain

conditions; 3) the impact of genotype frequency on

main effects is more complicated – when the marginal

frequency, a, of a disease-related genotype is small, the

strengths of the marginal effects increase when a

increases, and when a is large, the strengths of the mar-

ginal effects decrease as a increases.

Most methods can partially but not exactly detect the

interactions

The results for power definition 2 (see Figure 7) are

quite different from those for power definition 1 (see

Figure 4), indicating that most methods detect the inter-

acting ground truth SNPs as singlets or subsets of the

ground truth interactions. There are multiple reasons

for this, in some cases method-specific. For example,

the large degrees of freedom of FIM render a high false

positive rate, making ground-truth interactions easily

buried amongst many false positives; due to the use of

heuristic search strategies, the methods may not even

evaluate the ground-truth interactions as candidates;

also, for some methods, e.g. FIM, successful detection of

an interaction relies on first detecting main effects for

(at least some) SNPs involved in the interaction, thus

this type of heuristic search strategy will miss ground-

truth interactions that possess only weak main effects;

moreover, SH excludes SNPs with strong main effects

from higher-order search, so SH in particular will miss

interactions that possess strong main effects (see Figure

7(b)).

The P-value assessments of BEAM, SH and FIM are

variable across method and all are overly conservative

From the subsection “Power for a fixed significance

threshold“ and results given in the Additional file 1, we

observe that for the same significance threshold, BEAM,

SH and FIM have quite different power and false posi-

tive SNP counts. Also, in the subsection “Accuracy of P-

value assessment in step 1“, we showed that their P-

value assessments are conservative for 2nd and 3rd

order interactions. From further experiments, we con-

clude that this phenomenon originates from three fac-

tors: the heuristic search strategies, dependencies

between SNP combinations, and the summary statistics

used by the methods.

For BEAM, SH, and FIM, the heuristic search strate-

gies evaluate fewer SNP combination candidates than

the number actually penalized in the Bonferroni correc-

tion. Moreover, SH and BEAM exclude SNPs with

strong marginal effects from high-order interactions,

which further decreases the number of searched SNP

combinations. So the Bonferroni-corrected P-value is

smaller than it should be. Also, some SNP combinations

have dependencies with others, either because they

share a common SNP subset and/or because SNPs in

different subsets are in LD. Such dependencies make the

Bonferroni correction inherently conservative.

Besides heuristic search and dependencies, the conser-

vativeness also derives from the summary statistics

themselves. The authors of BEAM evaluated the B sta-

tistic’s conservativeness with exhaustive search. In the

Additional file 1, we likewise evaluate conservativeness

of the c2 statistics applied by SH and FIM. We consid-

ered the case where there is neither multiple testing nor

heuristic search. The c2 statistics turn out to be conser-

vative, becoming more so as the significance threshold

is decreased (see Tables 1, 2 in the Additional file 1).

Theoretically, such conservativeness may come from the

discreteness of the SNP data. Since the c2 statistics in

SH and FIM are calculated from the discrete-valued

SNP data, the c2 statistics are also discrete. At the tail

part of the c2 distribution, two consecutive discrete c2

values may correspond to very different significance

levels. For example, let the P-values of consecutive c2

values be p1, p2 (p1 >>p2); when the significance thresh-

old is p0 and p1 >p0 >p2, the type I error rate actually

corresponds to p2, which is much less than p0, making

the results quite conservative.

Limitations of the Current Study and Future Work

There are a number of possible extensions of this simu-

lation study that we intend to consider in our future

work. First, our current simulation software only han-

dles categorical traits and categorical (ternary-valued,

SNP) covariates. Environmental covariates and admix-

ture-adjusting variables could be either quantitative or

ordinal-valued. Likewise, traits (phenotype) could be

quantitative or ordinal. There are natural ways of

extending our current simulation approach to allow for
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these more general covariate and trait types, which we

will consider in future work. Second, we have not inves-

tigated missing SNP-values and their effect on detection

power. Third, while we have chosen five plausible pene-

trance function models, another possibility would be to

use “data-driven” penetrance functions, i.e. penetrance

functions estimated based on real GWAS data sets with

known ground-truth and known (i.e., previously

detected) interactions.

Conclusions
The methods explored in this study are useful tools in

the exploration of potential interacting loci. Each of the

methods studied here has its strengths and weaknesses.

Our comparative examination of these methods suggests

that continued research into methods that test for inter-

acting loci is necessary to expand the tools available to

researchers and to achieve improved power for detecting

complex interactions, along with accurate assessment of

statistical significance.

Methods
Methods Tested in the Comparison Study

The eight [32-35,39-41] methods originate from differ-

ent underlying techniques and principles, and thus can

be categorized in different ways, as shown in Table 3.

FIM, BEAM, SH, LRIT, and LR asymptotically approxi-

mate the null distribution to assess statistical signifi-

cance; MECPM models SNP interactions under a

maximum-entropy principle, and uses the Bayesian

information criterion (BIC) as the model selection strat-

egy; MDR and IG only provide a ranking of candidate

interactions. These methods employ three main search

strategies: exhaustive search (IG, LRIT and LR), stochas-

tic search (BEAM and MDR), and deterministic heuris-

tic search (SH, FIM and MECPM). Each method uses a

different detection principle: SH applies c2 or B statistics

[32,39]; BEAM uses Bayesian inference or B statistics;

FIM, LRIT and LR are based on the logistic regression

model; IG ranks SNPs by mutual information; MDR

selects SNPs via prediction error; MECPM uses BIC to

rank interactions and to assess statistical significance.

A brief summary of these eight methods follows.

(1) Multifactor dimensionality reduction (MDR) [33]

For a set of SNPs, MDR labels a genotype as “high-risk”

if the ratio between the number of cases and the num-

ber of controls exceeds some threshold (e.g., 1.0). A bin-

ary variable is thus formed, pooling high-risk genotypes

into one group and low-risk ones into another. If the

subject has a high-risk genotype it is predicted as a case;

otherwise as a control. The prediction error of each

model is estimated by 10-fold cross validation and

serves as the measure of association between the set of

SNPs and the disease.

(2) Full Interaction Model (FIM) [41]

In FIM, 3d-1 binary variables xj, j = 1,2,..., 3d-1 are intro-

duced for a subset of d SNPs and a logistic regression

model with 3d parameters is estimated from the data. xj
(i) corresponds to the jth genotype combination (or

interaction term) of the SNP subset on the ith subject.

xj(i) = 1 if the jth genotype combination is present for

the ith subject, and 0 otherwise. For the row vector

x(i) = [x1(i), x2(i), ..., x3d−1(i)] , let π(x(i)) be the disease

risk. The logistic regression is parameterized as

log

(

π(x(i))

1 − π(x(i))

)

= β0 + βx(i)T (3)

where β0, β =
[

β1, ..., β3d−1

]

are estimated via maxi-

mum likelihood estimation. A likelihood-ratio test is

applied to calculate the significance of this SNP subset

via an asymptotic c2 distribution.

(3) Information Gain (IG) [34]

Let C denote the disease status random variable. The

information gain of {A, B} is defined as

IG(A, B, C) = I(A; B|C) − I(A; B) (4)

where the mutual information I(A;B) is a non-negative

measure of the reduction in uncertainty about the value

Table 3 Properties of methods tested in this paper

Name Detection Principle Heuristic search Asymptotic null distribution Free-accessible software

MDR Prediction accuracy Stochastic No http://www.multifactordimensionalityreduction.org/

FIM Logistic regression Deterministic Yes N/A

IG Mutual Info. N/A No N/A

BEAM Bayesian model Stochastic Yes http://www.fas.harvard.edu/~junliu/BEAM/

MECPM BIC Deterministic No http://www.cbil.ece.vt.edu/software/MECPM.zip

SH c
2or B statistic Deterministic Yes http://bioinformatics.ust.hk/SNPHarvester.html

LRIT Logistic regression N/A Yes N/A

LR Logistic regression N/A Yes N/A

For the methods without free-accessible software by the authors, we provide our self-written software, as well as C++ code, at http://code.google.com/p/

simulation-tool-bmc-ms9169818735220977/downloads/list
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of (SNP locus) random variable A, given knowledge of

random variable B [61] Equivalently, it is a measure of

the statistical dependence between A and B. The condi-

tional mutual information I(A;B |C) likewise gives a

measure of the statistical dependence between A and B

given that the phenotype random variable, C, is known.

The magnitude of IG thus indicates the increased statis-

tical dependence between A and B given knowledge of

C, i.e. the strength of an interaction between loci A and

B.

(4) Bayesian Epistasis Association Mapping (BEAM) [32]

Suppose N samples (Nd cases and Nu controls) are gen-

otyped at L SNPs. BEAM partitions the L SNPs into 3

groups: markers with no association with disease, mar-

kers with only main effects, and markers with interac-

tion effects. Let the genotypes on cases be D = (d1,...,dL)

with dj =
[

dj1, ..., djNd

]

representing genotype vector of

the jth SNP at all the cases. According to the above-

mentioned partitioning, D can be divided into three sub-

sets, D0, D1, and D2, where D0 is the subset consisting of

SNPs (SNP genotype vectors) with no association, D1 is

the subset consisting of SNPs with only main effects,

and D2 is the subset consisting of SNPs with interaction

effects. Likewise, let the genotypes on controls be U =

(u1,...,uL) with uj =
(

uj1, ..., ujNu

)

representing genotypes

of the jth SNP at the controls. Let I = [I1,I2,..., IL] be the

membership of SNPs within each group, e.g. Ij = 0

means that the jth SNP has a main effect, Ij = 1 means

that the jth SNP has only main effects, Ij = 2 means that

the jth SNP has interaction effects. Let P() be the prob-

ability symbol. Following some assumptions [32], the

posterior distribution of I given D and U is inferred by:

P(I|D, U)

∝ P(D1|I) · P(D2|I) · P(D0, U|I) · P(I).
(5)

Based on equation (5), BEAM draws I using the

Metropolis-Hastings algorithm. The output is the pos-

terior probability of main-effect markers and interac-

tions associated with the disease. A “B“ statistic is also

applied to measure statistical significance of SNPs and

interactions.

(5) SNP Harvester (SH) [39]

This method aims to detect interactions with weak mar-

ginal effects. It includes the following steps:

5a. Remove SNPs with significant main effects;

5b. For a fixed M, run the “PathSeeker” heuristic

search to identify M-way SNP interactions. First, ran-

domly select M SNPs to form a M-way set A = {x1,

x2,..., xM}. Second, swap one of the remaining SNPs with

each member of A, to see whether a statistical score s

(A) (e.g. c2statistic, B statistic) increases. Then iteratively

repeat this second step until convergence; record s(A) if

statistically significant. Then go back to the first step,

with the optimal A removed as a candidate for the next

run.

5c. Use L2-norm penalized logistic regression [37] as a

post processing step to further select interactions from

those identified in 5b.

Although SH removes SNPs with strong main effects,

for purpose of fair comparison, we still give it credit for

identifying these main-effect SNPs in calculating its

power.

(6) Maximum entropy conditional probability modeling

(MECPM) [40]

MECPM builds the phenotype posterior under a maxi-

mum entropy principle, encodes constraints into the

model that correspond 1-to-1 to interactions, flexibly

allows dominant or recessive coding for each locus in a

candidate interaction, searches interactions via a greedy

interaction growing search strategy that evaluates candi-

dates up to fifth order, and uses the Bayesian informa-

tion criterion (BIC) as the model selection strategy.

(7) Logistic regression (LR) [35]

LR is a generalized linear model used for binomial

regression. Let x(i) correspond to the genotype of a SNP

for the ith subject. x(i) = 0 denotes homozygous major

alleles; x(i) = 1 denotes heterozygous genotypes; and x(i)

= 2 denotes homozygous minor alleles. Let π (x(i)) be

the disease risk. The logistic regression is parameterized

as:

log

(

π(x(i))

1 − π(x(i))

)

= β0 + β1x(i) (6)

, where b0 and b1 are the regression coefficients,

learned via maximum likelihood. By a likelihood ratio

test, logistic regression evaluates statistical significance

for each SNP.

(8) Logistic regression with interaction term (LRIT) [35]

LRIT aims at detecting interaction effects based on the

logistic regression model. Let xm(i) and xn(i) correspond

to genotypes of the mth SNP and nth SNPs for the ith

subject, respectively. xm(i) = 0 or xn(i) = 0 denotes

homozygous major alleles; xm(i) = 1 or xn(i) = 1 denotes

heterozygous genotypes; and xm(i) = 2 or xn(i) = 2

denotes homozygous minor alleles. Let π (xm(i), xn(i)) be

the disease risk. The logistic regression is parameterized

as:

log

(

π(xm(i), xn(i))

1 − π(xm(i), xn(i))

)

= β0 + β1xm(i) + β2xn(i) + β3xm(i) · xn(i) (7)

, where b0, b1, b2, b3 are the regression coefficients,

learned via maximum likelihood. By a likelihood ratio

test, logistic regression evaluates the statistical signifi-

cance for this pair of SNPs (the statistical significance
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reflects the joint effects of the two individual terms and

the multiplicative term).

Additional material

Additional file 1: Supplementary information: comparative analysis

of methods for detecting interactive SNPs. This supplementary

information consists of 6 sections: S1. Section S1 presents our theoretical

analysis of the relationship between association strength, joint effect,

main effect, penetrance function, and MAF. This section also provides

some theoretical explanations about our experimental results. S2. Section

S2 presents comprehensive power evaluation results of the methods for

different interaction models and parameter settings, related to power

definition 1. The reproducibility of the methods is also shown by the

standard deviation of power. As an extension of the main text, we also

summarize our findings and analytical explanations for these results. S3.

Section S3 provides ROC curves of the methods based on the whole

ground-truth SNP set. These ROC curves illustrate the sensitivity and

specificity for the methods. The reproducibility of the methods is also

shown by the standard deviation of sensitivity. S4. Section S4 describes

in detail how the effect size (odds ratio) is calculated for each interaction

model. S5. Section S5 analyzes the conservativeness of c2 statistics

applied by SH and FIM. This analysis partly explains why SH and FIM are

conservative. S6. Section S6 gives the empirical relationship between

power and the false positive SNP count under a given significance

threshold.
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