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Abstract.—Most existing methods for modeling trait evolution are univariate, although researchers are often interested in
investigating evolutionary patterns and processes across multiple traits. Principal components analysis (PCA) is commonly
used to reduce the dimensionality of multivariate data so that univariate trait models can be fit to individual principal
components. The problem with using standard PCA on phylogenetically structured data has been previously pointed out
yet it continues to be widely used in the literature. Here we demonstrate precisely how using standard PCA can mislead
inferences: The first few principal components of traits evolved under constant-rate multivariate Brownian motion will
appear to have evolved via an “early burst” process. A phylogenetic PCA (pPCA) has been proprosed to alleviate these
issues. However, when the true model of trait evolution deviates from the model assumed in the calculation of the pPCA
axes, we find that the use of pPCA suffers from similar artifacts as standard PCA. We show that data sets with high effective
dimensionality are particularly likely to lead to erroneous inferences. Ultimately, all of the problems we report stem from
the same underlying issue—by considering only the first few principal components as univariate traits, we are effectively
examining a biased sample of a multivariate pattern. These results highlight the need for truly multivariate phylogenetic
comparative methods. As these methods are still being developed, we discuss potential alternative strategies for using
and interpreting models fit to univariate axes of multivariate data. [Brownian motion; early burst; multivariate evolution;
Ornstein–Uhlenbeck; phylogenetic comparative methods; principal components analysis; quantitative genetics]

Quantitative geneticists long ago recognized the value
of studying evolution in a multivariate framework
(Pearson 1903). Due to linkage, pleiotropy, correlated
selection, and mutational covariance, the evolutionary
response in any phenotypic trait can only be properly
understood in the context of other traits (Lande 1979;
Lynch and Walsh 1998). This is of course also well
appreciated by comparative biologists. However, unlike
in quantitative genetics, most of the statistical and
conceptual tools for analyzing phylogenetic comparative
data (reviewed in Pennell and Harmon 2013) model a
single trait (but see, Revell and Harmon 2008; Revell
and Harrison 2008; Hohenlohe and Arnold 2008; Revell
and Collar 2009; Schmitz and Motani 2011; Bartoszek
et al. 2012; Adams 2014a,b, for exceptions). Indeed, even
classical approaches for testing for correlated evolution
between two traits (e.g., Felsenstein 1985; Grafen 1989)
are not actually multivariate as each trait is assumed
to have evolved under a process that is independent of
the state of the other (Hansen and Orzack 2005). As a
result of these limitations, researchers with multivariate
data are often faced with a choice: analyze each trait as
if they are independent, or else decompose the data set
into statistically independent sets of traits, such that each
set can be analyzed with the univariate methods.

Principal components analysis (PCA) is the most
common method for reducing the dimensionality
of the data set prior to analyzing the data using
phylogenetic comparative methods. PCA is a projection
of multivariate data onto a new coordinate system.

The first PC axis is the eigenvector in the direction
of greatest variance, the second PC axis, the second
greatest variance, and so on. While PCA is simply
another way of representing a data set, whether
or not one can draw meaningful inferences from
the PC axes will depend on both the question and
the structure of the data. Evolution introduces a
particular kind of structure into comparative data: as
a result of shared common ancestry, close relatives
are likely to share many traits and trait combinations.
Performing comparative analyses without considering
the species’ evolutionary relationships is anathema
to most evolutionary biologists, but the influence of
phylogeny on data transformations is less understood
(Revell 2009; Polly et al. 2013).

Standard PCA continues to be regularly used in
comparative biology. Researchers fit models to PC
scores computed from a variety of trait types including
geometric morphometric landmarks (e.g., Dornburg
et al. 2011; Hunt 2013), measurements of multiple
morphological traits (e.g., Harmon et al. 2010; Weir and
Mursleen 2013; Pienaar et al. 2013; Price et al. 2014), and
climatic variables (e.g., Kozak and Wiens 2010; Schnitzler
et al. 2012). The papers we have cited here are simply
examples selected from a substantial number where
standard PCA was used.

The most common approach for incorporating the non
independence of species is to assume a phylogenetic
model for the evolution of measured traits and use the
expected covariance in the calculation of the PC axes and
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scores (phylogenetic principal components analysis, or
pPCA; Revell 2009). Revell’s method, explained in detail
below, assumes that the measured traits have evolved
under a multivariate Brownian motion (BM) process of
trait evolution. Revell (2009) demonstrated that standard
PCA produces eigenvalues and eigenvectors that are not
phylogenetically independent.

In this article, we first extend the argument of Revell
(2009) and demonstrate how performing phylogenetic
comparative analyses on standard PC axes can be
positively misleading. This point has been made
in other fields that deal with autocorrelated data,
such as population genetics (Novembre and Stephens
2008), ecology (Podani and Miklós 2002), climatology
(Richman 1986), and paleobiology (Bookstein 2012).
However, the connection between these previous results
and phylogenetic comparative data has not been widely
appreciated and standard PCs continue to be regularly
used in the field. We hope our article helps change this
practice.

Second, as stated above, Revell (2009) assumed that
the measured traits had evolved under a multivariate
BM process. As the pPC scores are not phylogenetically
independent (Revell 2009; also see discussion in Polly
et al. 2013), one must use comparative methods to
analyze them, which will in turn require selecting
an evolutionary model for the scores. The choice of
model for the traits and the pPC scores are separate
steps in the analysis (Revell 2009). Researchers must
assume a model for the evolution of the traits in order
to obtain the pPC scores and then perform model-
based inference on these scores. This introduces some
circularity into the analysis: it seems likely that the choice
of a model for the evolution of the traits will influence the
apparent macroevolutionary dynamics of the resulting
pPC scores. To our knowledge this effect has not been
previously explored. Here we analyze simulated data
to investigate whether assuming a BM model for the
traits introduces systematic biases in the pPC scores
when the generating model is different. We then analyze
two empirical comparative data sets to understand the
implications of these results for the types of data that
researchers actually have; the traits in these data sets
have certainly not evolved by a strict BM process.

Last, we consider the interpretation of evolutionary
models fit to pPC axes and discuss the advantages and
disadvantages of using pPCA compared to alternative
approaches for studying multivariate evolution in a
phylogenetic comparative framework. We argue that the
statistical benefits of using pPC axes come at a substantial
conceptual cost and that alternative techniques are likely
to be much more informative for addressing many
evolutionary questions.

METHODS

Overview of pPCA
Before describing our analyses, we briefly review

standard and phylogenetic PCA and highlight the

differences between the two (see Polly et al. 2013, for a
more detailed treatment). In conventional PCA, a m×m
covariance matrix R is computed from a matrix of trait
values X for the n species and m traits

R= (n−1)−1(X−1μᵀ)ᵀ(X−1μᵀ) (1)

where μ is a vector containing the means of all m traits
and 1 is a column vector of ones. We note that in many
applications X may not represent the raw trait values. In
geometric morphometrics, for example, size, translation,
and rotation will often be removed from X prior to
computing R (Rohlf and Slice 1990; Bookstein 1997). The
scores S, the trait values of the species along the PC axes,
are computed as

S= (X−1μᵀ)V (2)

where the columns of V are the eigenvectors of R.
Phylogenetic PCA differs from this procedure in two

important ways (Revell 2009; Polly et al. 2013): First
the covariance matrix is weighted by the inverse of the
expected covariance of trait values between taxa under
a given model �. Under a BM model of trait evolution,
� is simply proportional to the matrix representation
of the phylogenetic tree C, such that �i,j is the shared
path length between lineages i and j (Rohlf 2001). Since
only relative branch lengths matter under a multivariate
BM process, we can simply set �=C without loss of
generality, though we note that the absolute magnitude
of the eigenvalues will depend on the scale of the
branch lengths. Second, the space is centered on the
“phylogenetic means” a of the traits rather than their
arithmetic means, which can be computed following
Revell and Harmon (2008):

a=[(1ᵀ�−11)−11ᵀ�−1X]ᵀ (3)

In pPCA, Equation 1 is therefore modified as

R= (n−1)−1(X−1aᵀ)ᵀ�−1(X−1aᵀ) (4)

Similarly, S can be calculated for pPCA using Equation 2
but substituting the phylogenetic means for the
arithmetic means

S= (X−1aᵀ)V (5)

where again, V is a matrix containing the eigenvectors
of R, in this case obtained from Equation 4.

The effect of weighting the covariance and centering
the space using phylogeny has an important statistical
consequence (Revell 2009; Polly et al. 2013). In PCA,
each PC score is independent of all other scores from
the same PC axis and from scores on other axes. Due
to the phylogenetic structure of the data, this property
of independence does not hold when using pPCA.
Therefore it is necessary to analyze pPC scores using
phylogenetic comparative methods, just as one would
for any other trait (Revell 2009).
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Effect of PCA on Model Selection under Multivariate BM
We simulated 100 replicate data sets under

multivariate BM to evaluate the effect of using
standard versus phylogenetic PCA to infer the mode
of evolution. For each data set, we used TreeSim
(Stadler 2011) to simulate a phylogeny of 50 terminal
taxa under a pure-birth process and scaled each tree to
unit height. We then simulated a 20-trait data set under
multivariate BM. For each simulation, we generated a
positive definite covariance matrix for R, by drawing
eigenvalues from an exponential distribution with
a rate �=1/100 and randomly oriented orthogonal
eigenvectors to reflect the heterogeneity and correlation
structure typical of evolutionary rate matrices (Mezey
and Houle 2005; Griswold et al. 2007). We then used
this matrix to generate a covariance matrix for the tip
states X∼N (0,R⊗C) where ⊗ denotes the Kronecker
product. For each of the 100 simulated data sets, we
computed PC scores using both standard methods and
pPCA (using the phytools package; Revell 2012).
We used phylolm (Ho and Ané 2014) to fit models of
trait evolution to the original data and to all PC scores
obtained by both methods. Following Harmon et al.
(2010), we considered three models of trait evolution:
1) BM; 2) Ornstein–Uhlenbeck with a fixed root (OU:
Hansen 1997); and 3) Early-Burst (EB: Blomberg et al.
2003; Harmon et al. 2010). We then calculated the
Akaike Information Criterion weights (AICw) for each
model/transformation/trait combination.

To explore the effect of trait correlation on inference,
we conducted an additional set of simulations where
R was varied from the above simulations to result in
more or less correlated sets of phenotypic traits. We
drew eigenvalues m from an exponential distribution
and scaled these so that the leading eigenvalue m1 was
equal to 1. We then exponentiated this vector across a
sequence of exponents ranging for �1 to �1; this gave
us a series of covariance matrices ranging from highly
correlated (m1 =1;m2,...,m20 ≈0) to nearly independent
(m≈1), respectively. We chose the series of exponents to
obtain a regular sequence of m1/

∑20
i=1mi from 0.05 to 1.

For each set of eigenvalues, we simulated 25 data sets
and estimated the slope of the relationship between the
absolute size of phylogenetically independent contrasts
(Felsenstein 1985) and the height of the node at which
they were calculated (the “node height test”; Purvis and
Rambaut 1995). Under OU models, this relationship is
expected to be positive, whereas under EB models this
relationship is negative. BM models are expected not to
show correlation between contrasts and height of the
nodes.

Effect of Using PCA When Traits are Not Brownian
We then simulated data sets under alternative models

of trait evolution. First, we also simulated traits under a
correlated multivariate OU model using the mvSLOUCH
package (Bartoszek et al. 2012). Combined with the
correlated BM simulations above, we used correlated OU

simulations to explore the effect of PCA and pPCA on
model inference under reasonably biologically realistic
conditions. We simulated 20 correlated traits for 50 taxa
trees using a positive definite covariance matrix for
the diffusion matrix by drawing eigenvalues from an
exponential distribution with a rate �=1 and randomly
oriented orthogonal eigenvectors. The �-matrix was set
a diagonal matrix with a constant value of 2 for each trait
such that the phylogenetic half-life log(2)/� (Hansen
et al. 2008) was approximately equal to 0.35 of the total
tree depth. The root state for each simulation was set at
the multivariate phenotypic optimum. We then fit BM,
OU, and EB models to the original data, PC scores and
pPC scores for each simulated data set and estimated
parameters and AICw.

Second, we simulated an additional set of data sets
with uncorrelated traits and equal evolutionary rates.
These simplified data sets allowed us to generate
comparable data under all three generating models (BM,
OU, and EB) and isolate how misspecifying the model
of trait evolution can impact the distribution of PC and
pPC scores. As before, for each model we simulated
20 traits on 50 taxa trees. For the BM simulations,
we set �2 =1 for all 20 traits. For OU, we set �2 =1
and �=2. For EB, we again set �2 =1 and set r, the
exponential rate of deceleration, to be log(0.02). As
above, we estimated parameters and AICw for each
model fit to original data, PC scores and pPC scores.
In addition, we applied two common diagnostic tests
for deviation from BM-like evolution to all trait/PC
axes. First, we calculated the slope of the node height
test as described in the preceding section. Second, we
characterized the disparity through time (Harmon et al.
2003) using the geiger package (Pennell et al. 2014a).

Finally, we examined the scenario in which a set
of traits each follow a model of evolution with
unique evolutionary parameters. In particular, we
use the accelerating–decelerating (ACDC) model of
Blomberg et al. (2003) to generate independent trait
data sets. This model is a general case of the EB
model which allows both accelerating or decelerating
rates of phenotypic evolution. Accelerating rates of
evolution result in identical likelihoods as the OU model
(assuming the root state is at the optimal trait value
and the tree is ultrametric), and thus are equivalent
for our purposes (we provide a proof for this claim
in the Supplementary Material available on Dryad at
http://dx.doi.org/10.5061/dryad.70c34). We simulated
100 data sets with 50 taxa and 20 traits. Trees were
generated as in previous simulations. Each trait was
simulated along the phylogeny with an exponential
rate of change r drawn from a normal distribution
with mean 0 and standard deviation of 5. Values of r
above 0 correspond to accelerating evolutionary rates,
whereas those below 0 correspond to decelerating,
or EB models of evolution. For each data set, we
conducted both standard and phylogenetic PCA in
which the traits are standardized to unit variance (i.e.,
using correlation matrices, which ensured traits across
parameter values had equal expected variances). For
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each PC or pPC, we regressed the magnitude of the trait
loadings against the trait’s ACDC parameter value. We
then visualized whether there were systematic trends
in the relationship between the ACDC parameter value,
and the weight given to a particular trait across PC axes.
Such systematic trends would indicate that either PCA
or pPCA “sorts” traits into PC axes according to the
particular evolutionary model each trait follows.

Empirical Examples
We analyzed two comparative data sets assembled

from the literature, allowing us to investigate the effects
of principal components analyses on realistically
structured data. First, we analyzed phenotypic
evolution across the family Felidae (cats) using
measurements from two independent sources—five
cranial measurements from (Slater and Van Valkenburgh
2009) and body mass and skull width from (Sakamoto
et al. 2010). For the analysis, we used the supertree
compiled by (Nyakatura and Bininda-Emonds 2012).
Second, we analyzed 23 morphometric traits in Anolis
lizards and phylogeny from (Mahler et al. 2010). In both
data sets, all measurements were linear measurements
on the logarithmic scale. We conducted standard
and phylogenetic PCA and examined the effect of
each on model-fitting, the slope of the node height
test, and the average disparity through time. All
simulations and analyses were conducting using R
v3.0.2. Scripts to reproduce our results are available at
https://github.com/mwpennell/phyloPCA.

RESULTS

Effect of PCA on Model Selection under Multivariate BM
Standard PCA introduces a systematic bias in

the favored model across principal components. In
our simulations where the traits evolved under a
multivariate BM model, EB models had systematically
elevated support as measured by Akaike weights
for the first few components, for which it generally
exceeded support for the BM model (Fig. 1, left
panel). Fitting models sequentially across PC axes 1–20
revealed a regular pattern of increasing support for BM
models moving from the first toward the intermediate
components, followed by increasing support for OU
models among later components, which generally
approached an AICw of 1. This regular pattern across
trait axes was not present for either the original
data sets, or for phylogenetic principal components,
which found strong support for the BM model regardless
of which trait was analyzed. As BM is a special
case of both OU and EB, the likelihoods for the
more complex models will converge on that of BM
when the true model is Brownian. AIC weights for
model i are computed as AICwi =exp[0.5(AICmin −
AICi)]/

∑
j exp[0.5(AICmin −AICj)] and therefore if the

likelihoods are identical, OU and EB will have a

�AIC=AICmin −AICi =2 (as OU and EB each have one
more parameter than BM). The theoretical maximum for
the AICw of BM is thus 1/(2e−1+ 1) ≈0.576.

Multivariate data sets simulated with high
correlations (i.e., low effective dimensionality) showed
increased support for BM across PC axes. When the
leading eigenvalue explained a large proportion of the
variance, the slope of the node height test converged
toward 0, indicating no systematic distortion of the
contrasts through time (Fig. 2). However, when the
eigenvalues of the rate matrix were more even, standard
PCA resulted in a negative slope in the node height
test among the first few PCs, which in turn provides
elevated support for EB models. This pattern is reversed
among higher PC axes, which have positive slopes
between node height and absolute contrast size, which
provides elevated support for OU models (Figs. 2
and 3).

Effect of Using PCA When Traits are Not Brownian
If the underlying model was either OU or EB rather

than BM, then phylogenetic PCA tend to increase
support for the true model relative to the original
trait variables for the first few component axes (Fig. 1,
right panel; Figs. S.1 and S.2 available on Dryad at
http://dx.doi.org/10.5061/dryad.70c34). For example,
when each of the original trait variables were simulated
under a correlated or uncorrelated OU process, support
for the OU model increased for pPC1 relative to the
original trait variables. Higher PC axes showed a regular
pattern of decreasing support for the OU model, while
the last few PCs have equivocal support for either a
BM or OU model (Fig. 1, right panel Fig. S.1 available
on Dryad at http://dx.doi.org/10.5061/dryad.70c34).
Furthermore, parameter estimation was affected by
phylogenetic PCA. The � parameter of the correlated
and uncorrelated OU models were estimated to be
stronger than the value simulated for individual traits
for the first few pPC scores and lower for the higher
components (Figs. S.3 and S.4 available on Dryad at
http://dx.doi.org/10.5061/dryad.70c34).

Examining the outcomes of the node height tests
(Fig. 3) and the disparity through time analyses
(Fig. S.5 available on Dryad at http://dx.doi.org/
10.5061/dryad.70c34) for uncorrelated OU, EB and BM
models helps clarify the results we observed from
model comparison and parameter estimation. Under OU
models, traits are expected to have the highest contrasts
near the tips, whereas under EB models, traits will have
the highest contrasts near the root of the tree. Under
multivariate BM, standard PCA maximizes the overall
variance explained across the entire data set, thereby
tending to select linear combinations of traits that
maximize the contrasts at the root of the tree. Thus, the
first few PCs are skewed toward resembling EB models,
whereas the last few PCs are skewed toward resembling
OU models. By contrast, the effect of pPCA on the
node height relationship depends on the generating
model. When traits are evolved under an OU model,
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FIGURE 1. Distribution of support for BM, OU, and EB models when the generating model is a correlated multivariate BM model (left
panel) and OU model (right panel). Support for models were transformed onto a linear scale by calculating an overall model support statistic:
AICwOU −AICwEB. Thus, high values support OU, low values support EB, and intermediate values near 0 indicate BM-like evolution. Models
were fit to each replicated data set for each of 20 different traits which were taken either from PC scores (blue line) or phylogenetic PC scores
(green line). Shaded regions indicate the 25th and 75th quantiles of the model support statistic for 100 replicated data sets. The red line indicates
the average model support statistic averaged over all 20 original trait variables.

the first few pPC axes show an exaggerated pattern of
high variance toward the tips. Likewise, when traits are
evolved under an EB model, the first few pPC axes show
an exaggerated pattern of high variance toward the root
of the tree. For traits generated under both OU and
EB models, the higher components resemble BM-like
patterns.

When the data includes traits evolved under ACDC
models with varying parameters, both PCA and pPCA
systematically assigned traits to particular PCA axes
according to the parameter values of the generating
model. Traits which follow EB models are preferentially
given higher loadings for the first few PCs as well as
the last few PCs (Fig. 4). Intermediate PCs had relatively
even loadings slightly skewed toward accelerating rates
(i.e., OU-like models), while most of the traits with
decelerating rates were assigned with high loadings to
just a few PC axes. This asymmetry may reflect the fact
that EB models are more variable in their outcomes
to the phylogeny, owing to the fewer independent
branches among which divergence can occur closer
to the root of the tree. Our results indicate that both
pPCA and PCA can be biased in the selection of
PC axes with respect to the generating evolutionary
model.

Empirical Examples
In the field data set, the seven morphometric traits

were extremely highly correlated, with the first PC
explaining 96.9% and 93.7% of the total variation in
the data set for standard PCA and phylogenetic PCA,
respectively. All raw traits and the first PC axis of
both standard and phylogenetic PCA support a BM
model of evolution (PC and pPC axes have AICw’s

of 0.574, which is near the theoretical maximum for
BM). The last four standard PC axes show strong
support for an OU model (AICw ≈ 1), whereas under
phylogenetic PCA the last axes have mixed support
favouring BM or OU (Fig. S.6 available on Dryad at
http://dx.doi.org/10.5061/dryad.70c34). Both the node
height test and the disparity through time plots show
this same pattern. The node height slope of the first
axis is approximately zero while the slope of the
remaining axes are slightly positive under standard
and phylogenetic PCA. The first axis show the same
disparity through time pattern of the untransformed
data in both standard and phylogenetic PCA. However,
the last PC axes show disparity accumulated toward
the tips under standard PC, while phylogenetic PCA
produced a less clear pattern (Fig. S.7 available on Dryad
at http://dx.doi.org/10.5061/dryad.70c34).

For the morphometric traits in the Anolis data set,
the first PC also explained a large proportion
of the variation (92.6% and 90.0% for standard
and phylogenetic PCA, respectively). Most of the
untransformed traits had equivocal support for
either a BM or EB model (Fig. S.8 available on
Dryad at http://dx.doi.org/10.5061/dryad.70c34).
While PC1 of both PCA and pPCA mirrored this
pattern, the remaining PCs for both PCA and
pPCA show a general pattern of decreasing support
for an EB model (Fig. S.8 available on Dryad at
http://dx.doi.org/10.5061/dryad.70c34). Collectively,
PCs 2-4 had higher support for the EB model than
any other PC in both standard PCA (AICwEB: PC2 =
1.0; PC3 = 0.47; PC4 = 0.28) and phylogenetic PCA
(AICwEB: pPC2 = 1.0; pPC3 = 0.43, pPC4 = 0.27).
Similarly, these early PC axes tended to have more
negative slopes from the node height test relative to the
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FIGURE 2. Effect of trait correlations on the slope of the node height test for PC scores (left) and pPC scores (right) under a multivariate
BM model of evolution. The red line is the aggregated data for all 20 traits on the original (untransformed) scale. The intensity of the colors
are proportional to the ranking of the PC or pPC axes, stronger lines represent the first axes. When the leading eigenvector explains very little
variation in the data and the effective dimensionality is high, the slope of node height test increases from negative to positive across PC axes.
This indicates that under standard PCA, PC1 has higher contrasts near the root of the tree, while later PCs have higher contrasts near the tips
(resulting in the pattern of model support observed in Figure 1). As the amount of variance explained by the principal eigenvector increases,
the slope of the node height test approaches 0. No such effect is found for phylogenetic PCA.

average trait in the data set (Fig. S.9 available on Dryad
at http://dx.doi.org/10.5061/dryad.70c34).

DISCUSSION

Different ways of representing the same set of data
can change the meaning of measurements and alter
the interpretations of subsequent statistical analyses
(Houle et al. 2011). PCA is often considered to
be a simple linear transformation of a multivariate
data set and the potential consequences of performing
phylogenetic comparative analyses on PC scores have
received very little attention. In this article, we sought
to highlight the fact that fitting macroevolutionary
models to a handful of PC axes may positively mislead
inference—what appears like the signal of an interesting
biological process may simply be an artifact stemming
from how PCA is computed. By focusing analyses
exclusively on the first few PC axes, as is commonly

done in comparative studies, researchers are, in effect,
taking a biased sample of a multivariate distribution
(Mitteroecker et al. 2004). We demonstrate how this
biased sampling can affect inferences from both PCA
and pPCA. In particular, we demonstrate that it can lead
researchers to erroneously infer a pattern of decreasing
rates of evolution through time in highly dimensional
data sets.

We can obtain an intuitive understanding of how
PCA can affect inferences by considering data simulated
under a multivariate BM model. Despite a constant
rate of evolution across each dimension of trait space,
stochasticity will ensure that some dimensions will
diverge more rapidly than expected early in the
phylogeny, while others will diverge less. All others
being equal, dimensions that happen to diverge early
are expected to have the greatest variance across
species and standard PCA will identify these axes
as the primary axes of variation. However, the trait
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FIGURE 3. Relationship between the average phylogenetic independent contrasts and the height of the node across 100 data sets simulated
under either a BM (left), OU (middle) or EB (right) model of evolution. Contrasts were calculated for each of the 20 traits corresponding to
either PC scores (top row) or pPC scores (bottom row). Each line represents a best-fit linear model to the aggregated data across all 100 replicate
simulations. Red lines are aggregated over all 20 traits on the original data. The plots are oriented so that the left side of each panel corresponds
to the root of the phylogeny, with time increasing tipward to the right. The intensity of the colors are proportional to the ranking of the PC or
pPC axes, stronger lines represent the first axes. PCA results in a predictable pattern of increasing slope in the contrasts across PCs. By contrast,
pPCA only has systematic distortions across pPC axes when the underlying model is not multivariate BM. When this occurs, the first few pPC
axes tend to have more extreme slopes than the original data (but in the correct direction).

combinations that are most divergent early in the clade
will appear to have slowed down toward the present
simply due to regression toward the mean, resulting
in the characteristic “early burst” pattern of evolution
for the first few principal components. (Pennell et al.
2012 pointed out that lineage diversification models are
susceptible to a similar sampling effect.) An analogous
process will result in the last few PCs following an
OU process, in which the amount of divergence will
be concentrated toward the present. Standard PCA
thus effectively “sorts” orthogonal trait dimensions
by whether they follow EB, BM and finally, OU-like
patterns of trait divergence. Traits studied using PCA
may, therefore, often be biased to reflect particular
evolutionary models, merely as a statistical artifact.

These problems ultimately stem from making
statistical inferences from a selected few PC axes without
accounting for how PCA transforms autocorrelated

data. This issue is certainly not limited to phylogenetic
comparative studies (Richman 1986; Podani and Miklós
2002; Jolliffe 2002; Novembre and Stephens 2008;
Bookstein 2012). For example, Novembre and Stephens
(2008) demonstrated that apparent waves of human
migration in Europe obtained from PCA of genetic data
(e.g., Cavalli-Sforza et al. 1994) could be attributed to
artefacts similar to those we document here; in their
case, the autocorrelation was the result of geography
rather than phylogeny. While the bias introduced by
analyzing standard PCs with phylogenetic models has
been documented previously (Revell 2009; Polly et al.
2013), we sought to clarify precisely how inferences
of macroevolutionary processes and patterns can be
impacted.

Revell (2009) recognized the need for accounting
for phylogenetic correlation when performing PCA
transformations and introduced the phylogenetic PCA
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FIGURE 4. Relationship between factor loadings and ACDC parameter (r) for PCA (left) and pPCA (right) across 100 simulated data sets. For
each simulation a value of r were drawn from a Normal distribution with mean = 0 and SD = 5. Boxplots indicate the distribution of the slope
of a linear model describing the relationship between the absolute factor loadings for a given PC and the magnitude of the ACDC parameter.
A negative slope indicates that traits with decelerating rates of evolution tend to have higher loadings in that particular PC. Conversely, positive
slopes indicate that traits with accelerating rates tend to have higher loadings.

method. Our simulations verify that when the
underlying model is multivariate BM, pPCA mitigates
the effect of deep divergences among clades in the major
axes of variation by scaling divergence by the expected
divergence given the branch lengths of the phylogeny.
However, BM is often a poor descriptor of the
macroevolutionary dynamics of trait evolution (see e.g.,
Harmon et al. 2010; Pennell et al. 2015) and assuming this
model when performing pPCA is less than ideal. Revell
(2009) suggested that alternative covariance structures
could be used to estimate phylogenetically independent
PCs for different models. For example, one could first
optimize the � model (Freckleton et al. 2002) across all
traits simultaneously and then rescale the branch lengths
of the tree according to the estimated parameter to obtain
� for use in Equation 4. However, one cannot compare
model fits across alternative linear combinations of traits,
so the data transformation must occur separately from
modeling the evolution of the PC axes. As Revell (2009)
noted, parameters estimated to construct the covariance
structure for the pPCA will likely be different from
the same parameters estimated using the PC scores
themselves. Furthermore, this procedure is restricted
to models that assume a shared mean and variance
structure across traits (see Hansen et al. 2008; Hansen
and Bartoszek 2012; Bartoszek et al. 2012, for examples
where this does not apply). As such, if the question of
interest relies on model-based inference, transforming
the data using pPCA necessitates ad hoc assumptions
about the evolution of the traits, and researchers must
hope that the resulting inferences are generally robust to
these decisions.

We show that when the trait model is misspecified,
systematic and predictable distortions occur across pPC
axes—similar to those that were observed when the
phylogeny was ignored altogether. In some scenarios
such distortions may not substantially alter inference.

For example, when all traits evolve under an OU model
(or when all traits evolve under a EB model), we find
that these distortions primarily serve to inflate the
support for the true model. Even so, interpretation
of parameter estimates for pPC scores becomes much
more challenging (Figs. 3, S.3, S.4, and S.5 available
on Dryad at http://dx.doi.org/10.5061/dryad.70c34).
More complex scenarios can produce more worrying
distortions. When evolutionary rates vary through
time and across traits, both PCA and pPCA will sort
traits into PC axes according to which evolutionary
model they follow, despite all traits being evolutionarily
independent. Under the conditions we examined, this
resulted in both PC1 and pPC1 being heavily weighted
toward EB-type models, despite simulating an even
distribution of accelerating and decelerating rates across
traits. Intriguingly, we observe similar patterns for
both PCA and pPCA in the Anolis morphometric
data set (Figs. S.8 and S.9 available on Dryad at
http://dx.doi.org/10.5061/dryad.70c34). Focusing on
the first few axes of variation identified by pPCA alone
may skew our view of evolutionary processes in nature,
and bias researchers toward finding particular patterns
of evolution.

When employed as a descriptive tool, PCA can
be broadly used even when assumptions regarding
statistical nonindependence or multivariate normality
are violated (Jolliffe 2002). There is nothing wrong with
using standard PCA or pPCA on comparative data
to describe axes of maximal variation across species
or for visualizing divergence across phylomorphospace
(Sidlauskas 2008). Furthermore, our simulations and
empirical analyses suggest that strong correlations
among traits (i.e., when the leading eigenvector
explained a majority of the variation, e.g., > 75%), PC
scores may not be appreciably distorted (Fig. 2). The
statistical artefacts we describe are more likely to appear
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when matrices have high effective dimensionality
(Bookstein 2012). Given that many morphometric
data sets may be highly correlated, the overall effect
of using standard PCA or of misspecifying the model
in phylogenetic PCA may in some cases be relatively
benign.

And we certainly do not mean to imply that
the biological inferences that have been made from
analyzing standard or phylogenetic PC scores in a
comparative framework are necessarily incorrect. When
Harmon et al. (2010) analyzed the evolution of PC2 (what
they referred to as “shape”) obtained using standard
PCA, they found very little support for the EB model
across their 39 data sets. The magnitude of the bias
introduced by using standard PCA is difficult to assess
but any bias that did exist would be toward finding EB-
like patterns. This only serves to strengthen their overall
conclusion that such slowdowns are indeed rare (but see
Slater and Pennell 2014). Our results do suggest that in
some cases analyses conducted with PC axes should be
revisited to ensure that results are robust.

The broader question raised by our study is how one
should draw evolutionary inferences from multivariate
data. The first principal component axis from pPCA is
the phylogenetically weighted “line of divergence,” the
major axis of divergence across the sampled lineages
in the clade (Hohenlohe and Arnold 2008). This axis
is of considerable interest in evolutionary biology. The
direction of this line of divergence may be affected by
the orientation of within-population additive genetic
(co)variance G, such that evolutionary trajectories may
be biased along the “genetic line of least resistance”;
i.e., divergence occurs primarily along the leading
eigenvector of G, gmax (Schluter 1996). Alternatively,
the line of divergence may align with ωmax, the
“selective line of least resistance,” due to the structure
of phenotypic adaptive landscapes (Arnold et al. 2001;
Jones et al. 2007; Arnold et al. 2008), or else may be
driven by patterns of gene flow between populations
(Guillaume and Whitlock 2007) or the pleiotropic effects
of new mutations (Jones et al. 2007; Hether and
Hohenlohe 2014).

While it is perfectly sensible and interesting to
compare the orientation of pPC1 to that of gmax,
ωmax or other within-population parameters, making
explicit connections between macro- and microevolution
requires a truly multivariate approach. Quantitative
genetic theory makes predictions about the overall
pattern of evolution in multivariate space (Lande 1979).
By fitting evolutionary models to pPC scores, we are only
considering evolution along these axes independently
and not fully addressing potentially relevant patterns
in the data. In contrast, multivariate tests for the
correspondence of axes of trait variation within and
between species can provide meaningful insights into
the processes by which traits evolve over long-time scales
(Hohenlohe and Arnold 2008; Bolstad et al. 2014).

The most conceptually straightforward multivariate
approach for analyzing comparative data is to construct
models in which there is a covariance in trait

values between species (which is done in univariate
models) and a covariance between different traits. Such
multivariate extensions of common quantitative trait
models have been developed (Butler and King 2004;
Revell and Harmon 2008; Hohenlohe and Arnold 2008;
Revell and Collar 2009; Thomas and Freckleton 2012).
These allow researchers to investigate the connections
between lines of divergence and within-population
evolutionary parameters (Hohenlohe and Arnold 2008)
as well as to study how the correlation structure between
traits itself changes across the phylogeny (Revell and
Collar 2009).

These approaches also have substantial drawbacks.
First, the number of free parameters of the models
rapidly increases as more traits are added (Revell
and Harmon 2008), making them impractical for large
multivariate data sets. This issue may be addressed by
constraining the model in meaningful ways (Butler and
King 2004; Revell and Collar 2009) or by assuming that
all traits (or a set of traits) share the same covariance
structure (Klingenberg and Marugán-Lobón 2013;
Adams 2014a,b). Such restrictions of parameter space are
especially appropriate for truly high-dimensional traits,
such as shape. For such traits, we are primarily interested
in the evolution of the aggregate trait and not necessarily
the individual components (Adams 2014b). The second
drawback is that these models allow for inference of the
covariance between traits but the cause of this covariance
is usually not tied to specific evolutionary processes. This
difficulty can be addressed by explicitly modeling the
evolution of some traits as a response to evolution of
others. Hansen and colleagues have developed a number
of models in which a predictor variable evolves via some
process and a response variable tracks the evolution of
the first as OU process (Hansen et al. 2008; Bartoszek
et al. 2012; Hansen and Bartoszek 2012). This has been
a particularly useful way of modeling the evolution of
allometries (e.g., Hansen and Bartoszek 2012; Voje et al.
2013; Bolstad et al. 2014). But, as with the multivariate
versions of standard models discussed above, increasing
the number of traits makes the model much more
complex and parameter estimation difficult.

As we can only estimate a limited number of
parameters from most comparative data sets—and
even when we consider large data sets, most existing
comparative methods have only been developed for the
univariate case—it often remains necessary to reduce the
dimensionality of a multivariate data set to one or a few
compound traits. We believe that although PCA can be
potentially quite usefully applied to this problem, it may
be in ways that are statistically and conceptually distinct
from how it is conventionally applied to comparative
data.

First, we argue that reducing multivariate problems
to more easily managed, lower dimensionality analyses
should be approached with the specific goal of
maintaining biological meaning and interpretability
(Houle et al. 2011). The common practice of examining
only the first few PCs carries with it the implicit
assumption that PCA ranks traits by their evolutionary
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importance, though this is not necessarily true (Polly
et al. 2013). If a certain PC axis is of sufficient biological
interest in its own right, it may not matter if it is a
biased subset of a multivariate distribution. The fact that
a vast majority of the traits studied in adaptive radiations
likely represent a very biased axes of variation across the
multivariate process of evolution does not diminish the
importance of the inferences made from studying these
traits.

The danger occurs when the biological significance
of the set of traits is poorly understood, and when the
source of the statistical signal may be either artefactual
or biological. If a trait was not of interest a priori,
then this essentially turns into a multiple comparison
problem in which PCA searches multivariate trait space
for an unusual axis of variation. These axes will tend
to appear to have evolved by a process inconsistent
with the generating multivariate process as a whole. A
posteriori interpretation of the PC axes by their loadings
is something of an art—one must “read the tea leaves”
to understand what these axes mean biologically. Even
when a particular axis is correlated with a biological
interpretation, it can be unclear whether the statistical
signal supporting a particular inference results from
the evolutionary dynamics of the trait of interest or
if it is the result of statistical artefacts introduced
by the imperfect representation of that trait by a
PC axis. More rigorous algorithms can be applied
to identify subsets of the original variables that best
approximate the principal components, which although
still biased, are frequently more interpretable (Hausman
1982; Somers 1986, 1989; Vines 2000; Cadima and Jolliffe
2001; Jolliffe 2002; Zou et al. 2006). Another potential
approach is to use principal components computed
from within-population data, rather than comparative
data. For example, if G, or failing that, the phenotypic
variance–covariance matrix P, is available for a focal
species, then the traits associated to the principal axes
of variation in that species can be measured across
all species in the phylogeny. In other words, across
species trait measurements can be projected along gmax.
This alleviates the issues we discuss in this article
by estimating PCs from within-population data that
is independent from the comparative data used for
model-based inference.

Components defined by within-population variance
structure or by approximating PC with interpretable
linear combinations will not explain as much variance
across taxa as standard PCA and will not necessarily
be statistically independent of one another. But the
extra variance explained by the principal components of
comparative data may in fact include a sizeable amount
of stochastic noise, rather than interesting biological
trait variation, as we have shown in our simulations.
Furthermore, while the trait combinations (eigenvectors)
identified by pPCA will be statistically orthogonal,
this is only true in the particular snapshot captured
by comparative data and does not imply that they
are evolving independently. The distinction between
statistical and evolutionary independence is crucial

(Hansen and Houle 2008) but it is easy to conflate these
concepts when the data has been abstracted from its
original form. We argue that the added interpretability
of carefully chosen and biologically meaningful trait
combinations far outweighs the cost of some trait
correlations or explaining less-than-maximal variation.

CONCLUDING REMARKS

In this note we sought to clarify some statistical and
conceptual issues regarding the use of PC in comparative
biology. We have shown that fitting evolutionary models
to standard PC axes can be postively misleading.
And despite the development of methods to correct
this, in our reading of the empirical literature, we
have found this to be a common oversight. We have
also demonstrated that misspecifying the model of
trait evolution when conducting pPCA may influence
the inferences we make from the pPC scores. We
show that, in some scenarios, pPCA may sort traits
according to the particular evolutionary models they
follow in a similar manner as standard PCA. Ignoring
phylogeny altogether is, of course, a form of model
misspecification. Consequently, we caution that the
use of pPCA may bias inference toward identifying
particular evolutionary patterns, which may not be
representative of the true multivariate process shaping
trait diversification. We hope that our article provokes
discussion about how we should go about analyzing
multivariate comparative data. We certainly do not have
the answers but argue there are some major theoretical
limitations inherent in using PCA, phylogenetic or not,
to study macroevolutionary patterns and processes.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.70c34.

FUNDING

J.C.U. was supported by NSF DEB 1208912 and DBI
0939454. D.S.C. was supported by a fellowship from
Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES: 1093/12-6). M.W.P. was supported by
a NSERC postgraduate fellowship.

ACKNOWLEGMENTS

We would like to thank our advisor, Luke Harmon, for
encouraging us to pursue this project and for providing
insightful comments on the work and manuscript. We
thank Luke Mahler for providing data for the Anolis
empirical example. We thank Frank Andersen, Tanja
Stadler, David Polly, and two anonymous reviewers for
helpful comments on this article.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/64/4/677/1649888 by guest on 21 August 2022

http://dx.doi.org/10.5061/dryad.70c34


2015 POINTS OF VIEW 687

APPENDIX: EQUIVALENCY BETWEEN ORNSTEIN–UHLENBECK

AND ACCELERATING CHANGE MODELS

In our article, we investigate the scenario in which
the individual traits have each evolved under a
different model. To simulate the data, we drew
values for the exponential rate parameter r of the
accelerating/decelerating change (ACDC; Blomberg
et al. 2003) model for each trait from a normal
distribution with mean zero. We claim that when
r is positive, the ACDC model generates traits
with a structure equivalent to those produced by
a single optimum Ornstein–Uhlenbeck (OU; Hansen
1997) model. To our knowledge, this has not been
previously demonstrated in the literature. Slater et al.
(2012) suggested that these two models were equivalent
for ultrametric trees: “Looking at extant taxa only,
the outcome of [a process with accelerating rates] is
very similar to an OU process, as both tend to erase
phylogenetic signal” (p. 3940), though they did not
provide any proof.

Conjecture A single optimum OU process produces
identical covariance matrices to those produced by the
AC model when i) the tree is ultrametric and ii) the trait
is assumed to be at the optimum at the root of the tree.

Proof . Consider a bifurcating tree of depth T with
two terminal taxa i and j that are sampled at the present
and share a common ancestor at time tij where tij <T. A
trait Y is measured for both i and j.

Ornstein-Uhlenbeck Process
First, assume that Y has evolved according to an OU

process
dY =−�(Y−�)dt+�dW (A.1)

where � is the optimum trait value, � is the strength of
the pull towards �, and � is the rate of the Brownian
diffusion process dW (Hansen 1997). Also assume that
the process began at the optimum, such that Y(t=0)=�.
The expected value for Yi and Yj is equal to the root
state. The expected variance for both Yi and Yj is given
by Hansen (1997):

Var[Yi]=Var[Yj]= �2

2�
(1−e−2�T) (A.2)

The expected covariance between lineages Yi and Yj is
given by

Cov[Yi,Yj]= �2

2�
e−2�(T−tij)(1−e−2�tij ) (A.3)

The correlation between Yi and Yj, �[Yi,Yj], is defined as

�[Yi,Yj]=
Cov[Yi,Yj]√

Var[Yi]Var[Yj]

Under an OU process, �[Yi,Yj] is

�[Yi,Yj]=
�2

2�
e−2�(T−tij)(1−e−2�tij )

�2

2�
(1−e−2�T)

(A.4)

With some algebra, it is straightforward to reduce
Equation (A.4) to

1−e2�tij

1−e2�T (A.5)

Accelerating Change Model
Next, assume that Y has evolved according to the

Accelerating Change (AC) model, which describes a
Brownian motion process in which the rate of diffusion
�2 changes as function of time

dY(t)=�(t)dW. (A.6)

Specifically, we consider the functional form of �2(t) to
be

�2(t)=�2
0ert

where r is constrained to be positive (Blomberg et al.
2003; Slater et al. 2012). The expected value of the AC
model is also equal to the root state. The expected
variance for Yi and Yj is given by

Var[Yi]=Var[Yj]=
∫ T

0
�2

0erTdt=�2
0

(
erT −1

r

)
(A.7)

(Harmon et al. 2010) and the covariance is equal to

Cov[Yi,Yj]=
∫ tij

0
�2

0ertij dt=�2
0

(
ertij −1

r

)
(A.8)

Under the AC model, �[Yi,Yj] is

�[Yi,Yj]=
�2

0

(
ertij −1

r

)

�2
0

(
erT−1

r

) (A.9)

Equation (A.9) can be easily reduced to

1−ertij

1−erT (A.10)

Comparing the Expectations Under OU and AC
Comparing equations (A.4) and (A.9), it is clear that

the correlation between Yi and Yj under the OU model
is equal to that of the AC model

1−e2�tij

1−e2�T = 1−ertij

1−erT (A.11)

when �=0.5r. For every value of � there is a value of r
that can produce an identical correlation structure. Note
that the values of �2 and �2

0 do not affect the correlation
structure but do enter into the covariance structure.
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As Cov[Yi,Yj]=Var[Yi,Yj]�[Yi,Yj] and the values of
�[Yi,Yj] are equivalent, we can set the variances of two
models (given by Equations (A.2) and (A.7)) equal to one
another

�2

2�
(1−e−2�T)=�2

0

(
erT −1

r

)
(A.12)

and substitute r for 2�

�2

r
(1−e−rT)=�2

0

(
erT −1

r

)

Reducing algebraically, it is easy to show that

�2 =�2
0erT (A.13)

Therefore for any covariance matrix for Yi and Yj,
OU and AC are completely unidentifiable and the
likelihoods for the two models will be identical. �

Notes. The two variances Var[Yi] and Var[Yj] will only be
equal to one another when the tree is ultrametric. If either
i or j were not sampled at the present (e.g., if one was
an extinct lineage), this proof for the non-identifiability
of OU and AC does not hold and one can potentially
distinguish these models (Slater et al. 2012).
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