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Abstract This paper develops a study on different modern

optimization techniques to solve the p-median problem. We

analyze the behavior of a class of evolutionary algorithm

(EA) known as cellular EA (cEA), and compare it against

a tailored neural network model and against a canonical ge-

netic algorithm for optimization of the p-median problem.

We also compare against existing approaches including vari-

able neighborhood search and parallel scatter search, and

show their relative performances on a large set of problem

instances. Our conclusions state the advantages of using a

cEA: wide applicability, low implementation effort and high

accuracy. In addition, the neural network model shows up as

being the more accurate tool at the price of a narrow appli-

cability and larger customization effort.

Keywords Evolutionary algorithms . Cellular genetic

algorithms . Neural networks . Optimization tools .

p-median

1. Introduction

Solving NP-hard optimization problems is a core research

area for many communities in engineering, operations re-

search and computer science. The interdisciplinary features

of most NP-hard problems have caused a large amount of

contributions in the past. Researchers have proposed general

tailored algorithms to overcome the many difficulties of

medium and large sized instances of such problems. In this
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work, we have selected the p-median problem as our case of

study.

The p-median problem is a discrete location-allocation

problem belonging to a larger class of problems known as

p-selection problems, where the solutions are generated by

selecting p items from a finite universe. In the p-median case,

the objective is to select, from a candidate set of facility

points, p locations for such facilities in a way that the sum

of some distance criterion from the set of users to the chosen

facility points is minimised.

In this problem, most services are provided by desirable

or non-obnoxious facilities, such as warehouse, shops, su-

permarkets, banks, or garages, where it is beneficial for the

facilities to be located close to the customers they will be

serving. Transportation costs and environmental impact (con-

sidered also as a cost) are assumed to be linear functions of

the distance between the facility and the population centers

or customers.

Kariv and Hakimi (1979) showed that the p-median prob-

lem on a general network is NP-hard. A number of solu-

tion procedures have been developed for general networks.

Numerous techniques are based on mathematical program-

ming relaxation and branch-and-bound algorithms. Also,

many heuristics exist for this problem, such as tabu search

(Rolland et al., 1996), genetic algorithms (Nogueira and Fur-

tado, 2001), neural networks (Domı́nguez and Muñoz, 2002)

or scatter search (Garcı́a-López et al., 2003).

Complex problem solving usually means dealing with

computationally hard tractable solutions (Garey and John-

son, 1979). In the past few years, several researchers used

algorithms based on a model of organic evolution as an

attempt to solve hard optimization and adaptation problems

(Holland, 1975). Due to their representation scheme for

search points, genetic algorithms (GA) (Goldberg, 1989)

are one of the most promising and easily applicable
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representatives of evolutionary algorithms (EA) for the

problem discussed in this paper. It has also been traditional

to use neural networks (NN) to solve optimisation problems.

This work addresses both EAs and NNs as competing

paradigms for the analysis.

This work makes several contributions. First, a perfor-

mance comparison between several evolutionary algorithms

is made for solving the p-median problem. The considered

algorithms are: a generational genetic algorithm (genGA)

(Syswerda, 1991), a cellular genetic algorithm (cGA)

(Manderick and Spiessens, 1989), and other evolutionary al-

gorithms of reported efficiency and accuracy drawn from lit-

erature (i.e., problem dependent). Second, we can report that

a single and simple cellular GA has the same or better accu-

racy than several state-of-the-art algorithms for large prob-

lem instances. The same algorithm (cellular) will be shown

to outperform in either efficiency or accuracy, other sophisti-

cated techniques including parallelism and local search. Last,

but not least, we include a customized neural model that has

still higher accuracy.

The outline of the paper is as follows. Section 2 presents

the p-median problem. Section 3 presents an overview of the

working principles of genetic algorithms. The encoding, the

fitness function, and other specific problem-solving informa-

tion are explained in this section. The experimental results

for each problem instance are discussed in Section 4. We

summarise our findings in Section 5.

2. Problem formulation

The well known p-median selection problem has been stud-

ied for many years. A generic selection problem consists of

choosing the set of items that minimises a cost function sub-

ject to some constraints. In a p-selection problem, all the

feasible solutions have size p. Several of the most relevant

combinatorial optimization problems can be formulated as

p-selection problems for an appropriate p, such as the travel-

ling salesman problem (TSP), the Knapsack problem, finding

the minimal Spanning Tree, the Steiner problem, and the p-

median problem.

We focus on the p-median problem, which is concerned

with the location of p facilities (medians) to minimise the to-

tal weighted distance between the facilities and the demand

points. ReVelle and Swain (1970) provided an integer pro-

gramming formulation for the discrete p-median problem,

which is given below:

Minimise
n∑

i=1

n∑
j=1

di j xi j (1)

Subject to :
n∑

j=1

xi j = 1 i = 1, . . . n (2)

n∑
j=1

x j j = p (3)

xi j ≤ x j j i = 1, ..n; j = 1, . . . n (4)

where

n is the considered number of demand points

p is the number of facilities or medians

di j is the distance (cost) between the point i and the

facility j

xi j =
{

1 if the point i is assigned to the facility j

0 otherwise

x j j =
{

1 if the point j is a facility

0 otherwise.

Restriction (2) prevents a point i from being free, i.e. en-

sures an associated facility. Restriction (3) establishes the

number of facilities (medians). The last condition (4) assures

the coherence of the solutions: a demand point i cannot be as-

signed to a point j(xi j = 1) that is not established as median

(x j j = 0).

Besides exact algorithms, several heuristics based on

tree search, tabu search and neural networks exist. Some

popular ones include tree search (Christofides and Beasley

1982; Bartezzaghi and Colorni 1981), Lagrangian relax-

ation with branch and bound (Narula, Ogbu and Samuelsson,

1977; Khumawala, 1972; Galvao, 1980; Erlenkotter, 1978;

ReVelle and Swain, 1970), tabu search (Ohlemüller, 1997;

Rolland et al., 1996), and other heuristic and decision tech-

niques (Hribara and Daskin, 1997; Hansen, Mladenovic

and Taillard, 1998; Drezner and Guyse, 1999), as well as

Kohonen maps (Lozano, Guerrero, Onieva and Larrañeta,

1998). A summary of past results is given in Table 1.

Table 1 Traditional techniques for the p-median problem

Technique References

Tree Search Christofides and Beasley (1982)

Bartezzaghi and Colorni (1981)

Narula et al. (1977)

Khumawala (1972)

Branch and Bound Galvao (1980)

Erlenkotter (1978)

ReVelle and Swain (1970)

Tabu Search Rolland et al. (1996)

Kohonen maps Lozano et al. (1998)

Hribara and Daskin (1997)

Other heuristics Hansen et al. (1998)

Drezner and Guyse (1999)
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3. Modern tools for optimization

This section presents the optimization tools analysed here.

We present an initial subsection on EAs, a second one on

ANN and a final one with some existing techniques used in

the literature for the p-median problem.

3.1. Evolutionary algorithms. centralised and

decentralised models

Genetic algorithms (GAs) were initially developed by Hol-

land in the sixties. They are guided random search algo-

rithms inspired by biological evolution (see e.g., Goldberg,

1989; Holland, 1975). Consequently, the field of evolution-
ary computation (EC), of which genetic algorithms are part,

has borrowed much of its terminology from biology. These

algorithms rely on the collective learning process within a

population of individuals, each of which represents a search

point in the space of potential solutions for a given optimiza-

tion problem (objective function). The population evolves

towards increasingly better regions of the search space via

probabilistic processes of selection, mutation, and recombi-

nation. The selection mechanism has individuals with better

objective function value reproduce more often when a new

population is formed. Recombination allows for the mixing

of parental information that is passed to descendants, and

mutation introduces innovation into the population. Usually,

the initial population is randomly initialised and the evolution

process is stopped after a predefined number of iterations.

Here is an outline of a genetic algorithm from (Khuri and

Heitkötter, 1994):

Algorithm GA is

t := 0;

initialize P(t);
evaluate P(t);
while not terminate P(t) do

t := t + 1;

P(t) := select P(t − 1);

recombine P(t);
mutate P(t);
evaluate P(t);

end while
end GA.

In GAs, individuals are generally represented by binary

strings that encode the parameters of the problem (genotype).

A population is a set of binary vectors, each one being a ten-

tative solution to the problem. Each individual has an associ-

ated fitness value computed by the objective function indicat-

ing its appropriateness as a problem solution with respect to

the rest of the individuals in the population. The genetic oper-

ations have a non-deterministic behavior. Recombination is

usually performed frequently (high probability) by selecting

two individuals, defining one or more random points, and ex-

changing their contents to create one or two new individuals.

Mutation randomly changes the value of one of the positions

of an individual and is performed with a small probability.

Elitist algorithms in which the current best solution is copied

from one generation to the next are very common.

For this paper, we developed and implemented two genetic

algorithms: a generational and a cellular genetic algorithm.

They were selected as representative of two important sub-

classes of population-based heuristics: panmictic and struc-
tured algorithms, respectively. In our case, panmictic algo-

rithms consider the entire population as a mating pool for

selecting individuals for reproduction, while structured EAs

define some kind of neighborhood for each individual, and

restrict reproduction to mates selected from it. The reader

is referred to (Alba and Tomassini, 2002; Alba and Troya,

1999) for more details on panmictic and structured genetic

algorithms.

We now briefly describe our two basic GAs. The genGA,

like most GAs described in the literature, is generational,

i.e., at each generation, the new population consists entirely

of offspring formed by parents in the previous generation

(although some of these offspring may be identical to their

parents). The pseudocode of a generational GA is as follows:

Generational Genetic Algorithm (genGA)
proc Reproductive Cycle (ga):

for s = 1 to MAX STEPS do
p list = Select(ga.pop);

for i = 1 to POB SIZE/2 do
Crossover(ga.Pc, p list[i], p list[i + POB SIZE/2],

ind aux.chrom);
Mutate(ga.Pm, ind aux.chrom);
ind aux.fitness = ga.Evaluate(Decode(ind aux.

chrom));
Insert New Ind(pop aux, ind aux);

end for
ga.pop = pop aux; [elitist}nonelitist]
Collect Statistics(ga);

end for
end proc Reproductive Cycle;

In each step of this genGA the selection operator gets a

set of copies of the best individuals of the population attend-

ing to their relative fitness values (i.e., fittest individuals are

selected more frequently). From this list, the crossover oper-

ator creates new individuals one by one (its last parameter in

the pseudocode) by using a given probability of application

(first parameter, i.e. crossover is not always applied) to de-

cide whether or not two of the selected parents (second and

third arguments) are merged or left unchanged. This merging

consists of exchanging the two parts of each parent defined

by a randomly selected point of the string encoded in each
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solution (using the largest proportion of the best parent).

Then, mutation is applied to flip the bit values in the string

(not deterministically, but again governed by a low proba-

bility of application) to introduce novel information into the

population, in order to be able of escaping from local op-

tima. The individual is then evaluated and inserted into a

temporary population which is filled by this manner with

new individuals to yield the new generation, usually keeping

the best individual from the previous generation (elitism) to

avoid degradation of the search as it progresses. Finally, the

new population replaces the old one (generation).

On the other hand, the population of a cGA is struc-

tured in a toroidal 2D grid, and a neighborhood is defined

on it to always contain 5 strings (in our case study): the

one under consideration plus its north, east, west, and south

neighboring strings. The grid used in our tests is a 16 × 16

square.

The cGA algorithm is as follows (details are discussed in

Alba and Troya (2000)):

Cellular Genetic Algorithm (cGA)
proc Reproductive Cycle (ga):

for s = 1 to MAX STEPS do
for x = 1 to WIDTH do

for y = 1 to HEIGHT do
n list = Calculate neigbors(ga, position(x, y));

parent1 = Select(n list);
parent2 = Select(n list);
Crossover (ga.Pc, n list[parent1], n list[parent2],

ind aux.chrom);

Mutate(ga.Pm, ind aux.chrom);

ind aux.fitness = ga.Evaluate(Decode(ind aux.
chrom));

Insert New Ind(position(x, y), ind aux,

[if better}always], ga, pop aux);

end for
end for
ga.pop = pop aux;

Collect Statistics(ga);

end for
end proc Reproductive Cycle;

The operations are mainly the same as those used in

the previous genGA, but applied on overlapping subsets of

five individuals. Fitness proportional selection is used in the

neighborhood along with the mentioned one-point crossover

operator. Since a string belongs to several neighborhoods,

any change in its contents affects its neighbors in a smooth

manner, representing an appropriate tradeoff between a fast

convergence and a wide exploration of the search space.

Therefore, the cGA also proceeds in generations, and the

present population grid is used to create a temporary new

grid by repeatedly applying local selection, crossover, and

mutation. This temporary grid will later replace the old one

in an individual-to-individual manner, affecting only to the

locations where the new individuals are better than the exist-

ing ones (from a fitness point of view).

Solving the p-median problem with a GA

This section begins by discussing the encoding used for repre-

senting the problem variables as an integer vector amenable

for genetic manipulation. We then will discuss the fitness

function used in accordance with the genotype space. In the

algorithm, we use bit-flip mutation plus a uniform recombi-

nation in which each value from the offspring vector comes

from the best of the two parents with a given probability (0.6).

Further comments on the operators are given at the beginning

of the forthcoming experimental section.

Let us begin with the genotype representation. A very sim-

ple mapping is adopted for the p-median problem using an

integer alphabet. Each individual has exactly p genes, where

p is the number of medians, and the allele of each gene repre-

sents the index of a facility (median). For instance, consider a

3-median problem with 10 points (potential medians). In our

GA, the individual 〈3, 5, 8〉 represents a candidate solution

(showed in Figure 1) for the problem where points 3, 5 and

8 are selected as medians.

The fitness of an individual is directly related to the pre-

viously discussed objective function (1). More specifically,

the fitness of an individual (c) is given by

f (c) =
n∑

i=1

(
min

1≤ j≤p
{d(i, c j )}

)
. (5)

In this simple way we match two requirements for the

application of metaheuristics: defining the representation of

a solution and computing a comparative measure of distance

to the solution (i.e., the fitness in our case).

3.2. Neural Networks

The field of neural networks (NNs) is an often overlooked

source for solutions of the p-median problem. One of the

most recent and efficient neural models for the p-median

problem can be found in Domı́nguez and Muñoz (2002). The

proposed NN consists of two layers (allocation layer and lo-

cation layer) of binary interconnected neurons or processing

elements. The authors propose a neural network architecture

for the p-median problem where two basic approaches are

merged.

The first approach formulates a combinatorial optimiza-

tion problem in terms of minimizing a cost (energy) function

for which the global minimum is simultaneously an optimal

solution of the p-median problem. The simplest approach to
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Fig. 1 Candidate solution for
3-median problem with 10
facilities

construct the energy function (E) is to transform the penalty

function method. The basic idea in this approach is to trans-

form the constrained problem into an unconstrained one by

adding a penalty function terms to the objective function (1).

These terms cause a high cost if any constraint is violated, i.e.

increasing the objective function by a quantity that depends

on the amount by which the constraints are violated.

The second included approach is to design competition-

based neural networks where neurons are allowed to compete

to become active under certain conditions.

The proposed energy function of the neural network, for

which the global minimum is simultaneously the optimum

solution of the p-median problem, is defined as follows:

E =
n∑

i=1

n∑
j=1

p∑
q=1

di j xiq y jq (6)

where

xiq =
{

1 if the point i is assigned to the cluster q

0 otherwise

y jq =
{

1 if j is a facility in the cluster q

0 otherwise.

To guarantee a valid solution, the neural network is or-

ganised in disjoint groups as shown in Figure 2. Exactly one

neuron per group is activated. That is, the proposed neural

network finds solutions to the p-median problem minimising

the energy function (6) subject to:

p∑
q=1

xiq = 1 i = 1, . . n (7)

n∑
j=1

y jq = 1 q = 1, . . p (8)

The neural network model based on this formulation guar-

antees that every stable state of the NN is equivalent to

a feasible solution, with the added advantage of removing

the tuning phase. This NN implements a gradient descent or

hill-climbing search method that only accepts moves (state

changes) that improve solution quality, i.e., that decrease the

energy. However, this NN should not be viewed as a naive

gradient descent technique, but as an ensemble of intercon-

nected processing units with simple computational require-

ments that can implement complex computation.

The neurons in the same group compete to become active

and are updated in parallel. The state of a neuron depends

on its activation potential, which is given by the following

expressions:

hxiq = −
n∑

j=1

di j y jq hy jq = −
n∑

i=1

di j xiq (9)

where hxiq is the activation potential of allocation neuron xiq ,

that is, the negative distance between the demand point i and

the median of cluster q. In addition, hy jq is the activation

potential of the location neuron y jq , that is, the total nega-

tive distances between the median j and all demand points

assigned to cluster q.

In each group, the neuron with the maximum activation

potential (winner neuron) becomes active. Thus, the compu-

tational dynamics is defined as follows:

xiq (k + 1) =
{

1 if hxiq (k) = max
1≤ j≤n

{hx jq (k)}
0 otherwise

(10)

y jq (k + 1) =
{

1 if hy jq (k) = max
1≤i≤n

{hyiq
(k)}

0 otherwise
(11)

The central property of the proposed network is that

the computational energy function (6) always decreases (or
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Fig. 2 Example of a neural
arquitecture for the 3-median
problem with 5 demand points

remains constant) as the system evolves according to its dy-

namical rule. Note that the neuron xiq will be activated when

the nearest point to the median of group q is i, and the neuron

y jq will be activated when the point j is the median point of

cluster q.

To summarise and finalise this section it follows an out-

line of the proposed neural algorithm (NA) taken from

(Domı́nguez and Muñoz, 2002) to give readers an abstract

idea of the internal workings of this technique.

Algorithm NA is
k := 0;

initialize neurons;

evaluate energy E(k);

repeat
k := k + 1;

select a neuron group g ∈ {1, 2, . . . , n + p}
update neurons of the selected group (eqs. 10 or 11);
evaluate energy E(k) (using eq. 6);

until (E(k) == E(k − 1));

end NA.

3.3. Existing techniques for the p-median problem

As pointed out in the introduction, numerous techniques have

been proposed for the p-median problem. This section briefly

summarizes some of the most efficient techniques for the p-

median problem found in the literature. We just discuss their

basic search engine, and let the reader consult the references

to learn more of them.

3.3.1. Constructive genetic algorithm

In the field of evolutionary computation, one of the most re-

cent contributions to solve the p-median problem is the con-
structive genetic algorithm (consGA) proposed by Nogueira

and Furtado (2001). This is an alternative to the traditional

GA approach, particularly in that consGA directly evaluates

schemata. Schemata are the underlying theoretical hyper-

planes being manipulated by a GA according to the well

known schema theorem (see e.g., Goldberg, 1989). The pop-

ulation, initially formed only by schemata, is built by directly

searching for a population of not only well adapted structures,

but also for good schemata.

The consGA works with a dynamic population size that

is enlarged after the use of recombination operators, or made

smaller as evolution proceeds, guided by an evolution pa-

rameter. Tasks to be solved with a consGA are formulated as

bi-objective optimization problems. Two fitness functions are

defined, one on the space of all possible schemata and a sec-

ond on actual structures (individuals) that can be obtained

using a specific representation (see Nogueira and Furtado,

2001, for details and results).

3.3.2. Scatter search

An additional metaheuristic recently proposed for the p-

median problem is the replicated parallel scatter search

(RPSS) proposed by Garcı́a-López et al. (2003). Scatter

Search (SS) is a population-based metaheuristic that con-

structs solutions by combining others from a set of solutions,

named the reference set. The method generates a reference

set from a population of solutions. Then a subset is selected

from this reference set. The selected solutions are combined

to get starting solutions to run a local search procedure. The

resulting improvement can motivate the updating of the refer-

ence set and even the updating of the population of solutions.

In the cited paper, the authors analyse three different paral-

lelization strategies for the SS algorithm. The first two strate-

gies run the same algorithm by following two different par-

allel strategies only aimed at reducing the running time of
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the search of the optimum. The first strategy runs in parallel

every local search step, while the second one performs the

reference set operations and improvement in parallel. The last

strategy increases the exploration capabilities of SS (i.e., it is

a new algorithm) by running the SS in parallel on separated

populations (RPSS). Authors test these three algorithms with

the FL1400 instance of the p-median problem obtained from

the TSPLIB (Reinelt, 1991). The most accurate results are

found with the last parallelization scheme: the replicated par-

allel scatter search (RPSS), which resembles the well known

multipopulation island models in other EAs.

4. Computational results

We now perform a computational analysis to evaluate the

performance of the two proposed GAs (generational genGA,

and cellular cGA), the neural model (NA), the constructive

genetic algorithm (consGA), and the parallel scatter search

algorithm (RPSS). We are interested in comparing the final

accuracy of the provided solutions of our methods, as well as

in comparing the effort needed to locate such solutions. Such

an efficiency measure is attained by computing the number

of visited points, as an indicator of the effort needed.

Initially, it is common sense to expect customized solvers

to have some advantage, and in this case we are inter-

ested in quantifying that advantage, especially in relation to

the effort of algorithm construction, knowledge re-use, and

efficiency.

We performed 50 independent runs of each algorithm to

provide meaningful average values in the tables. We explic-

itly show the error of the best solution as a percentage of its

distance to the known optimum value for each instance. The

parameters used in the generational/cellular GAs are shown

in Table 2.

We have organised the results in two subsections. First,

we address medium size instances of up to 400 points and

133 medians. We also consider a real world problem based

on the Australian postal network. This problem also fits into

the medium-size category, since it consists of 200 points and

up to 100 medians. The next subsection encompasses a set

of experiments on large problem instances, dealing with a

number of points between 500 and 900, plus a still larger

Table 2 GA parameters

Operator Probability

Bit-Flip mutation 0.2

Uniform crossover 1.0 (60% best parent)

Roulette wheel selection

16 × 16 = 256 individuals

problem of 1400 points. Still larger values are deferred for

detailed study in an ongoing project.

4.1. Medium size and real-world instances

We first analyse the results of the constructive GA, the neural

algorithm and the generational GA. In Table 3 we can see that

the consGA is quite accurate, and that our genGA is similarly

accurate for some of the data sets. The exception is for the

largest values of medians, for which consGA is more efficient

than genGA. However, the original work did not provide the

performance of such algorithm for more than 300 points and

more than 10 medians, while our genGA showed results in

this case and even for larger instances. The NA error is in the

range of genGA in most cases, although in the presence of a

large number of medians its accuracy clearly improves over

the genGA (as also occurs in the cGA). In most cases, the

cGA provides a smaller error than the genGA. It is difficult

to predict what would have occurred with consGA for more

than 300 points, but it seems to be good at managing a large

number of medians with respect to our GAs.

Since we want to evaluate our two most recent solvers (the

cGA and the NA) on a real world problem for future com-

parisons, we now present the distance of the worked solution

Table 3 Percentage error comparison

Problems Percentage Errors (%)

Name Size (n,p) consGA NA genGA cGA

pmedl (100, 5) 0.00 0.28 0.00 0.00

pmed2 (100,10) 0.00 1.73 0.00 0.29

pmed3 (100,10) 0.00 0.33 0.00 0.00

pmed4 (100,20) 0.00 2.99 4.85 3.00

pmed5 (100,33) 0.36 23.03 22.73 12.18

pmed6 (200, 5) 0.00 0.18 0.00 0.00

pmed7 (200,10) 0.00 1.05 0.00 0.44

pmed8 (200,20) 0.20 3.82 5.31 5.13

pmed9 (200,40) 0.73 7.53 19.24 13.50

pmed10 (200,67) 0.15 29.54 44.14 44.62

pmed11 (300, 5) 0.00 0.32 0.00 0.08

pmed12 (300,10) 0.04 0.57 0.09 1.10

pmed13 (300,30) n/a 3.29 3.96 6.10

pmed14 (300,60) n/a 8.77 25.40 22.41

pmed15 (300,100) n/a 26.95 45.58 44.13

pmed16 (400, 5) n/a 1.00 0.15 0.00

pmed17 (400,10) n/a 3.64 1.99 0.00

pmed18 (400,40) n/a 9.67 6.97 13.45

pmed19 (400,80) n/a 20.77 27.14 28.72

pmed20 (400,133) n/a 47.18 56.51 57.24
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Table 4 Results for Australian
postal data (200 points) Fitness (10−6)

Medians (p) cGA NA

10 0.99 0.99

20 1.49 1.41

30 1.91 1.87

40 2.21 2.26

50 2.54 2.62

60 2.82 2.98

70 3.19 3.33

80 3.53 3.71

90 3.86 4.07

100 4.25 4.46

and its corresponding fitness for the Australian postal prob-

lem. This problem comprises 200 points and from 10 to 100

medians. Table 4 shows that the cellular GA achieves a really

small fitness value, which makes us think that the computed

solution is really near the optimum. Unfortunately, no other

results were found for this benchmark and the p-medians

problem (although some results do exist with the same data

but for the p-hub problem).

One interesting feature of this problem is that we can plot

the result graphically in connection with actual cities in Aus-

tralia. This again has never be addressed in the past, and so

we just guess by following an intuitive best effort study of

data and the Australian geography. Of course, the city as-

signments used in the result of Figure 3 is not claimed to

be completely correct since the original numerical data were

not labelled with this information.

4.2. Large size instances

This subsection encompasses a comparison of the cellular

GA, the generational GA and the NA when faced with prob-

lems with a high number of points and medians. Table 5

shows the numerical accuracy of the algorithms. We can see

that the cellular approach offers a structured evolution that

gives a final error smaller than the panmictic generational

GA, as with the smaller sized instances. In some cases, the

two algorithms (cGA and GA) report a similar error. Al-

though for most cases the cGA is more accurate than genGA

(15.81 versus 15.97), the NA is the most precise (12.31) with

respect to the average error. These instances are in the range

of 500 to 900 points, which represents a considerable step up

in size compared to other existing works in literature.

We finally perform a comparison test between the cellular

GA with respect to a parallel distributed scatter search pre-

viously presented in Section 3.3.2. We consider the FL1400

data set taken from the TSPLib data set for the TSP problem.

This data accounts for 1400 points, and we analyse 10 cases,

for p from 10 to 100 in steps of 10.

Table 6 shows that the final accuracy is quite similar for

the cellular GA and the RPSS algorithm, with the latter hav-

ing a slight advantage. This table reports two flavors of the

cGA with different disposition of the individuals in the grid

(16 × 16 and 32 × 32), since we have some experiences in

improving the accuracy through changes in the shape of the

population (Alba and Troya, 2000). Although our algorithm

Fig. 3 Best 10-median solution
found for the Australian postal
problem
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Table 5 Genetic and neural algorithms (large size problems)

Problems Percentage Error (%)

Name Size (n,p) cGA genGA NA

pmed21 (500, 5) 0.00 0.00 1.71

pmed22 (500,10) 2.05 0.00 2.51

pmed23 (500,50) 13.92 15.50 9.46

pmed24 (500,100) 31.00 31.81 20.67

pmed25 (500,167) 61.27 59.30 51.75

pmed26 (600, 5) 0.07 0.00 2.43

pmed27 (600,10) 1.36 0.04 4.89

pmed28 (600,60) 14.21 18.32 11.07

pmed29 (600,120) 33.56 33.60 21.07

pmed30 (600,200) 57.97 60.53 46.56

pmed31 (700, 5) 0.00 0.00 0.55

pmed32 (700,10) 0.52 0.04 5.10

pmed33 (700,70) 18.26 18.83 12.64

pmed34 (700,140) 37:37 38.43 24.79

pmed35 (800, 5) 0.64 0.00 0.00

pmed36 (800,10) 0.67 0.00 2.57

pmed37 (800,80) 21.49 22.17 10.22

pmed38 (900, 5) 0.69 0.00 2.21

pmed39 (900,10) 0.69 0.06 3.39

pmed40 (900,90) 20.53 20.85 12.56

Average Error 15.81 15.97 12.31

Table 6 cGA and RPSS comparison for TSP - FL1400

Medians cGA cGA

(p) (grid 16 × 16) (grid 32 × 32) RPSS

10 101526.73 101437.58 101249.47

20 58216.96 58228.47 57857.55

30 44716.07 44609.72 44013.02

40 35645.16 35662.51 35002.02

50 29923.27 29847.77 29089.71

60 26143.08 26030.17 25160.40

70 23196.93 23210.25 22125.46

80 20799.90 20794.05 19870.29

90 18830.49 18829.11 17987.91

100 17287.01 17352.31 16552.48

does not boast clear superiority, we consider such results

extremely interesting, since we achieved them with a “sim-

ple” non parallel GA, which contrasts with the high cus-

tomization and implementation effort for running a parallel

algorithm like RPSS. In fact, this is a major achievement of

our work: the same algorithm (cGA) is able of outperforming

a set of existing algorithms, without local search, parallelism

and even without sophisticated parameter tuning. This means

that we can still easily extend the algorithm with such fea-

tures to outperform the rest, which clearly indicates a future

research step.

5. Conclusions

This work analysed a structured cellular GA, a canonical

generational GA, and a neural model; we compared these

against each other and against several other algorithms found

in literature like the constructive GA and the parallel scat-

ter search. We conclude that both the cellular GA and the

neural optimiser have their own advantages. The cGA is ac-

curate, fast, simple to program and open to new advances

in specialized operators (local search, new representations,

etc.). On the other hand, NA is still more accurate, but rep-

resents a customized model of narrower applicability. The

effort devoted to cGA can be profitable in similar problems

and open to future improvements appearing in similar algo-

rithms, while the neural model is very accurate at a price

of larger computational times, difficult generalisation, and

higher programming effort.

Here, we have considered problems with a large number

of points and medians in the aim of providing a wide set of re-

sults for future extensions. Since local search and parallelism

have led to accurate algorithms in the past for the p-median

problem, we intend to include them in our algorithm, yield-

ing new and improved methods for the optimization of such

NP-hard tasks, similar to those models reported in Alba and

Troya (1999).

The fact that the same algorithm is able of computing that

accurate solutions along with its simplicity can be a step to-

wards making the research community of the potential inside

structured population-based heuristics. This is an important

point, since most authors pay credit to algorithms reporting

high accuracy results but that are never actually used, since

they are difficult to implement or understand (as occurs with

parallelism and sophisticated local search in many research

communities). The cellular GA is easy to implement and, at

the same time, accurate, which follows the “keep it simple”

approach that is behind most well known metaheuristics.
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