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Abstract: Accurately characterizing carbon stock is vital for reporting carbon emissions from forest
ecosystems. We studied the estimation of biomass using Sentinel-2 remote sensing data in moist
temperate forests in the Galies region of Abbottabad Pakistan. Above-ground biomass (AGB),
estimated from 60 field plots, was correlated with vegetation indices obtained from Sentinel-2 image-
to-map AGB using regression models. Furthermore, additional explanatory variables were also
associated with AGB in the geo-statistical technique, and kriging interpolation was used to predict
AGB. The results illustrate that the atmospherically resistant vegetation index (ARVI) is the best index
(R2 = 0.67) for estimating AGB. In spectral reflectance, Band 1(Coastal Aerosol 443 nm) performs
better than other bands. Multiple linear regression models calibrated with ARVI, NNIR and NDVI
yielded better results (R2 = 0.46) with the lowest RMSE (48.53) and MAE (38.42) and were therefore
considered better for biomass estimation. On the other hand, in the geo-statistical technique, distance
to settlements, ARVI and annual precipitation were significantly correlated with biomass compared
to others. In the stepwise regression method, the forward selection resulted in a very significant value
(less than 0.000) for ARVI. Therefore, it can be considered best for prediction and used to interpolate
AGB through kriging. Compared to the geo-statistical technique, the remote sensing-based models
performed relatively well. Regarding potential sites for REDD+ implementation, temporal analysis
of Landsat images showed a decrease in forest area from 8896.23 ha in 1988 to 7692.03 ha in 2018.
Therefore, this study concludes that the state-of-the-art open-source sensor, the Sentinel-2 data, has
significant potential for forest biomass and carbon stock estimation and can be used for robust
regional AGB estimation with acceptable accuracy and frequent availability.

Keywords: REDD+; Sentinel-2; above-ground biomass; carbon sequestration; climate change;
forest degradation
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1. Introduction

Forest ecosystems are among the largest terrestrial carbon reservoirs on Earth, as global
forests hold the most extensive stock of terrestrial carbon stored in living trees. However,
due to various anthropogenic activities (social pressure), when deforestation occurs or is
degraded in terms of its structure and function (forest degradation), this leads to emissions
of stored carbon into the atmosphere, thus contributing to environmental changes [1,2].
Reducing Emissions from Deforestation and Forest Degradation (REDD+) is an initiative to
reduce deforestation and carbon emissions from forest ecosystems in developing countries.
REDD+ also includes the conservation of forests, sustainable forest management and
enhancing carbon stocks to facilitate developing countries in climate change mitigation [3,4].
The REDD+ activities can be validated and monitored through the Measuring, Reporting
and Verification (MRV) system, the central part of the REDD+ mechanism, which ensures
proper forest inventories and carbon estimation following national baselines or reference
levels (RLs) [5–7]. The MRV system mainly focuses on the assessment of carbon stocks
based on forest reference emission levels (FRELs), which develop an auditable, transparent,
comparable, consistent, complete and verifiable national forest monitoring system (NFMS)
as per UNFCCC requirements [2,8]. Reported data through MRV system must be accurate,
comprehensive and comparable over spatio-temporal scales.

NFMS’s MRV system comprisesa two-stage procedure; in the first stage, FRELs of
the developing country are technically assessed, followed by the second stage, in which
the developing country submits reports about emission reductions compared to national
FRELs [9] Subsequently, separate third-party REDD+ experts technically assess and verify
the reports of the developing country for provision of finance, compensation and incentives
based on carbon sequestration [10]. In order to ensure impartial carbon estimates with
minimum uncertainty, pre-defined methods with thresholds for emissions, time, scale
and area should be determined [11]. Pakistan’s MRV system operates through NFMS
((https://www.nfmspak.org/) (accessed on 19 January 2023)) through forest department,
non-governmental organizations and local communities in order to implement all phases
of REDD+ [12]. In Pakistan, significant work has been conducted on the MRV system
for REDD+; standards were developed for NFI and a satellite monitoring system (called
Satellite Land Monitoring (SLM)) throughout the country [13]. In this context, Pakistan’s
NFMS has developed three pillars (SLMS and NFI integrated with GHG inventory) as
per guidelines of UN-REDD. Pakistan’s SLMS of MRV system, extensively used Landsat
images for LULC categories/classes through systematic grid points across the country
based on the reference years starting from 1996 to 2016 with intervals of four years [14],as
well as further work of the SLMS, is in progress under the Ministry of Climate Change of
Pakistan ((https://www.redd-pakistan.org/) (accessed on 19 January 2023). Currently, like
MRV systems of other developing countries [15], Pakistan’s SLMS has successfully assessed
deforestation over recent decades using temporal satellite images; however, quantifiable
information about forest degradation is still a challenging task at the national level [14].
Data about forest degradation (as a vital component of REDD+) have been collected and
verified by territorial forest staff and community members and reported to NFMS [14].
Previously, many studies reported that the local MRV system of a particular region, in
which local communities participated in carbon inventory under the supervision of forest
staff [16–19], encourages forest dwellers to not only carry out REDD+ activities but also
provide monitoring data for NFMS MRV [12,20,21]. In Pakistan, remote sensing (the SLMS)
is considered as one of the best monitoring sources for the REDD+ MRV system [22] and
open-source satellite imagery (such as Sentinel-2) may be utilized to monitor and estimate
changes in the carbon stocks over a wide range of spatio-temporal scales.

In the context of FRELs, large-scale forest inventories are required at national, regional
and local levels to estimate forest carbon stock and biomass over time. Forest biomass
can be assessed using destructive or non- destructive sampling [23]. The destructive
method involves harvesting all trees and measuring the biomass of different parts [24].
However, it is limited to small areas because it is expensive and harvesting all trees

https://www.nfmspak.org/
https://www.redd-pakistan.org/
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is impossible for large areas. Non-destructive sampling methods involve various forest
attribute measurements and biomass assessment through different allometric equations [25].
Forest inventories provide the best biomass and carbon estimates of the sampled area if
these inventories are detailed, accurate, controlled and intensive. However, traditional
inventory techniques lack continuous spatial coverage, are time-consuming and require
higher costs and labor.

Moreover, accessibility (to every part and parcel of land surface) and quantitative data
regarding forest degradation are always a big challenge in forest biomes [7]. Therefore, the
Intergovernmental Panel on Climate Change (IPCC) recommended three tiers to minimize
such uncertainties; a higher tier means higher methodological complexity and improved
accuracy [2]. Using remote sensing and geographic information systems (GISs), coupled
with the national forest inventory (NFI), is usually acclaimed and can prove to be a robust
method for carbon accounting [1,15]. Remote sensing technologies have minimized the
problems and constraints associated with field data collection to a large extent. The use of
remote sensing for forest biomass and carbon stock estimation can be implemented with
acceptable accuracy [26]. The integrated approach of RS and NFI proves that accurate
carbon stock estimation is vital for developing a baseline and reference levels for REDD+
implementation [15].

In the context of REDD+, RS technology has been used in both central themes of
REDD+, such as forest degradation detection and its quantitative analysis [7,27], as well
as for quantitative assessments of deforestation and its contributions as emissions [28].
Numerous sensors have been used to map, monitor and estimate forest biomass and
carbon at various scales [15]. Landsat is one of the pioneers in the RS industry, which
has a widely used sensor for various forestry applications, such as estimation of forest
parameters [29]; forest trees’ age, height and biomass estimation [30]; vegetation cover
change [31], forest height prediction [32]; forest types classification [33] above-ground
biomass estimation [34] and forest monitoring through time series analysis [35]. REDD+
projects used Landsat for different purposes, such as mapping and monitoring deforestation
and forest degradation [36,37] and referring to emissions levels [38]. This study used
Sentinel-2 imagery for biomass estimation and mapping. Sentinel-2 is a state-of-the-art
remote sensing product freely available for various vegetation applications. The high
spatial, spectral and temporal resolution make the Sentinel-2 product most suitable for
vegetation studies. The sentinel-2 product has 13 spectral bands in which about 9–10 bands
can be used for different vegetation applications. These bands are Band 2 (Blue), Band
3 (Green), Band 4 (Red), Band 5, 6,7 (Red-edge bands), Band 8 and 8A (NIR), Band 11
and 12 (SWIR). The broadband indices are widely used indices for biomass mapping and
have been extensively published by researchers using the Sentinel-2 product [39–41]. The
presence of three red-edge bands in Sentinel-2 makes it suitable for various biophysical
parameter computations.

Moreover, other techniques, such as non-parametric models, interpolation and geo-
statistical techniques, such as kriging, are also frequently used for AGB prediction and
mapping [42,43]. Geo-statistical methods have been employed to explore the AGB data’s
spatial variation and design the most favorable sampling method for satellite images and
in situ forest inventory [44]. The spatial distribution of forest attributes is not continued
over the large mountainous landscape. However, essential tree attributes within stand type,
such as diameter, height and volume, are controlled by different geospatially continued
factors, including soil type, soil texture, nutrients, solar radiation, soil moisture and water-
holding capacity [45]. It has been reported by previous studies that forest tree attributes
measured during inventory, such as tree diameter, height, density, tree volume, AGB, etc.,
have spatial autocorrelation in a limited area within a particular stand type [46,47]. Still,
such spatial autocorrelation becomes discontinued in the case of complex topography,
anthropogenic pressures and commercial cutting areas [42]. Numerous studies reported
integrating remote sensing methods with ordinary kriging and random forests for AGB
estimation [44,48]. Specifically, such a combination is most suitable for the prediction of
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large areas with uneven topography and bioclimatic conditions [45,49]. Still, few studies
published on AGB estimation, specifically in topographically complex forests in Pakistan,
use geo-statistical methods combined with remote sensing techniques. In this context, this
research uses Sentinel-2 RS data for biomass estimation and compares them with a geo-
statistical technique (kriging interpolation). The main objectives of the present study are
(1) to estimate above-ground biomass and carbon sequestration potential of forest area,
(2) to explore the relationship between spectral bands and indices with biomass using sim-
ple, multiple and stepwise linear regression models and (3) to compare the linear regression
models with global datasets to explore various potential sites for REDD+ implementation.

2. Materials and Methods
2.1. Study Area

The study area of the present research is the Galis forests located in the Abbottabad
district of the Hazara forest division, Pakistan. The study area is located approximately
between 33◦55′ and 34◦20′ north latitude and 73◦20′ and 63◦30′ east longitude. The Galis
forests are on rugged, steep and precipitous slopes rising from 1067 to 2439 m. Galis forests’
climate represents both the dry sub-tropical and temperate zones. Sub-tropical arid climate
lies on the western tract of Abbottabad, whereas the northern tract roughly falls in the cold
temperate zone. January and February are the coldest months, whereas March and April
are pleasant. May and June are hot and dry months. Monsoon rains tend to start in the
middle of September.

The major forest types are (i) ub-tropical pine forests, (ii) low-level blue pine forests
and (iii) Western mixed coniferous forests. Sub-tropical pine forests are located between the
temperate and the dry sub-tropical vegetation. The altitudinal range of occurrence of Chir
pine (Pinus roxburghii) varies from 920 to 1828 m in elevation. The principal broadleaved
associate is oak (Quercus incana), with small amounts of other broadleaved species of
Mallotusphillipinensis and Lyonia ovalifolia. Low-level blue pine forests extend over half
of the study area and have better stocking than different coniferous forest types. The
broadleaved associates are oak (Quercus dilitata and Quercus incana) and Prunus padus,
mostly depressions and moist nullahs. Western mixed coniferous forests cover a minor
portion of the total area of the forests, and their composition varies at different places. Still,
the bulk of the growing stock consists of blue pine, deodar and silver fir.

2.2. Forest Inventory Part

This research used tier 2 methodology to estimate biomass and quantify the carbon
sequestration potential in the study area. The tiered approach is based on the accuracy
and complexity of inventory and resources required for these inventories [2]. A total of
60 plots were laid out to collect field data for AGB estimation in moist temperate forests,
as illustrated in Figure 1 with the support of forest department. Data were collected
from stratified random plots using field protocols as described in [23,50], keeping in view
limiting factors such as time, resources, accessibility and steep slopes. As per the scope of
the research, data were collected from 60 plots representing the AGB heterogeneity in the
forest strata. Plot measurements were carefully performed, considering slope correction
and ensuring horizontal distance. Errors in field measurements should be rectified before
final data processing [51] because they affect the results and inventory accuracy [52].
The sampling plots’ size and shape were decided per UNFCCC (2015) guidelines. The
shape of the plots was circular, having an area of 0.1 ha and 17.84 m radius. The plot
measurements include species composition, forest type, geodetic coordinates, elevation,
aspect, diameter at breast height (DBH), tree height and crown cover using diameter tape,
Hagaalimter, Garmin eTrex 30× GPS, Sunntocampass, ranging rods and topographic maps.
Geodetic coordinates and elevation were recorded using GPS receiver and subsequently the
aspect was calculated based on coordinates using a digital elevation model. DBH of all trees
(having≥5 cm diameter) was measured at 4.5 feet or 1.3 m above the ground from the collar
point of trees as per field measurement standard [50], while Haga Altimeter measured
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the height of the trees using trigonometric ratio of tree top and base with predefined
distance. Sunnto Compass navigated directions from the plot to the plot, and a measuring
tape was used for plot-to-plot and within-plot distance measurements [14,29]. Trees with
defects, such as buttressed or forked trees, were also measured. Data were entered in the
departmental field inventory forms taken from Pakistan Forest Institute (PFI), Peshawar.
The data were transferred to Microsoft Excel sheets where biomass and carbon stocks were
calculated. Biomass and carbon stocks were calculated by using allometric equations. The
allometric equations are the regression equations between two or more forest attributes
that can be used to estimate tree height, biomass or other growth attributes [53,54]. Thus,
biomass can be estimated using field measurements such as diameter and height [55], as
height represents tree primary growth and diameter represents secondary tree growth.
The allometric equations used in this study to estimate biomass for inventoried species
were taken from Pakistan Forest Institute, Peshawar (Supplementary Table S1). These
allometric equations were specie- and site-specific and could only be used for the study
area. Furthermore, AGB in kgs per plot was upscaled per hectare by multiplying the plot
AGB by 10 because our plot size was one-tenth of a hectare. The AGB in tons was obtained
by multiplying by 1000. Lastly, above-ground carbon stocks (AGCs) were determined by
multiplying biomass in tons with a conversion factor of 0.47, as per explained in [40,56]. The
conversion factor depicted that half of the dry biomass is carbon stocks for the given specie.
The below-ground biomass (BGB) and below-ground carbon stocks (BGCs) were estimated
by multiplying the AGB and AGC with a conversion factor of 0.26 [2,24,40]. The total carbon
stocks were determined by adding AGC and BGC and then converted into CO2 equivalent
by multiplication of 3.66 with total carbon stocks. This conversion factor (3.66) is the ratio
of molecular mass to atomic mass of carbon. Species wise biomass and carbon stocks
have been estimated from the field inventory data and departmental data (for the year
2017) by using the literature’sbiomass expansion factor (BEF) and wood density. Likewise,
species wise biomass and carbon stocks for the year 1984 have been estimated from the in
situ inventory data of forest management plan. Moreover, temporal deforestation (1984
to 2017) has been estimated using two different datasets which include departmental
stocked area (ha) and Landsat temporal images (Landsat-5 for 1984 and Landsat-8 for 2017).
Subsequently, the carbon density and emission factors were calculated as described in the
Technical Guidance for Emission Factors from deforestation ((https://www.un-redd.org/)
(accessed on 17 July 2022)). Finally, carbon sequestration potential (CSP) was estimated
from carbon carrying capacity (CCC) and estimated carbon density as described by [57].

2.3. Sentinel-2 Product Processing

Two Sentinel-2A products were downloaded from Copernicus Open-Access Hub
((https://scihub.copernicus.eu/dhus/#/home) (accessed on 27 September 2019)) for the
study area. The Sentinel-2A products were ortho-rectified in UTM 43N Zone/WGS 84
projection and datum (Universal Transverse Mercator 43N Zone/World Geodetic System
1984). The processing and product levels of the acquired tile were Level-1C and S2MSI1C,
respectively, and were obtained on 28 October 2018 for Galies Forest Abbottabad. S2A
product was acquired for the date close to forest inventory time while keeping in view
product quality. The acquired image has the least cloud cover in the study area (Sup-
plementary Figure S1). Sentinel-2A products are composed of 100 by 100 km2 tiles and
provide top-of-the-atmosphere (TOA) reflectance measurements. Sentinel-2A was selected
for this study since it has a high resolution compared to other open-source satellite products.
Sentinel-2 provides a spatial resolution of 10 m in red, blue, green, near-infrared bands and
20 m spatial resolution in three additional red-edge bands, making it suitable for vegetation
analyses. Sentinel-2 products were explored in ESA Sentinel Application Platform (SNAP)
5.0, the Sentinel-2 toolbox, downloaded from ((http://step.esa.int/main/download/) (ac-
cessed on 16 October 2019)). Sentinel-2 products (Level-1C) were preprocessed using the
Sen2Cor plugin in SNAP 5.0 (It have been developed by Europian Space agency (ESA),
https://step.esa.int/main/snap-5-0-released/ (accessed on 16 October 2019)). Sen2Cor is a
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third-party plugin in SNAP 5.0. which processed Level-1C products into Level-2A outputs
using ESA’s algorithms [58]. Level 2A processing by Sen2Cor includes the conversion
of top-of-the-atmosphere (ToA) ortho-rectified reflectance into atmospherically corrected
outputs, i.e., bottom-of-the-atmosphere (BoA) reflectance [59]. The Sen2Cor processing
was completed in multi-steps in an orderly manner; it first began with cloud detection
and scene classification and further proceeded to aerosol optical thickness (AOT) and the
water vapor (WV) content retrieval, ultimately resulting in Level-2A output [59]. After
preprocessing, the Level-2A outputs were resampled to 10 m’ resolution for further anal-
ysis. Furthermore, shape files of study sites and inventory points were imported on the
output Level-2A image. Subsets of the image were performed using the raster analysis
tool in SNAP 5.0. The processed images were analyzed for various spectral indices us-
ing the “thematic land processing” option under “optical” tools in SNAP 5.0. SNAP 5.0
is user-friendly software that computed vegetation indices (VIs) with better quality for
further analysis, i.e., biomass mapping, as depicted in Figure 2. The vegetation indices
are mathematical transformations that can highlight vegetated areas in the images and
can subsequently be easily used for various vegetation mapping and monitoring. Several
VIs are available for vegetation monitoring; studies reported about 150 different VIs for
vegetation study [39], but this study selected ten (10) spectral indices for AGB estimation.
The justification behind the selection of indices was their performance in biomass and
vegetation mapping published in previous studies. A total of four categories of indices
are given in Table 1. Structure Insensitive Pigment Index (SIPI) was selected for biomass
mapping and estimation of light use efficiency. The biomass map was compared statis-
tically with online global forest cover datasets such as the Global 1km Forest Canopy
Height Map (GFCH) downloaded from ((https://webmap.ornl.gov/ogc) (accesed on 5
January 2020)) [60] and Global Forest Change Map 2000–2017 (GFCM) downloaded from
((https://earthenginepartners.appspot.com/science-2013-global-forest) (accesed on 25
January 2020)) [61].
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Table 1. Sentinel-2 vegetation indices.

Vegetation Index Formula (Sentinel 2 Bands) Reference

Broadband VIs

EVI-2—Enhanced VI 2.5 × (ρNIR − ρR/ρNIR + 2.4 *ρR + 1) 2.5 × (ρB8A − ρB4/ρB8A +
2.4 ×ρB4 + 1) [62]

MSR—Modified Simple Ratio ((ρNIR/ρR − 1)/sqrt((ρNIR/ρR) + 1)) ((ρB8A/ρB4-1)/sqrt((ρB8A/ρB4) + 1)) [63]

NDVI—Normalized
Difference Vegetation Index (ρNIR − ρR)/(ρNIR + ρR) (ρB8A − ρB4)/(ρB8A + ρB4) [64]

SAVI—Soil-Adjusted
Vegetation Index 1.5 × (ρNIR − ρR)/(ρNIR + ρR + 0.5) 1.5 × (ρB8A − ρB4)/(ρB8A + ρB4 + 0.5) [65]

Narrowband Vis

ARVI—Atmospherically
Resistant Vegetation Index

(ρNIR − ρR − (ρB2 − ρB4))/(ρNIR +
ρB4 − (ρB2 − ρB4))

(ρB8A − ρB4 − (ρB2 − ρB4))/
(ρB8A + ρB4 − (ρB2 − ρB4)) [66]

RERVI—Red Edge Ratio VI ρNIR/ρRE ρB8A/ρB6 [67]

S2REP—Sentinel-2 Red
Edge Position 705 + 35×

ρNIR+ρR
2 −ρRE1

ρRE2−ρRE1 705 + 35×
ρ783+ρ665

2 −ρ705
ρ740−ρ705

[68]

Light Use Efficiency Index

SIPI-Structure Insensitive
Pigment Index (ρNIR − ρR)/(ρNIR − ρR) (ρB8A − ρB1)/(ρB8A − ρB4) [69]

Canopy Water Contents Indices

NDII—Normalized Difference
Infrared Index ρNIR − ρSWIR/ρNIR + ρSWIR ρB8A − ρB12/ρB8A + ρB12 [70]

NDWI—Normalized
Difference Water Index ρNIR − ρSWIR/ρNIR + ρSWIR ρB8A − ρB11/ρB8A + ρB11 [71]

2.4. Geo-Statistical Kriging and Prediction Mapping

One of the main objectives was to interpolate a map for AGB estimation in the study
area. Regarding geo-statistical interpolation, we have used ordinary kriging (OK) with the
most suitable model to predict AGB values in the study area (Figure 2). OK interpolation
was selected based on its performance published in research for biomass estimation [72–75].
AGB data collected from 60 sample plots were divided into two parts; 70% ofdata were
used to develop the prediction model and 30% of data were used in model validation.
Initially, we computed an omnidirectional experimental variogram to analyze the AGB
data’s semivariances. Afterward, an appropriate variogram model was selected as a good
fit compared to other models. Numerous variogram models, such as Gaussian, exponential
and spherical, are extensively used in geostatistics. Subsequently, kriging weights are
estimated by fitting the best variogram model by using a basic kriging equation. Finally, in
addition to estimated AGB values, the kriging equation also estimates variances in each
AGB value [76,77].

Nevertheless, since kriging interpolation is based on a parametric prediction proce-
dure, it depends on a few assumptions to provide an unbiased prediction [78]. For instance,
it is essential to remove the trend from the data before variogram calculation and ensure
that no trend exists in the data distribution [79]; if we consider this assumption in our
study, it would mean that the spatial distribution of AGB is not strongly influenced by
geographical coordinates (latitude and longitude). Therefore, variogram based on distance
function only, an isotropic effect, was considered in order to explain spatial variance in AGB
values (as shown in Supplementary Figure S5). Data with a strong trend would result in an
erroneous variogram model and, therefore, biased and incorrect predictions. To conduct
trend-surface analysis and evaluate spatial dependence, different regression models (linear,
polynomial or quadratic) were tested between AGB data and geographical coordinates. The
strength of the trend surface may be assumed by verifying the coefficient of determination
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(R2) or residuals’ normal Q-Q-plot. In case of higher R2 or skewed Q-Q plot, residuals
of trend-surface are used to compute experimental variogram [80]. The accuracy of the
variogram model may be verified by cross-validation diagnostics which include numerous
methods such as root mean square error (RMSE) and mean prediction error (MPE), etc. [81].

Moreover, for unbiased kriging predictions, the expected value of MPE and normalized
mean-squared error must be zero and one, respectively, to prove unbiased kriging. In
regards to our study, the objective of kriging was to predict the value of AGB; that was,
random variable (Z) at unsampled locations (points) throughout the study area; from
sampled (field AGB) data, z(x1), z(x2), . . . , z(xn)at definite locations (points) x1, x2, . . . ,
xn [76]. Since kriging provides the best urbanized and exact interpolation with the least
prediction error at each unsampled point, it is therefore considered as “Best Linear Unbiased
Predictor (BLUP)” [79]. However, kriging performance is only optimal concerning a
selected model and a chosen optimality standard [82].

Kriging is useful when significant covariates or explanatory variables influence the
target variable’s spatial distribution. In such cases, the target variable for which estimating
the spatial distribution is sought is modelled as a function of covariates, called external
drift. In our problem, the explanatory variables include demographic, bioclimatic and
topographic variables and the Sentinel-2 image vegetation index. Demographic variables
were a distance from roads, settlements, streams and rivers, while the Sentinel-2 image
vegetation index includes ARVI, which uses spectral bands (Band 1-Aerosol, Band 4-Red
and Band 8A-Near Infrared).We assumed that these variables are related to the spatial
distribution of biomass over the area [72,75,83]. Topographic variables were extracted from
the digital elevation model (STRM n34_e073_1Arc_V3) with 30 m resolution downloaded
from ((https://earthexplorer.usgs.gov/) (accesed on 2 March 2020)). STRM DEM was
resampled to 10 m using bilinear resampling method in ArcGIS 10.3 (It’s developed by
ESRI, https://www.esri.com/en-us/arcgis/about-arcgis/overview (accesed on 2 March
2020)) and afterward topographic variables including slope, aspect and elevation were
computed [84].

Bioclimatic variables included annual temperature and precipitation, downloaded
from WorldClim—Global Climate Data ((http://www.worldclim.org/bioclim) (accesed on
20 March 2020)).The shape files of the forest boundary and all the explanatory variables
were imported in ArcGIS 10.3. All the data layers were projected to the same projection
(WGS-84) and spatial resolution (30 m).We have used the “variable distance buffer” tech-
nique to create different zones around demographic layers where values can be related to
biomass presence or absence. The “variable distance buffer” was available in the “Analysis
tool” in ArcGIS 10.3. Variables’ distance buffers were different for different demographic
variables; for roads, buffers were created up to 6000 m with 500 m of buffer width; for
settlements, buffers were created up to 2400 m with 300 m of width; for rivers, buffers have
500 m of width and extended up to 5000 m, and lastly, buffers for streams were extended
up to 3000 m with 300 mof width. All demographic layers were changed into raster using
the “feature to raster” tool. Then, biomass inventory points were overlaid on these layers,
and values were extracted for all explanatory variables. Finally, data were imported to an
MS Excel sheet for further analysis.

The data were explored using R statistical programming software (R Foundation:
Vienna, Austria). A few specialized libraries which were used include gstat, lattice, gridEx-
tra, akima, sp, geoR, fields, rsm, maptools, maps, GISTools, raster, automap and corrplot.
These libraries were needed for biomass mapping and prediction. A correlation matrix was
developed between biomass and explanatory variables. The significant variables were then
forwarded for further model development. The shape file was uploaded to R-Studio, and
boundary extent was prepared for grid formation with prediction points at 0.001 spacing
(based on point counts on the particular vector layer). The grid was further imported to
ArcGIS, and data of all significant variables at prediction locations were extracted from
raster layers. These extracted data were imported to R-Studio, and trend conditions were
analyzed. A trend surface model was fitted, and regression was applied to remove the

https://earthexplorer.usgs.gov/
https://www.esri.com/en-us/arcgis/about-arcgis/overview
http://www.worldclim.org/bioclim
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data’s de-trend. Two regression models were established, namely (1) forward type and
(2) backward type. Akaike information criterion (AIC) was considered the best mathe-
matical method to evaluate and compare the forward and backward stepwise regression
models developed for AGB estimation using the aforementioned explanatory variables.
AIC determined the best fit stepwise model that explained the maximum variation in AGB
estimation using the most influencing variables. Finally, the model’s results were analyzed
for biomass mapping, and the best model with the minimum error was selected.

The kriging weights are computed and applied to the sampled locations (points) as
per the formula given below [80]:

Z(X0) =
N

∑
i=1

λiz(xi) (1)

where Z(X0) is the predicted value (of AGB) at spatial location X0, z(xi) is the observed
AGB values in the field at sampled locations xi and λi are the weights computed based on
the spatial distribution of data (i.e., distances between AGB points) and on a unique kind
of variation called nugget effect of the nearby AGB values [85]. The standard errors were
also analyzed for the accuracy of the prediction. The resulting biomass map was converted
into a raster and compared to the Sentinel-2 image map.

2.5. Statistical Analysis

Correlation and regression analysis assessed the relationship between biomass and
vegetation indices, including simple, multiple and stepwise linear regression. Simple linear
regression included scatterplots between biomass (t/ha) versus different vegetation indices.
The coefficient of determination (R2) was used as an indicator for the best VI for biomass
mapping. Multiple linear regression models were developed to explore the relationship
between all vegetation indices and AGB (t/ha). The goodness of fit for each regression
was examined by high R2 value and low root mean square error (RMSE). The model has
considered whether its p-value was equal to or less than 0.05. The model fulfilling the above
three requirements, i.e., high R2, low RMSE and low p-value, was selected for biomass
estimation mapping. Furthermore, a stepwise regression relationship was developed
between many independent variables and biomass. Computed vegetation indices (ten) and
spectral bands are independent variables. The stepwise regression was applied in SPSS,
and significant independent variables were used in the final model development, with
a lower p-value, i.e., less than 0.05. The model’s accuracy was assessed with root mean
square error (RMSE) by the following accuracy metrics and mean absolute error (MAE).

RMSE =

√
1
n ∑n

i=1

(
Yi− Ŷi

)
(2)

where Yi is the measured value of biomass (dependent variable); Yi is the estimated value
of biomass and ‘n’ is the number of samples.

3. Results/Discussion
3.1. Biomass Estimation and Carbon Emissions

The results showed that the highest AGB and AGC were 610.94 t/ha and 287.14,
respectively. The total biomass (AGB plus BGB) and total carbon stocks (AGC plus BGC)
were 769.78 t/ha and 328.44 t/ha, respectively. At the same time, the lowest AGB and AGC
were 40.31 t/ha and 18.95 t/ha, respectively. The total biomass (AGB plus BGB) and total
carbon stocks (AGC plus BGC) were 50.79 t/ha and 21.67 t/ha, respectively (Table 2). Most
plots have higher biomass values, indicating that the forests were dense and well-stocked.
The major species were kail (Pinus wallichiana), fir (Abiespindrow), deodar (Cedrusdeodara)
and some broadleaved species. Regarding carbon credits, the highest CO2 e was 1202.09
while the lowest was 79.31, with a total range of 1122.7 CO2 e. The summary statistics of
AGB, BGB, total biomass, AGC, BGC and total carbon stocks have been shown in Table 2.
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The mean AGB and AGC for moist temperate forests were 274.29 t/ha and 128.92 t/ha,
respectively, while the mean biomass and carbon stocks of both pools were 345.61 t/ha
147.46 t/ha, respectively. These forests fall in “Reserved Forests” as per legal definition, in
which all rights and acts were prohibited except if permitted by the government. Social
pressure and disturbance were low due to limited access to reserved forests compared with
adjoining Guzaras forests of the Galies Forest Division. Therefore, higher values of biomass
were observed in these forests. There were many working circles (areas with specific
objectives of forest management) which included improvement, plantation and recreation
working circles. Tree cutting was banned in all these functional circles. Carbon emission
factors were developed using departmental data from Working Plan between 1984 and
2017. As described in Table 3, the total area of the Galies reserved forests was 19,558 ha, and
the stocked area was 16,589 ha in 1984, whereas the stocked area was reduced to 14,988 ha
in 2017. The change in forest area during this period (1984–2017) was 1610 ha, about
16.1 square km of deforestation in 33 years. The present biomass and carbon stocks for the
Galiesreserved forests were 2,586,983 and 1,215,882 tons, respectively, about 34 percent of
the biomass in 1984.The deforestation during the last 33 years was 1610 ha, and the carbon
stocks dropped from 212 t/ha in 1984 to 81 t/ha in 2017 (Table 3). The emissions factor was
determined to be equal to 479.02 tCO2 e/ha, which was equal to 771,190 tCO2 e emissions
during the last 33 years. The carbon sequestration capacity was calculated as described
in [86], which was estimated to be 70.88 ± 13 t/ha (Table 3).

Table 2. Summary statistics of biomass and carbon stocks.

Statistics AGB (t/ha) BGB (t/ha) Total B (t/ha) AGC (t/ha) BGC (t/ha) Total C (t/ha)

Mean 274.29 71.32 345.61 128.92 18.54 147.46

Standard Error 13.01 3.38 16.39 6.11 0.88 6.99

Standard Deviation 100.77 26.20 126.97 47.36 6.81 54.17

Range 570.63 148.36 718.99 268.20 38.57 306.77

Minimum 40.31 10.48 50.79 18.95 2.72 21.67

Maximum 610.94 158.84 769.78 287.14 41.30 328.44

Sum 16,457.47 4278.94 20,736.41 7735.01 1112.52 8847.54

Table 3. Summary of carbon stocks assessment of Galies forests.

Species WD
(kg/m3) BEF

Volume
(m3)
1984

Biomass (t)
1984

C Stocks (t)
1984

Volume
(m3)
2017

Biomass (t)
2017

C Stocks (t)
2017

Kail 340 1.7 7,275,058 4,204,984 1,976,342 2,835,057 1,638,663 770,172

Fir 380 1.7 4,307,354 2,782,551 1,307,799 1,255,683 811,171 381,250

Deodar 470 1.7 79,216 63,293 29,748 73,258 58,533 27,511

Chir 330 1.7 228,975 128,455 60,374 102,440 57,469 27,010

B/L 670 1.4 284,889 324,489 152,510 18,566 21,147 9939

Total 12,175,492 7,503,772 3,526,773 4,285,004 2,586,983 1,215,882
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Table 3. Cont.

Species WD
(kg/m3) BEF

Volume
(m3)
1984

Biomass (t)
1984

C Stocks (t)
1984

Volume
(m3)
2017

Biomass (t)
2017

C Stocks (t)
2017

Carbon Emissions from Deforestation (1984–2017)

Departmental Stocked
Area (ha) Landsat Image Area C Stocks (tons) C Stocks

(t/ha)

1984 16,598 8896.23 3,526,773 212

2017 14,988 7692.03 1,215,882 81.12

Difference 1610 1204.2

Emission Factors [(EFs= AGC1984- AGC2017) × 3.66]
EFs1984-2017 = [(212 − 81.12) × 3.66] = 479.02 tCO2 e/ha

Carbon Emissions (EFs × Deforestation)
Carbon Emissions = 479.02 tCO2 e/ha × 1610 ha = 771,190 tCO2 e

Carbon Sequestration Potential (CSP) * = Carbon Carrying Capacity (CCC)—Carbon Density (CD)
CSP = (152 ± 13) ** − (81.12) = 70.88± 13 t/ha divided by forest age.

* [57]. ** This figure was a generic CCC for moist temperate forests [86].

3.2. Simple Linear Regression

Among the four broadband indices (Figure 3), NDVI performed the best with an R2

of 0.45, followed by the NNIR with an R2 of 0.44. NDVI and NNIR linear relationships
explained 45 and 44 percent of the data variations, respectively, while they were unable to
describe 55% of the variation. The MSR also explained a similar data variation of 43% while
of only 39% for RSR. Overall minor differences were observed in the behavior of these
indices. As broadband indices use Red and NIR portions of the spectrum, these indices
face saturation problems when an increase in canopy cover occurs. When vegetation
canopy becomes denser in mature forests, saturation occurs. At this stage, broadband
indices shoot up and cannot detect higher biomass [87]. Red absorption may reach the
maximum in canopy cover approaching 100% and ultimately decrease in Red absorption
relative to canopy increase. Such saturation in Red absorption may cause an unequal
output from bands ratio (spectral analysis), leading to misleading biomass estimation.
Narrow-band indices used in the present research were Red-edge Ratio Vegetation Index
(RERVI), Atmospherically Resistant Vegetation Index (ARVI) and Sentinel-2 Red-edge
position (S2REP). The highest correlation was found for ARVI with R2 0.46, followed by
S2REP and RERVI with R2 0.24 and 0.11, respectively. The two narrow-band spectral indices
(S2REP and RERVI) displayed poor correlation (performance) with the corresponding field-
estimated biomass. Therefore, biomass estimation based on S2REP and RERVI will not
give good results. SIPI positively correlated with biomass, and R2 of 0.30 with a p-value
of less than 0.01 was observed. Among the canopy water indices, the current study used
the Normalized Difference Water Index (NDWI) and the Normalized Difference Infrared
Index (NDII) for a linear relationship with biomass. The performance of both indices
for AGB estimation was also similar, with an R2 of 0.17 and a p-value of 0.003. The
linear model of both indices has explained 30% of the data variations and demonstrated a
good relationship with biomass. The resultant vegetation indices have been displayed in
Supplementary Figure S2.
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Figure 3. Simple linear regression between biomass and spectral indices.

Similarly, the linear regression model of spectral bands showed that Band 1 (aerosol),
Band 2 (Blue) and Band 4 (Red) demonstrated significant relationships with the biomass.
In contrast, all the other bands’ relationships were insignificant. However, the R2 values
were not high when compared to spectral indices—Band 1 exhibited good performance
compared to other bands (Band 2 and 4). The R2 values were 0.12, 0.11 and 0.10 for Band 1,
2 and 3, respectively (Supplementary Figure S3).
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3.3. Multiple and Stepwise Linear Regression

MLR models showed that ARVI has the highest correlation (0.67) with biomass com-
pared to NDVI and NNIR, while the overall R2 for the MLR model was 0.46 with a
significance value of less than 0.0001 (Table 4). The overall MLR R2 has shown an increase
in correlation compared to simple linear regression. Regarding the MLR model between
the spectral bands and biomass, three rounds were selected on the basis of the significance
value, which includes Band 2 (Blue), Band 4 (Red) and Band 8A (NIR). The overall corre-
lation was 0.22, which has increased compared to the linear model of spectral bands and
biomass. Band 2 has the highest correlation (0.34) among the spectral bands with biomass.

Table 4. Multiple linear regression of Sentinel-2 indices and bands versus biomass.

Correlations Regression Summary

Biomass ARVI NDVI NNIR R 0.683

Biomass 1.000 Adjusted R Square 0.430

ARVI 0.679 1.000 R Square 0.467

NDVI 0.675 0.995 1.000 Std. Error 82.225

NNIR 0.666 0.992 0.977 1.000 F-value 12.554

Model Equation
Biomass = 2678.24*ARVI − 773.59*NDVI − 1439.98*NNIR − 57.373 Sig 0.000

Biomass B2 B4 B8A R 0.476

Biomass 1.000 Adjusted R Square 0.173

B2 −0.342 1.000 R Square 0.227

B4 −0.320 0.963 1.000 Std. Error 99.015

B8A −0.042 0.743 0.788 1.000 F-value 4.209

Model Equation
Biomass = −2652.669*B2 − 1600.920*B4 + 674.487*B8A + 263.281 Sig 0.011

SLR showed that nine spectral bands were regressed against field AGB; however,
Band 1 (aerosol) and Band 7 (Red-edge third band) were selected in the final regression
model because these were significant (Table 5). Similarly, when the best three spectral
indices (NNIR, ARVI and NDVI) were regressed with biomass, only the ARVI was selected
in the final model. The other indices were insignificant, with a p-value greater than 0.05.
The overall R2 for the SLR model was 0.46, similar to that of the multiple linear models.
Regarding single-band correlation among the spectral bands, Band 1 has the highest
correlation (−0.35) with biomass.

3.4. Geo-Statistical Biomass Estimation

All the explanatory variables (bioclimatic, topographic and demographic) were corre-
lated with biomass. The distance to settlements, ARVI and annual precipitation were signifi-
cantly associated with biomass, while other variables were insignificant
(Supplementary Table S2). ARVI was strongly correlated to biomass with a p-value of
less than 0.01. At the same time, the distance to settlements and annual precipitation was
strongly associated with a p-value of less than 0.05. All other variables have a significance
greater than 0.05, which means that a more significant p-value suggests that changes in
explanatory variables will not significantly change the response variable. Some variables,
such as ARVI, settlements, slope and precipitation, were also strongly correlated. These
mutual correlations may affect model performance (Supplementary Table S2).
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Table 5. Stepwise regression of Sentinel-2 indices and bands versus biomass.

Variables Correlations Regression Summary

Entered Removed Sig Biomass ARVI NDVI NNIR R 0.679

ARVI 0.000 Biomass 1.000 Adjusted
R Square 0.449

NDVI 0.990 ARVI 0.679 1.000 R Square 0.461

NNIR 0.614 NDVI 0.675 0.995 1.000 Std. Error 80.830

NNIR 0.666 0.992 0.977 1.000 F-value 38.469

Model Equation: Biomass = 804.433*ARVI − 301.711 + e Sig 0.000

Sentinel-2 Bands and Biomass Stepwise Regression

Variables Correlations Regression Summary

Entered Removed Sig Biomass B1 B7 R 0.460

B1 0.000 Biomass 1 R Square 0.211

B7 0.037 B1 −0.359 1 Adjusted
R Square 0.176

B2 0.391 B7 −0.038 0.688 1 Std. Error 98.86

B3 0.239 Model Equation
Biomass =

−6933.716*B1 + 569.194*B7 + 248.559

F-value 5.89

B4 0.314 Sig 0.005
B5 0.256

B6 0.365

Method/decision for variable selection:
Criteria: Probability-of-F-to-enter ≤0.050, Probability-of-F-to-remove ≥0.100

B8A 0.537

B11 0.365

B12 0.470

Stepwise linear regression models (SLRMs) were developed in R-Studio using biomass
and all explanatory variables (Table 6). SLRMs were evaluated in two directions of selection,
namely (1) forward selection and (2) backward selection. The “forward” SLRM started with
biomass and added all explanatory variables. At the same time, “backwards” SLRM took
biomass and all explanatory variables and successively removed those variables with low
importance. Backwards, the AIC value for the overall model started at 727.92 and stepwise
while removing low-importance variables and ending at 716.59 in eight steps. The final
step left with three variables (distance to settlements, ARVI and annual temperature), but
only ARVI was enormously significant (p-value of 0.005) for biomass prediction. Forward
selection starts with AIC 726.81 for the whole model (all variables) and ends at 716.67 in the
second step with correlation (R2 = 0.46).The forward selection resulted in a very strongly
significant value (less than 0.000) for ARVI, and was therefore considered to be the best
model as compared to the “backward” selection (Table 6). The forward selection model
was considered best for prediction and used kriging to interpolate biomass throughout
Galiesreserved forests. The kriging output biomass map depicts accurate biomass mapping
similar to the Sentinel-2 image; however, kriging mapping comes with additional variance
and uncertainty information about biomass prediction (Figure 4).
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Table 6. Stepwise linear regression model for kriging.

Backward Selection (R2 0.42) Forward Selection (R2 0.46)

Estimate Std.
Error p-Value Estimate Std.

Error p-Value

Intercept 185.390 109.91 0.097. Intercept 74.31 56.71 0.195

Settlements 0.0381 0.0227 0.098. ARVI 333.6 92.51 0.00064 ***

ARVI 275.11 96.160 0.005 **

Annual Temp −1.10 0.7824 0.163

Model Equation:
Biomass = 275.11*ARVI + 185.390

Model Equation:
Biomass = 333.6*ARVI + 74.31

Signif. codes: 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05
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3.5. Model Accuracy and Biomass Mapping

The results show that the multiple linear regression model of the bands with biomass
has the lowest RMSE (48.53) and MAE (38.42), and is therefore considered best for biomass
estimation. However, among the three index models, the best was the stepwise model
(ARVI), with RMSE and MAE values of 48.86 and 42.45, respectively (Table 7). The predicted
biomass of all these models was correlated with observed biomass for inventory plots, as
shown in Figure 5.The stepwise linear model of indices has the highest R2 value (0.57),
while the lowest R2 value (0.19) was observed in a simple linear model of bands (band 1).
The biomass maps were developed using linear (multiple and stepwise) regression. The
results show that the lowest total biomass was predicted by a stepwise and straightforward
linear model of ARVI.
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Table 7. Accuracy assessment of AGB models.

Model Regression RMSE MAE

Biomass = −301.710 + 804.432*arvi Simple Linear 48.86 42.45

Biomass = 2678.24*ARVI − 773.59*NDVI −
1439.98*NNIR − 57.373 Multiple Linear 50.07 41.72

Biomass = 804.433*ARVI − 301.711 Stepwise Linear 48.86 42.45

Biomass = 297.40 − 3940.85*B1 Simple Linear 62.5 43.53

Biomass = −2652.669*B2 −
1600.920*B4+674.487*B8A + 263.281 Multiple Linear 48.53 * 38.42 *

Biomass = −6933.716*B1 + 569.194*B7 + 248.559 Stepwise Linear 60.72 40.88

‘ * ’ indicates the best regression model with least
RMSE and MAE values

Forests 2023, 14, x FOR PEER REVIEW 17 of 29 
 

 

3.5. Model Accuracy and Biomass Mapping 
The results show that the multiple linear regression model of the bands with biomass 

has the lowest RMSE (48.53) and MAE (38.42), and is therefore considered best for biomass 
estimation. However, among the three index models, the best was the stepwise model 
(ARVI), with RMSE and MAE values of 48.86 and 42.45, respectively (Table 7). The pre-
dicted biomass of all these models was correlated with observed biomass for inventory 
plots, as shown in Figure 5.The stepwise linear model of indices has the highest R2 value 
(0.57), while the lowest R2 value (0.19) was observed in a simple linear model of bands 
(band 1). The biomass maps were developed using linear (multiple and stepwise) regres-
sion. The results show that the lowest total biomass was predicted by a stepwise and 
straightforward linear model of ARVI. 

In contrast, the highest forest cover was predicted by the Band 1 model of simple 
linear regression (Figure 3). The results show that biomass prediction by our best models 
has similar spatial distribution compared to Global Forest Cover datasets (Figure 6). Scat-
terplots of GFCC map versus the Sentinel-2 band’s map and the Sentinel-2 indices map 
displayed a better correlation with R2 0.20 and 0.25, respectively (Supplementary Figure 
S4a,c). On the other hand, the relationship of the GFCH map versus the Sentinel-2 band’s 
map and Sentinel-2 indices displayed a weak correlation with R2 0.16 and 0.16, respec-
tively (Supplementary Figure S4b,d). 

Table 7. Accuracy assessment of AGB models. 

Model Regression RMSE MAE 
Biomass= -301.710+ 804.432*arvi Simple Linear 48.86 42.45 

Biomass= 2678.24*ARVI − 773.59*NDVI − 1439.98*NNIR − 57.373 Multiple Linear 50.07 41.72 
Biomass= 804.433*ARVI − 301.711 Stepwise Linear 48.86 42.45 

Biomass= 297.40 − 3940.85*B1 Simple Linear 62.5 43.53 
Biomass= −2652.669*B2 − 1600.920*B4+674.487*B8A+ 263.281 Multiple Linear 48.53* 38.42* 

Biomass= −6933.716*B1+569.194*B7+248.559 Stepwise Linear 60.72 40.88 
‘ * ’ indicates the best regression model with least RMSE and MAE values    

 
Figure 5. Accuracy assessment of regression models. 

Figure 5. Accuracy assessment of regression models.

In contrast, the highest forest cover was predicted by the Band 1 model of simple linear
regression (Figure 3). The results show that biomass prediction by our best models has
similar spatial distribution compared to Global Forest Cover datasets (Figure 6). Scatterplots
of GFCC map versus the Sentinel-2 band’s map and the Sentinel-2 indices map displayed
a better correlation with R2 0.20 and 0.25, respectively (Supplementary Figure S4a,c). On
the other hand, the relationship of the GFCH map versus the Sentinel-2 band’s map
and Sentinel-2 indices displayed a weak correlation with R2 0.16 and 0.16, respectively
(Supplementary Figure S4b,d).
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3.6. Potential Sites for REDD+ Implementation

The Landsat-5 and Landsat-8 images NDVI were reclassified with a threshold of 0.22 to
0.72 per output range.The results show that in 1988, the forest area was 8896.23 ha, while it
was reduced to 7692.03 ha in 2018 (Figure 7). The Landsat NDVI output areas (both in 1988
and 2018) were smaller than when compared with departmental reports. This is because
the smaller size of deforestation was not detected by Landsat and can be differentiated by
high-resolution data. The difference in area between 1988 and 2018 was 1204.2 ha, which
was less when compared to the departmental blank area (1610 ha). However, it is clear that
the overall forest area was reduced during 1988–2018, and the blank regions were observed
in different compartments. In the context of the REDD+ mechanism aimed primarily at
reducing deforestation and forest degradation, the blank areas are the potential sites for
REDD+ implementation in future projects. Moreover, the forest department has already
allocated different working circles (W/Cs) for proper forest management. The main W/Cs
of the Galies reserved forests are plantation W/C, improvement W/C, recreation W/C and
production W/C; REDD+ can be implemented in these departmentally assigned W/Cs by
reducing deforestation and controlling forest degradation in forested areas while ensuring
the enhancement of forest carbon stocks in blank areas (Figure 7).
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4. Discussion
4.1. Above-Ground Biomass Estimation

Previous studies reported similar results for above-ground biomass of moist temper-
ate forests. Ahmed et al. [88] assessed biomass and carbon stocks of significant species
(Abiespindrow, Pinus wallichiana, Cedrusdeodara and Piceasmithiana) in the coniferous forests
district Dir. The research reported the mean AGB and mean AGC were 258.98 t/ha and
129.49 t/ha, respectively. Our results of mean AGB and AGC (274.29 t/ha and 128.92 t/ha)
are consistent with the range of 215.5–468.2 t/ha AGB and of 107.8–234.1 t/ha AGC re-
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ported by Gairola et al. [89], who studied the tree biomass and carbon variations in a
moist temperate forest, India. At the same time, a similar AGB range (360–440 t/ha) was
published by Whittaker (1975), who gave an AGB estimation in a temperate forest. In
other studies, Naeem et al. [90] estimated a mean AGB of 261 t/ha for the moist temperate
forest of the study area, and Manan et al. [91] reported 287.9 t/ha AGB in adjoining moist
temperate forests in Pakistan. Likewise, Dar [92] estimated the AGB of moist temperate
forests in the adjacent Kashmir Himalaya and reported a mean AGB of 282 t/ha. The
Intergovernmental Panel on Climate Change (IPCC) has reported a generic AGB range
of 220–295 t/ha for the temperate forest, which is similar to our findings. However, in
contrast to this study’s findings, some researchers estimated lower AGB, such as Khan
et al. [93] who reported that the mean AGB for the moist temperate forests was 148.7 t/ha.
Khan et al. [94] said that the average AGB was of 144.5 t/ha in the ecotone of sub-tropical
pine and moist temperate forest and Ali et al. [95] reported an average AGB of 90.5 t/ha
for temperate forests. Considering the findings of [90], forest stand structure significantly
affects the AGB estimation. Higher stand density and species richness displayed higher
AGB in a temperate forest in Pakistan. The present research area comprises higher stand
density and species richness which contribute to higher AGB [96]; therefore, a higher mean
AGB has been estimated (i.e., 274.29 t/ha) compared to other studies.

4.2. Sentinel-2 Spectral Indices for AGB Estimation

The present study computed spectral indices (including ARVI) derived from the
Sentinel-2 images, and ARVI was the best index selected for AGB estimation and mapping.
Lu (2005) studied the impact of forest structure attributes in AGB estimation using Landsat
TM data and found that MLR models were better than simple regression for biomass
estimation models. The author of [97] has reviewed various remote sensing and geo-
statistical techniques for biomass estimation. The study described the performance of MLR
as compared to linear regression models for biomass estimation. The author of [98] has
compared various vegetation indices (NDVI, SAVI, MSAVI, GNDVI, TVI, DVI, etc.) for
vegetation cover estimation. The MLR model used by Clerici et al. [99] derived spectral
indices from GeoEye-1 and Pleiades-1A, developed a linear regression model between in-
situ AGB data and spectral index and reported RVI has the most satisfactory performance
(R2 = 0.58) for AGB mapping. Basso et al. [100] utilized spectral indices (NDVI, SR and
SAVI) and spectral bands of WorldView-2 image for AGB estimation and reported that
NDVI and Band 1(Coastal) showed good correlation at (0.88) and (−0.10), respectively.
In another study by Fuchs et al. [101], a multiple linear regression model was developed
using spectral bands and indices against AGB data. The study reported that ARVI and
Band 1, derived from Quickbird images, showed promising results with correlations of
0.50 and 0.58, respectively. Khan et al. [93] reported that RERVI derived from Sentinel-
2 data was the best index for AGB estimation. Imran et al. [102] used Red-edge and
canopy water indices (RENDVI, NDWI and NDII) computed from Sentinel-2 images.
The stepwise regression model demonstrated NDWI as the best index with an R2 of 0.46
for AGB estimation, whereas the Normalized Difference Index (DVI) and the Enhanced
Vegetation Index (EVI) derived from Sentinel-2 images also showed promising results
for AGB estimation [103]. Similarly, Imran et al. [104] showed that red-edge band-based
vegetation indices of Sentinel-2 performed better (R2 = 0.64) in estimating AGB compared
to broadband spectral indices. Likewise, in addition to Sentinel-2 indices AGB models,
other machine learning methods, such as random forest, support vector regression and
geographically weighted regression, may enhance the accuracy of AGB estimates.Regarding
geo-statistical AGB prediction, comprehensive field data of temperature, precipitation, soil
type, soil moisture, soil nutrients, soil organic carbon, topography, forest opening, specie
composition and density may improve AGB prediction.
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4.3. Geo-Statistical Kriging-Based AGB Estimation

This research used ordinary kriging as a geo-statistical interpolation method to esti-
mate and map AGB over the study area. The results show that the performance of ordinary
kriging to predict AGB was consistent with the spectral index-based AGB estimation,
and ARVI was selected as the best index for AGB mapping. However, significant lim-
itations in geo-statistical interpolation were the spatial distribution of forest inventory
data and usage of secondary data such as allometric equations for AGB estimation, DEM
data, bioclimatic data and demographic data [105]. As the forest cover extended over a
complex mountainous landscape, considered a discontinued variable, forest inventory
data exhibited lower autocorrelation, resulting in lower accuracy for the ordinary kriging
method [42] and causing overfit as it does not explain effectively [106]. Kriging inter-
polation accuracy increases with the addition of explanatory variables measured during
primary data collection [72]. Similarly, adding co-variables for AGB prediction at unknown
locations in co-kriging improves accuracy and surpasses ordinary kriging [49]. Likewise,
Reich et al. [107] reported that the spatial independency of forest attributes makes the
data difficult to model spatial variability with the ordinary kriging method. Moreover, in
AGB prediction in topographically complex forest vegetation, Su et al. [49] reported that
co-kriging (combined with random forests) was the best interpolation method compared to
ordinary kriging and simple regression models. In consistency with the findings of this
study, Tuominen et al. [108] reported that geo-statistical interpolation does not enhance the
accuracy of forest volume prediction when combined with spectral data of satellite images.
Similarly, in another study, Freeman and Moisen [105] assessed kriging as a technique
to enhance AGB prediction and reported no significant improvement in map accuracy.
Furthermore, they reported a higher statistical error in kriging interpolation compared
to direct radiometric relationships using spectral indices. Likewise, conducting intensive
insitu forest sampling and integrating different supplementary explanatory variables in
geo-statistical modeling should be used for the improved accuracy of AGB estimation [42].

4.4. Comparison of Remote Sensing and Geo-Statistical Techniques for AGB Estimation

The present study compared the AGB maps developed from linear regression models
based on remote sensing data with the ordinary kriging method to predict and map AGB
at unknown locations. However, the accuracy of the geo-statistical method was almost
similar to the remote sensing technique. SLR for selecting significant explanatory variables
showed a correlation (R2 = 0.43) for ARVI, slightly lower than the remote sensing technique
(R2 = 0.46). Previous studies showed that geo-statistical methods had shown higher accu-
racy than remote sensing techniques; however, in the case of this research, limited data
of topographic, edaphic, climatic and anthropogenic/demographic factors also affect the
accuracy of the kriging technique. Similarly, kriging accuracy also depends upon the spatial
distribution and heterogeneity of the AGB field plots [43]. Moreover, randomness and
representative field plots are also vital for accurate AGB interpolation. Practically, ordinary
kriging requires more insitu sample plot data to predict AGB at unknown locations [109].
The present study may have fewer sample plots or insufficient spatial distribution. There-
fore, the AGB prediction map has shown a slightly lesser accuracy than remote sensing
data [110]. In order to find the optimal interpolation method for a particular forest type,
repeated data collection is based on previous field information/method with minimum
errors [110]. In another study, regression kriging exhibited better results predicting carbon
stocks in fragmented forest biomes than ordinary kriging and co-kriging [111]. Yadav and
Nabdy [109] compared geo-statistical interpolation methods and reported that K-nearest
neighbor (kNN) performed better than co-kriging because it is a non-parametric approach.
Benitez et al. [75] said that integrating spectral indices derived from higher resolution satel-
lite images with geo-statistical kriging improves the AGB prediction accuracy, whereas the
present study used Sentinel-2 images with a medium spatial resolution of 10 m; therefore,
the usage of higher resolution images may enhance the accuracy of the kriging method.
The interpolation of AGB based on geostatistics significantly depends on spatial patterns
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and spatial autocorrelations, whereas spectral indices derived from satellite images mainly
do not explain the spatial heterogeneity of bioclimatic and edaphic factors, as established
by Maselli and Chiesi [112]. Therefore, an integrated prediction model of remote sensing
data and geo-statistical techniques significantly improves the AGB estimation and map-
ping [113]. The present study has some limitations, such as using third-party allometric
equations for AGB estimation, which is one of the significant limitations in AGB accuracy.
Locally developed standard allometric equations are critical for AGB estimation and varia-
tions within the stand. Furthermore, the lack of field-based data (topographic, bioclimatic,
soil type) is another main limitation for AGB prediction by kriging interpolation. Therefore,
the accuracy of AGB is affected by third-party data. Similarly, despite the high spatial
resolution, Sentinel-2 imagery has some limitations. Variations of biomass in the dense
canopy in moist temperate forests and forest degradation may not be efficiently quantified
by Sentinel-2 images (i.e.,10 m spatial resolution).

4.5. Present Research Contribution to REDD+ MRV

The main goal of the REDD+ MRV system is to explore the reliable, accurate and
economical technique for AGB estimation. The present study explored the potential of
Sentinel-2 images and derived spectral indices for carbon stock mapping; therefore, it may
contribute to the regional MRV system of the national REDD+ mechanism, particularly
in the SLMS of NFMS. For instance, AGB modeling and carbon stocks mapping based
on spectral indices on local scale, provide additional monitoring data to the national
REDD+ SLMS [39,40,93]. Moreover, keeping in view the results of this pilot research, open-
source Sentinel-2 images (with medium resolution) may be used for wall-to-wall coverage
of REDD+ activities, which may give better results with enhanced accuracy. Pacheco-
Pascagaza [28] and Roberts [114] compared to Landsat images (with lower resolution) used
by the NFMS. Simonetti et al., [115] developed a Sentinel-2 web platform for the MRV
system of REDD+ implementation, where the NFMSs of developing countries easily access
and acquire Sentinel-2 time series data with high temporal resolution. Furthermore, the
presence of Red-edge bands in Sentinel-2 multispectral images is very useful to minimize
the saturation issues in AGB estimation and monitoring [115]. Likewise, presently national
SLMSsare working with LULC classification and mapping using random forests [14];
spectral indices explored in this study may be incorporated as explanatory variables
for AGB mapping and carbon accounting of SLMS at a regional scale. To strengthen
the existing NFMS ((https://www.nfmspak.org/) (accessed on 19 January, 2023)), AGB
modeling based on vegetation indices and insitu forest inventory may be integrated in
order to provide local carbon estimates online. On the other hand, the present study also
explored geostatistical interpolation (ordinary kriging) of AGB estimation using spectral
index, topographic, demographic and climatic variables. Such geostatistical interpolation
techniques may be used in regional carbon estimates/action results in the MRV system of
REDD+ implementation [116], which not only increases the accuracy of carbon accounting
but also provides integrated data of spatial covariance [117,118].

4.6. Limitations in AGB Modeling in Mountainous Areas

Accurate AGB modeling in the topographically diverse mountainous areas is always
a challenging task and the present study’s modeling of AGB through Sentinel-2 spec-
tral indices and geostatistical methods may be further improved with LiDAR with least
uncertainty [119–121]. Landscape heterogeneity and AGB saturation may be reduced sig-
nificantly with the fusion of pixel-sized LiDAR data and AGB spectral predictors [122–124].
The present study used predictor variables derived from STRM DEM of 30 m resolution for
AGB modeling with acceptable accuracy [125]; however, high-resolution DEM variables
may improve accuracy. Sliwinski et al. [84] explored high-resolution DEM (1 m) extracted
from LiDAR data for watershed modeling using a SWAT model and used resampling
methods based on pixel-based summary statistics (measure of central tendency) for a
progressive decrease in DEM resolution. This study showed a high-resolution DEM de-

https://www.nfmspak.org/


Forests 2023, 14, 379 23 of 28

crease in precision and produced erroneous results in watershed modeling compared to
high-resolution DEM. This study suggested that such a resampling technique based on
LiDAR DEM is the most apposite for the modeling of catchment areas along the altitudinal
gradients. However, the acquisition of ubiquitous cover of LiDAR data for large-area AGB
estimation is costly and commercial [84]. Presently, in Pakistan, the use of LiDAR systemsis
limited to smaller areas; therefore, a LiDAR DEM-based analysis for AGB modeling was
not considered, keeping in view expenses and the restricted scope of acquisition.

5. Conclusions

The use of remote sensing techniques for forest biomass and carbon stock estimation
can be implemented with acceptable accuracy. Geo-statistical techniques also provide us
with models for the spatial distribution of biomass. The main objectives of the present study
were to explore the relationship between spectral bands and indices with biomass using
simple, multiple and stepwise linear regression using Sentinel-2 images and geo-statistical
techniques and to compare the resultant biomass maps with global datasets to explore
various potential sites for REDD+ implementation. The results show that ARVI was the
best index among all indices, with a higher R2 (0.67) than the rest of the spectral index.
MLR showed that the indices model with ARVI, NNIR and NDVI was significant with an
R2 of 0.46, while Band 2 (Blue), Band 4 (Red) and Band 8A (NIR) models have satisfactory
performance with an R2 of 0.22. Similarly, SLR exhibited almost similar correlation for
indices and bands with an R2 of 0.46 and an R2 of 0.21, respectively. The MLR of bands
with biomass has the lowest RMSE (48.53) and MAE (38.42) and is therefore considered
best for biomass estimation. Furthermore, the geo-statistical technique, the distance to
settlements, ARVI and annual precipitation were significantly correlated with biomass,
while other variables were insignificant. However, in the stepwise selection, the forward
section resulted in a very significant value (less than 0.000) for ARVI and was therefore
considered the best model for AGB interpolation using ordinary kriging compared to
“backward” selection. Comparative analysis showed that remote sensing estimation was
better for biomass than geostatistics. Regarding REDD+ implementation potential sites,
Landsat images showed a decrease in forest cover (1988—2018). The forest area was
8896.23 ha in 1988. It was reduced to 7692.03 ha in 2018; the blank areas are potential sites
for future projects. Moreover, the accuracy of Sentinel-2-derived indices was affected in
higher-density areas because the AGB saturation issue lowered the prediction accuracy.
However, AGB estimation may be improved by using multi-source RS data, or data fusion
may give better results such as Sentinel-2 may be integrated with Sentinel-1, Sentinel-3,
PALSAR-2 and LiDAR. Furthermore, using the rest of the Sentinel-2 bands is recommended
to compute spectral indices and their potential for AGB estimation. The present study
concluded that as a state-of-the-art sensor, the Sentinel-2 data have great potential for forest
biomass and carbon stocks estimation and can be implemented with acceptable accuracy.
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