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ABSTRACT

Motivation: A critical task in high-throughput sequencing is aligning

millions of short reads to a reference genome. Alignment is especially

complicated for RNA sequencing (RNA-Seq) because of RNA

splicing. A number of RNA-Seq algorithms are available, and claim

to align reads with high accuracy and efficiency while detecting

splice junctions. RNA-Seq data are discrete in nature; therefore,

with reasonable gene models and comparative metrics RNA-Seq

data can be simulated to sufficient accuracy to enable meaningful

benchmarking of alignment algorithms. The exercise to rigorously

compare all viable published RNA-Seq algorithms has not been

performed previously.

Results: We developed an RNA-Seq simulator that models the

main impediments to RNA alignment, including alternative splicing,

insertions, deletions, substitutions, sequencing errors and intron

signal. We used this simulator to measure the accuracy and

robustness of available algorithms at the base and junction

levels. Additionally, we used reverse transcription-–polymerase chain

reaction (RT–PCR) and Sanger sequencing to validate the ability

of the algorithms to detect novel transcript features such as novel

exons and alternative splicing in RNA-Seq data from mouse retina.

A pipeline based on BLAT was developed to explore the performance

of established tools for this problem, and to compare it to the

recently developed methods. This pipeline, the RNA-Seq Unified

Mapper (RUM), performs comparably to the best current aligners

and provides an advantageous combination of accuracy, speed and

usability.

Availability: The RUM pipeline is distributed via the Amazon

Cloud and for computing clusters using the Sun Grid Engine

(http://cbil.upenn.edu/RUM).
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1 INTRODUCTION

The ongoing high-throughput sequencing (HTS) revolution in

biology is placing significant demand on the informatics community.

Being a sequence based technology, alignment algorithms are

critical for most applications. Genome alignment algorithms such

as Bowtie and BWA rely on Burrows–Wheeler indexing for very

fast genome alignment, but they have difficulties with transcriptome

alignment due to splicing, RNA editing and variations from the

reference such as substitutions, insertions and deletions (Burrows

and Wheeler, 1994; Langmead et al., 2009; Li and Durbin, 2009).

Additional complications arise from poorly annotated genomes, or

from samples with significant polymorphisms from the sequenced

organism or from aberrant splicing found in cells with mutations in

components of the spliceosome (Meyerson et al., 2010).

There are a number of programs available for RNA-Seq

alignment. Table 1 gives a breakdown of the alignment algorithms

used in a random sample of 130 papers listed on PubMed that have

‘RNA-Seq’ in the abstract (see Supplementary Table 1 for detailed

information). The most commonly cited algorithm is ELAND,

which is part of the analysis pipeline bundled by Illumina with its

sequencing instruments. But to be viable for RNA-Seq, an algorithm

must satisfy three basic criteria: (i) it must align single reads across

splice junctions de novo; (ii) it must handle paired-end reads; and (iii)

it must run in a reasonable amount of time. Currently, five algorithms

are available that satisfy these three criteria: TopHat (Trapnell et al.,

2009) GSNAP (Wu and Nacu, 2010), MapSplice (Wang et al., 2010),

SpliceMap (Au et al., 2010) and Soap/Soapals (Li et al., 2009). We

further desire algorithms be as robust as possible to polymorphisms

and sequencing error. Based on our analyses, described below, only

GSNAP and MapSplice from this list satisfy this additional criterion.

Further, none of the published algorithms attempt to map against

both a genome and a transcriptome and to merge the results into

one alignment. As will be shown below, there is an advantage to

merging genome and transcriptome alignments to achieve better

disambiguation, in particular for reads that extend into introns.

In order to evaluate the accuracy of the various RNA-Seq

alignment algorithms, we developed an RNA-Seq simulator that

produces paired-end sequence reads with configurable rates for

substitutions, indels, novel splice forms, intron signal and random

error, including a decrease of the quality in the tails of the

reads, as is typically observed in Illumina data. RNA-Seq data
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Table 1. Algorithms used in a random sample of RNA-Seq publications

Algorithm No. of times used

ELAND 14

SOAP 5

BLAST 4

MAQ 3

BLAT 3

BWA 2

NOVOALIGN 2

TOPHAT 2

CORONA LITE 2

BOWTIE 2

SOLID PIPELINE 2

SSAHA2 1

ERANGE 1

SEGEMEHL 1

GSNAP 1

SPLICEMAP 1

SEQMAP 1

PASS 1

SUPERSPLAT 1

SOCS 1

ARACHNE 1

NUCMER 1

Complete information regarding this literature is provided in Supplementary Table 1.

are discrete in nature; therefore, as long as good gene models

are available, it is possible to simulate RNA-Seq data that is

sufficiently realistic to allow for meaningful benchmarking of

alignment algorithms. For our purposes, we require paired-end reads

with polymorphisms, alternative splice forms, partial retention of

introns, and which follows an error model reflective of Illumina

data. We also require there be no bias toward any particular

set of gene annotations. As far as we are aware, there is no

published RNA-Seq simulation software available. However, there

are a few simulators available online, e.g. FLUX (flux.sammeth.net,

Howard and Heber, 2010), (USeq, useq.sourceforge.net), (simNGS,

www.ebi.ac.uk/goldman-srv/simNGS/).However, none of them

satisfy the specific requirements for our benchmarking goals.

In particular, we require strict control over the sources of

polymorphisms: indels, SNPs, errors and alternate splicing. And

we require detailed logging. Neither FLUX, USeq nor simNGS

provide these capabilities. To meet the necessary criteria, we

developed a framework called Benchmarker for Evaluating the

Effectiveness of RNA-Seq Software (BEERS) (Fig. 1). The BEERS

simulator uses information from a filtered set of the annotated

genes from 11 different annotation efforts, to generate simulated

sequence read pairs with characteristics similar to those observed in

Illumina sequence reads. The details are given in the Section 2 and

Supplementary Material.

To evaluate RNA-Seq alignment, we developed a set of metrics

to compare an inferred alignment to the true alignment of a BEERS

dataset. Accuracy is evaluated on the level of the individual bases

and splice junction calls. Neither metric alone indicates which

method is superior and it is not clear how to define a single metric

that would. For example, BFAST achieves a very high base-wise

accuracy, because it handles polymorphisms well and therefore

rarely fails to align a read. However, BFAST does not make junction

Fig. 1. BEERS simulator workflow. Genes are chosen at random from a

master pool, polymorphisms and novel splice forms are introduced, and then

reads are generated in a six step cycle, as shown.

calls and the accuracy at or near splice junctions is quite low,

consistent with its original purpose of DNA resequencing (Homer

et al., 2009). In contrast, GSNAP, MapSplice and RUM (described

below) have a reasonably high base-wise accuracy and very accurate

junction detection and so should be preferable overall.

Alignment of transcriptome sequences is not a new problem, as

mapping EST’s to the genome has been an informatics challenge

long before the advent of HTS sequencing. A number of solutions for

alignment of ESTs are available, the most popular of which is BLAT

(Blast Like Alignment Tool) (Kent, 2002). BLAT has been criticized

as inappropriate for short read lengths and is viewed by many as too

slow for mapping tens of millions of reads (Dimon et al., 2010).

However, as computational resources have become cheaper, and

read lengths have increased, these issues can reasonably be resolved.

BLAT can efficiently map short reads across exon–exon junctions

and identify novel splice junctions (Fig. 2); however, BLAT does

not take advantage of related query sequences, such as those from

paired-end reads, so it does not, without modification, satisfy the

three criteria necessary for an RNA-Seq aligner. BLAT also requires

significant post-processing to decrease the false positive rate at both

the base and junction levels. But, with code wrappers to handle
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Fig. 2. Gapped alignment using BLAT. BLAT alignments (segments in

black) of a mouse retina 108 base read that spans three exon/exon junctions.

The second junction is unannotated, according to the USCS annotation track

shown in blue.

Fig. 3. The RUM workflow. Reads are first mapped with Bowtie against

the genome and transcriptome. This information is merged and non-mappers

are sent to BLAT. BLAT and Bowtie mappings are merged for the final

alignments. Features are quantified and coverage and junction files are

produced.

these issues, our benchmarking shows that this solution is at least as

effective as the other existing RNA-Seq aligners in terms of accuracy

and speed. In what follows we will refer to this method as the RNA-

Seq Unified Mapper (RUM) (Fig. 3). RUM is implemented as a

three-stage pipeline that takes advantage of the speed of Burrows–

Wheeler based algorithms, sensitivity of BLAT, information coming

from paired-end sequencing and information from both genome

and transcriptome alignments. The pipeline first aligns reads with

Bowtie to a reference genome and to a reference transcriptome, and

then applies BLAT to the reads Bowtie could not align. Significant

complexity arises in post-processing the BLAT output to reduce the

number of false alignments, to utilize paired-end information and to

merge the information from the various mappings. The details are

given in the Section 2 and Supplementary Material.

In addition to the simulated data analysis, we validated the

RUM pipeline empirically, using data from RNA-Seq analyses

of mouse retina, and compared with the other algorithms. Most

algorithms were able to accurately identify novel splice variants,

including splicing events detected novel junctions with low read

depth. However, TopHat performed very poorly on this dataset.

2 METHODS

2.1 RNA-Seq benchmarking

To compare methods and to evaluate the accuracy of options and parameter

settings, we have developed a benchmarking framework called Benchmarker

for Evaluating the Effectiveness of RNA-Seq Software (BEERS) consisting

of a data simulation engine and a set of comparative metrics for measuring

the accuracy of an inferred alignment (Fig. 1). In order not to bias for or

against any particular set of gene models, 11 different sets of annotation

were merged (AceView, Ensembl, Geneid, Genscan, NSCAN, Other RefSeq,

RefSeq, SGP, Transcriptome, UCSC, Vega), which produced 672 490 distinct

gene models with 1 720 769 exons and 1 052 525 introns. These models were

filtered to remove most of the junctions that had uncharacterized splice

signals, most of which came from the OtherRefSeq track (Supplementary

Table 4), resulting in 538 991 final gene models with <0.0003 of the

splice signals being uncharacterized. The characterized splice signals are

as follows: GTAG, GCAG, GCTG, GCAA, GCGG, GTTG, GTAA, ATAC,

ATAA, ATAG and ATAT. In the first step, in a simulation, a number of the

538 991 gene models are chosen at random, with a default of N = 30 000.

This is done in order to not bias toward any particular set of gene models.

Alternate splice forms are then created for each gene by preferentially leaving

in exons, where the number of alternate forms per gene is a parameter with

a default of two. The percentage of signal coming from alternate splice

forms is a parameter with a default of 20%. Polymorphisms (indels and

substitutions) are introduced into the exons, according to independent rates.

A gene quantification file (generated in our case from wild-type mouse retina

data) is used to assign an empirical distribution of signal that mimics real data.

This file is further used to determine the distribution of intronic signal, so

that preferential intron inclusion can be simulated. Reads are then produced

by choosing a gene at random, possibly leaving in an intron, choosing a

fragment of normally distributed length, introducing random base and tail

error, and then reporting the M bases of the fragment from either end, where

M is the read length. Random base error is set according to one parameter

and tail error is set according to three parameters: percent of low-quality

tails; length of the low-quality tail; and quality of the low-quality tail. The

reads generated are reported to a fasta file. The true coordinates of each real

and the true junctions spanned are reported to text files. The set of gene

models used, the alternate splice forms and the polymorphisms are reported

to log files. See Supplementary Material for code availability.

Datasets with 10 000 000 paired-end 100-base reads were generated for

each of two types of data, one with low polymorphism and error rate (Test 1)

and another with moderate polymorphism and error rate (Test 2); details

are given in Supplementary Material. The human polymorphism rate is

roughly one base in 10 000 (Sachidanandam et al., 2000) and the error rate

for a clean run of an Illumina machine is less than one base in 200. So

Test 1 was designed with those specifications. Model organisms should be

reasonably well represented by this case. Test 2 allowed for quite a bit more

polymorphism and error, with fairly low-quality tails, which should present

more than the average challenge to alignment. Datasets were generated

in triplicate to assess the variability of the accuracy metrics. An example

of simulated data with intron signal and a two base deletion is shown in

Supplementary Figure 1. Three basic metrics were calculated to compare

the inferred alignment to the true alignment. The most straightforward is the

percent of bases which map uniquely, and to the right location. A second

natural metric is the percent of correct junction calls.

In the first (base-wise) metric, some misalignment of indels must be

measured as accurate. Suppose, for example, that the reference sequence is

‘CCCACCC’ and that in the sample being sequenced it is ‘CCCAACCC’

due to an insertion. Logically, there is no way an alignment algorithm

could determine which ‘A’ was inserted and in fact it does not make
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Fig. 4. This illustrates a hypothetical case where it is difficult to resolve the

transcriptome and genome mappings. (A) Shows how a read aligns to the

genome. It spans an exon and erroneously extends one or two bases on either

side into the intron. (B) Shows how the same read maps to the transcriptome.

In this case, the few terminal bases map to the adjacent exons. (C) Shown

in red is the alignment of the paired-end read, which has aligned to the

intron. Even if all bases of all alignments are identities, if all we had was

the information in (A) and (B) we would likely preference the transcriptome

alignment (B). If we have the information in (C) then we would preference

the genome mapping in (A) on the right, but it becomes a difficult judgment

on the left, given that the retention of selective introns and partial introns is

frequently observed.

sense biologically to consider it an insertion instead of a duplication. Our

benchmarking metrics, therefore, judge an algorithm as correct on this

insertion as long as it chooses one or the other of these two possibilities,

and a general strategy is employed to handle all cases of indel ambiguity.

A second natural metric is the percent of correct junction calls. This

is complicated, however, by the many different ways algorithms report

junctions. Some of the algorithms being evaluated do not map reads across

junctions at all, so they essentially have an FP rate of 0% and an FN rate of

100%. Among the algorithms that do map across junctions, some of them go

further to filter the junctions to produce a final set of reported junctions. Other

algorithms report all junctions but attach various scores to them, leaving it

to the user to decide which to consider. If reads are aligned across junctions

by an aligner, but no extra processing is done by the aligner to report a

special junctions file, then we simply use as junctions the gaps indicated

by an N in the CIGAR string of the SAM record. On the other hand, if the

program produces a final set of junctions that are supposed to be the most

reliable, then that set was used for benchmarking. If junctions were attached

with scores, we adjusted the scores as best as possible to achieve the best

performance. Once a final set of junctions is determined, the false-positive

rate is the percent of inferred junctions that are not represented in the database

of transcripts used for the simulation. The false-negative rate is the percent

of junctions in the database that are crossed by at least one read, but which

are not represented in the set of junctions inferred by the algorithm.

2.2 Alignment pipeline

The RUM workflow is given in Figure 3. Bowtie is first run against the

genome. A read which is contained entirely in one exon, except for a few

bases that align to an adjacent exon, will often be erroneously aligned by

Bowtie to the start of the intron. Bowtie is therefore also run against a given

transcriptome. The genome and transcriptome alignments are compared for

consistency and in most cases the transcriptome alignment is preferred,

unless there is a paired-end read that indicates to do otherwise. However,

determining which alignment to preference is not always straightforward

and in any set of merging rules there will be ambiguous cases.

Consider the read alignment in Figure 4. There are three exons, one in the

middle and two at each ends.Alignment (A) shows the genome alignment and

(B) shows the transcriptome alignment. The correct alignment is uncertain

for the few bases on each side that ambiguously align to both the intron and

the adjacent exons. Three natural merging strategies arise: (i) preference the

transcriptome mapping, (ii) preference the genome mapping or (iii) truncate

the alignment and do not report the ambiguous bases. The RUM pipeline

preferences the transcriptome alignment in this case. If, however, the paired-

end maps as shown in (C), in red, then the genome mapping would be

preferred.

Fig. 5. A false positive BLAT alignment of a 120 base read of mouse retina.

BLAT has excessively fragmented the read and aligned it to a low complexity

region.

The merging rules are guided by a number of cases, which are given

in detail in Supplementary Material with a brief description given here.

Information between two mapping is joined when possible. So for example,

if one mapping aligns the forward read and another the reverse, and they

are consistent with being ends of the same fragment, then the two single-

end alignments are merged to give the paired-end alignment. If a read

(or read pair) has a unique alignment to the transcriptome and a unique

alignment to the genome, but the two alignments disagree, then, if they

agree on a sufficiently long overlap, just that overlap is reported; otherwise

the read is considered a non-unique mapper. In general, RUM tries to resolve

ambiguities that are minor by either giving preference to the transcriptome

alignment or by just reporting a subalignment consisting of the common

spans where both alignments agree.

In the third stage of the RUM pipeline, reads that were not able to be

aligned by Bowtie are aligned to the reference genome using BLAT (Kent,

2002). BLAT typically produces many spurious alignments, either because of

low complexity sequence or because of partial homology to other locations.

Inspection of the false positives gives rise to a number of filters which

achieve alignments with an apparently low occurrence of false positives.

We then validated and refined these filters using simulated benchmarks. For

example, the read in Figure 5 aligned incorrectly due to a majority of the read

being low complexity sequence (i.e. containing short repeated elements).

However, we do not want to filter out low complexity sequence, because

they often represent real signal. Instead we identify the low complexity reads

and require more stringent alignment parameters for them. Once filtered and

parsed for consistency, BLAT alignments are merged with Bowtie alignments

via similar rules to the first merging step; however, in this case both mappings

can involve junctions, so the rules are somewhat more complex. Details are

given in the Supplementary Material.

A file of unique aligners and another file of non-unique aligners is output.

These are human readable and contain basic alignment information for

each read (pair). Also output is a SAM file with all alignments unique

and non-unique. Depth-of-coverage files are generated from the final set

of unique and non-unique aligners, which give the number of reads mapping

to each genome location. A feature quantification file is generated that

assigns quantified values to genes, exons, introns and junctions using the

RPKM measure (Bullard et al., 2010). However, two quantified values are

generated, one assuming no non-unique mappers map to the feature, and

another assuming all the non-unique mappers aligning to that feature actually

do map to the feature. RPKM values are normalized for feature length and

number of reads mapped, and so are appropriate to use for comparisons

between samples, as long as expression is reasonably well balanced. If data

are unbalanced, the data can be normalized, as described in Supplementary

Material. The pipeline does not try to adjust for this effect, however, and

assumes such normalization, if necessary, will take place downstream.

Junctions are determined by reads that span gaps long enough to be introns

(15 bases or more, by default). A bed file is produced with the junctions

that have known splice signals and uniquely mapping reads with at least

eight bases on each side of the junction. Increasing this beyond eight bases

does not significantly affect the FP rate but does start to affect the FN rate

(Supplementary Fig. 2). Another bed file is generated with all junctions.

Junctions are colored by whether they have known signal, whether they

exist in the supplied transcript database and whether or not the signal is

canonical. A spreadsheet is also produced that breaks down the different

kinds of evidence in separate columns.
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RUM is also enabled for strand-specific mapping, variable length reads

and DNA mapping.

2.3 Implementation, availability and cloud distribution

RUM is implemented in Perl and is built on top of Bowtie, BLAT and the low

complexity filter mdust. RUM requires 64 bit operating systems with at least

6 GB of RAM to handle genomes as large as mouse or human, and is best

run on a cluster or multicore machine, while genomes such as Drosophila

can be run on single processor 32 bit systems with 4 GB of RAM. A typical

mouse or human alignment of 10 million read pairs requires ∼200 GB of

temporary disk space and ∼20 GB for the final output files, uncompressed.

A 100 million read dataset, as is typical for one lane from a HiSeq machine,

requires ∼500 GB of temp space. RUM is also enabled for compute clusters

that use the SUN Grid engine. RUM and the simulator are available as open

source under the standard GNU agreement to academic institutions.

The RUM pipeline installs on a stand-alone machine or on a cluster

running the SUN Grid Engine. In order to distribute software that requires

massive compute, a new paradigm is emerging called cloud computing. In

one implementation of cloud computing, infrastructure as a service (IAAS), a

user can ‘rent’a virtual machine in a large data center elsewhere (e.g.Amazon

Web services). We developed RUM and optimized its use on AWS using the

‘high memory, quadruple extra large instance’, which provides eight virtual

cores and 68.4 GB of RAM. Using this instance, a single paired-end lane

(25 million, 120 bp reads) is mapped to a mammalian genome in ∼5–6 h.

However, this is dependent on read quality. With lower quality reads, fewer

reads will be aligned by Bowtie and more by BLAT, increasing the run time

several fold in the worst case.

Instructions to install RUM on various platforms, including on theAmazon

Cloud, are provided at cbil.upenn.edu/RUM/.

2.4 RNA-Seq analysis

Animal research was approved by the Institutional Animal Care and Use

Committee at the University of Pennsylvania. Five micrograms of total RNA

from neural retinas of 2-month-old C57BL/6J mice was used to prepare a

cDNA library. The library was generated using the Illumina mRNA-Seq

Sample Prep Kit, with an average insert size of 350 bp (±25 bp) (Illumina,

San Diego, CA, USA). The cDNA library was sequenced using four channels

of a flow cell on a Genome Analyzer IIx, with 120 bp paired-end reads. Base

calls were generated using the CASAVA v1.6 (Illumina) software, and output

unfiltered and unaligned in fasta format. These sequence reads are deposited

at GEO, accession GSE26248.

2.5 RT-PCR and sequence validation

Reverse transcription polymerase chain reaction (RT–PCR) was performed

from total RNA using primers designed to flank the region of interest, and

the products electrophoresed on a 2% agarose gel. Bands were excised and

sequenced on an ABI 3730xl DNA Analyzer (ABI, Carlsbad, CA, USA).

3 RESULTS

3.1 Simulated data and comparison to other methods

To evaluate the performance of RNA-Seq aligners, we used BEERS

to generate two simulated datasets. For the initial test, designated

Test 1, we generated data from 30 000 mouse build mm9 transcript

models with low indel (0.0005), substitution (0.001) and error

frequency (0.005), with no tail error and with only 20% of the signal

coming from novel splice forms. For Test 2, we introduced moderate

indel (0.0025), substitution (0.005) and error (0.01) frequency, with

25% of the trailing 10 bases having 50% error and 35% of the signal

coming from novel splice forms. The gene models include gene

families and highly repetitive intron signal. With 100 base paired-

end reads, the non-uniqueness issue affects only 2–3% of reads

on average. Datasets, each of 10 million pairs of 100 base reads,

were generated in triplicate for each of the two tests. Replication in

triplicate allows for assessment of the variability of the metrics. See

the Supplementary Material for availability of the simulated data.

The reads in the two simulated datasets described above were

aligned using RUM, TopHat, BWA, NovoAlign, Soap/Soapals,

MapSplice, SpliceMap, GSNAP and BFAST. Additionally, to

evaluate the contributions to accuracy of the transcript database to

the RUM pipeline, we ran RUM against the genome without the

benefit of the transcript database. We also evaluated Bowtie against

the genome alone, against the transcriptome alone and a merging

of those two alignments. We also evaluated the BLAT module from

the RUM pipeline as a stand-alone aligner. As shown in Figure 6,

Bowtie alone has relatively low accuracy with regard to alignment.

BLAT provides more accurate alignment, and the combination of

the two in RUM is better. Similarly, Bowtie and BLAT alone have

high false positive and negative rates, respectively, while their

combined use in RUM provides much lower false positive and

negative rates. We attempted to optimize the performance of each

algorithm. The parameters and processing used are given in the

Supplementary Material. Some of these algorithms were included

in these comparisons because of their common use in practice, even

though they do not satisfy all three of the basic requirements for

RNA-Seq alignment stated above.

The base-by-base and splice junction accuracies for the analyses

of the two tests are given in Figure 6, and Supplementary Table 2.

As shown in Figure 6, GSNAP, RUM and MapSplice achieved the

most accurate alignment and junction detection on the data in Test

1. RUM and GSNAP also did better on the more complex data in

Test 2, with high base-wise and splice junction accuracy. The lower

accuracy of SpliceMap, SOAP/SOAPals and TopHat is exacerbated

by indels (Fig. 7), with decreased robustness of these algorithms

evident by comparing Test 1 to Test 2.

Figure 8 shows a region with five splice junctions where BLAT-

and the BLAT-based algorithms RUM and RUM-Genome properly

resolve several of the junctions, as compared with the other

algorithms. In contrast, BFAST achieves a high base-wise accuracy,

but it does not attempt to make junction calls and in fact has

very low accuracy near junctions. Of the three most accurate

algorithms, GSNAP, RUM and MapSplice, RUM has the lowest

false positive rate on junctions and the junction calls most robust

to polymorphisms. Algorithms varied considerably in their false

positive (FP) and false negative (FN) rates on junction calls. Ranking

junction calls by the sum FP + FN indicates GSNAP and RUM to

be the most accurate overall.

As the number of reads per lane increases upwards to 100

million read pairs, sequence analysis run time becomes an increasing

concern. MapSplice cannot, as of yet, be parallelized and on a 94

million read retina dataset, it required 16 days to process, while

generating over 2.5 TB of temporary files. In contrast, GSNAP and

RUM are both designed for parallel processing and put a much

lower demand on the mass storage device. But, GSNAP requires

significantly more computational resources: 5 days to process the

retina dataset using 300 processors, compared with RUM which

required 50 processors and ∼2 days (Fig. 9). Based on these data,

we believe that RUM is currently the most attractive option for

RNA-Seq alignment of such large datasets.
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A B

C D

Fig. 6. Accuracy statistics for analyses of simulated datasets. (A and B) Simulated dataset 1. (C and D) Simulated dataset 2. Test 1 has low polymorphism

and error rates, while Test 2 has moderate polymorphism and error rates. In (A) and (C), the bars show the base-wise accuracy (the percent of bases that

aligned and to the right location). (B) and (D) Show the accuracy of the junction calls, dark bars show the false positive (FP) rate and light bars show the

false negative (FN) rate. The algorithms are sorted in (A) and (C) by accuracy and in (B) and (D) by the sum of the FP and FN rates. Results are mean ±

SEM over the three replicate simulated datasets for each test. There is a considerable drop-off in accuracy seen in Test 2 for the algorithms that do not align

across indels (SpliceMap, TopHat and Bowtie). The base-wise accuracy and the FP and FN rates on junction calls are taken in conjunction to determine the

overall effectiveness of an algorithm. Based on these results, we conclude that GSNAP, MapSplice and RUM are the ones that are most viable for RNA-Seq

alignment.
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Table 2. The detection rates for RUM novel junctions, by algorithm

GSNAP SOAPALS MAPSPLICE SPLICEMAP TOPHAT

(%) (%) (%) (%) (%)

92 77 98 81 27

Fig. 7. Representative coverage plots demonstrating the effect of a two base

deletion on alignments with the algorithms indicated. Reads were aligned

using RUM, the individual BLAT and Bowtie components of RUM, and 10

currently available alignment algorithms. The TRUTH coverage plot (top)

represents the true alignment of the reads containing the two-base deletion

(arrow). RUM and several other algorithms were able to correctly align these

reads. Note that TopHat, SpliceMap, Bowtie and Soap, which do not identify

indels, fail to accurately align reads to these regions.

In Test 2, the algorithms that do not attempt to call indels appeared

at the bottom of the accuracy list, with a dramatic decrease seen

between Test 1 and Test 2. For example, TopHat’s overall base-wise

accuracy went from 90.86% to 63.67%, while RUM’s accuracy only

went from 95.19% to 90.39%. In Test 2, RUM achieved the lowest

FP + FN rate on junctions with a FP of 1.41% and a FN of 2.48%.

In contrast, TopHat’s FP rate is 6.62% and FN rate is 25.46%.

Fig. 8. Comparison of accuracies near junctions on BEERS-generated

data. The true junctions are shown in black at the bottom of the figure.

Reads mapping to the region of the simulated annotation track (bottom)

were aligned using RUM, the individual components of RUM and the 10

currently available alignment algorithms indicated. The TRUTH coverage

plot represents the true alignment of the simulated reads. There are five

characteristic splice junction sites (1–5) that indicate varying accuracy of

the alignment algorithms. BLAT- and the BLAT-based algorithms RUM

and RUM-Genome provide the most accurate resolution of the depicted

junctions. GSNAP detects the five junctions, and also displays inaccurate

alignment of reads in the intron near junction #2.

For each read that crosses a junction, an algorithm either calls

it correctly or not. This allows us to calculate the sensitivity and

positive predictive value (PPV) at the individual read level, which

is shown in Figure 10. The PPV is ∼65% in all cases, while

MapSplice and RUM have the highest sensitivity, with RUM being

the algorithm more robust to polymorphisms, in this case.

3.2 Analysis of a real RNA-Seq library

HTS offers the unprecedented ability to identify novel splice forms,

both alternative and aberrant. From empiric RNA-Seq data, we have

observed a large number of unannotated splicing events, a majority

of which are expressed at a low level compared with annotated

variants. We set out to assess the rates at which these represent

true and biologically replicable events, and to compare the ability
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Fig. 9. The sensitivity and positive predictive value (PPV) at the individual read level. MapSplice and RUM have the highest overall sensitivity,

while all algorithms have PPV ∼65%.

Fig. 10. Processor time required for analysis of simulated datasets. The processor time required for each of the algorithms tested to analyze the first (A) and

second (B) simulated datasets is shown. Data are mean ± SEM. The values from which these graphs are derived are shown in Supplementary Table 2.

Algorithms were run on 64 bit Linux Debian with 2.6 GHz processors.

of different RNA-Seq alignment algorithms to detect them. To do

this, we prepared an RNA-Seq library from mouse retinal RNA, and

sequenced it using four channels of an Illumina Genome Analyzer

IIx flow cell to generate 94 million paired-end 120 bp reads. We

analyzed these RNA-Seq data using RUM, GSNAP, MapSplice,

SpliceMap, Soapals and TopHat, and performed RT–PCR and

Sanger sequencing validation studies on biologically independent

RNA samples to assess how reliably RUM and the other algorithms

detected novel junctions.

Of the 94 million sequence reads in the mouse retina RNA-

Seq dataset, ∼41 million cross exon–exon junctions, including

35 435 507 reads that aligned cleanly (uniquely with at least eight

bases on each side, read depth ≥2) to 172 521 known junctions.

An additional 290 203 reads aligned cleanly across 47 078 novel

junctions with characterized splice signals. ‘Novel’ here means

that the junctions are not represented in any of the 11 annotation

tracks for the mouse genome currently available from the UCSC

genome browser. Many of the novel junctions that were detected

fell into three canonical categories: (i) skipping of annotated exons

(6001; 12.75%); (ii) inclusion of novel exons in known genes (3207;

6.81%); and (iii) alternate 5′ and 3′ splice sites (≤50 bases from

known site, 3802; 8.08%).

We selected 25 examples randomly, from each of the three

categories described above, for validation in independent retinal

RNA samples. For each category, this includes five cases present

in ‘high’ abundance (>33% of reads crossing the novel junction(s),

as compared with the annotated junction(s)) and 20 cases present in

‘low’ abundance (<10% of reads crossing the novel junction(s) as

compared with the annotated junction(s)). In total, these 75 splicing

events involve 100 novel junctions, since the novel exon inclusion

events involve two junctions for each example. RT–PCR verified the

presence of transcript variants with the novel junctions in 81% of

these cases (Table 2 and Supplementary Table 3). Sanger Sequencing

verification of the predicted novel junctions was achieved for 55%
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of these cases. Of the high abundance cases, 100% PCR validated

and 95% sequence validated. The detection rates for these novel

junctions by GSNAP, MapSplice, SpliceMap, Soapals and TopHat

are also listed in Table 2 and detailed in Supplementary Table 3.

Sequence-verified examples from each of the three novel junction

categories are shown in Figure 11 (the full list is available at

www.cbil.upenn.edu/RUM/validation). In the first example shown

in Figure 11A, five RNA-Seq reads detected a novel junction

between exons 29 and 31 of the Usp32 gene, compared with 525

and 349 reads that detected the 5′ and 3′ ends of the annotated

exon 30, respectively. RT–PCR and Sanger sequencing confirmed

the presence of the mRNAlacking the 289 bp exon 30. In Figure 11B,

47 out of 191 reads detected a novel alternate splice junction at the 5′

end of the 7th and final exon of Bcl9. This novel junction removes

36 bases and 12 amino acids in frame from the coding sequence.

RT–PCR and sequencing confirmed the presence of the mRNA with

this novel junction. In Figure 11C, an abundant novel exon was

detected between exons 50 and 51 of Mll2 gene. In addition to

detection by the RUM junction track, this exon is also evident in

the coverage plot, shown in red. The 48 bp novel exon is predicted

to add 16 amino acids in frame to the Mll2 protein. The presence

of this novel transcript in the retina was confirmed by RT–PCR and

sequencing. In Figure 11D, 17 and 6 reads, respectively, detected a

novel exon between exons 2 and 3 of the Gtf2a1 gene, compared

with 682 reads for the known exon–exon junction. RT–PCR and

sequencing validated the expression of the novel Gtf2a1 transcript

containing this 81 bp exon. This novel exon is located at the 5′ end

of the coding sequence, and contains three stop codons in the normal

reading frame. In contrast to the novel exon in Mll2, this exon was

detected by the identification of novel junctions, and is not evident

from the coverage plot (Fig. 11D).

4 DISCUSSION

Robustness of the alignment process to novel splice forms and

sequence polymorphisms is a key to wide application of RNA-Seq.

Therefore, it is important to test alignment systems with datasets

that have varying degrees of such effects, and for which the truth

regarding correct alignment is known. BEERS simulates RNA-Seq

data with variable levels of polymorphisms, alternative splice forms,

partial retention of introns and sequence error. Of these kinds of

effects, only sequence error is enabled in the Flux simulator (Howard

and Heber, 2010). The ability to simulate alternate splice forms

means BEERS can also be used to benchmark the various algorithms

that aim to annotate the transcriptome or to reconstruct full splice

forms from RNA-Seq data (Guttman et al., 2010; Martin et al., 2010;

Trapnell et al., 2010).

We used two configurations of the BEERS parameters, referred

to as Test 1 and Test 2, to evaluate 14 alignment algorithms.

These simulation analyses indicate that BLAT offers a powerful

tool for RNA-Seq alignment that has not been fully explored for

RNA-Seq analysis, and as such we have added necessary filters

and a paired-end parser to implement this approach in RUM. The

analyses performed using the simulated data showed that among

the appropriate RNA-Seq alignment algorithms, RUM, GSNAP

and MapSplice provide reasonably accurate and robust alignment.

Although computing resources are expanding, compute time is still

a relevant issue for the analysis of large RNA-Seq datasets. This

is underscored by the dramatic increase in the number of reads per

lane now generated with the Illumina Hi-Seq and ABI Solid 5500

instruments. All the viable and most accurate alignment algorithms

require significant computing resources. For example, none of

them can handle a 100 million read dataset on one processor in

reasonable time. Therefore, the number of processor hours required

for each of the algorithms, as shown in Figure 9, tells only part

of the story. What is more important is the number of real hours

required for running analyses using the desired alignment software

on a reasonably sized compute cluster or multi-processor machine.

MapSplice, as yet, cannot be parallelized, and therefore is the least

convenient for 100 million read datasets. We use RUM on the High-

Performance Computing Facility at the Penn Genome Frontiers

Institute consisting of a 400 node cluster of 64 bit Linux machines

each with 2.8 GHz quad processors and 16 GB of RAM, managed

with the Sun Grid Engine. Using 50 nodes on this cluster, RUM

can process clean mouse or human RNA-Seq reads at a rate of ∼2–

3 million read pairs per hour. The run time, however, depends on

the error and polymorphism rate, with BLAT taking roughly twice

as long on the second simulated data as compared with the first

(Fig. 9 and Supplementary Table 2). For small genomes such as

microorganisms, run time is considerably faster. Since powerful

computational resources may not be available to all investigators, we

have taken advantage of the availability of cloud computing to make

RUM universally available through the Amazon Elastic Compute

Cloud (Amazon EC2: aws.amazon.com/ec2). More generally, RUM

should run on any Unix system, and simple installation scripts will

place RUM on any of the platforms mentioned above. Further, RUM

is designed to work well with default settings in all situations.

When applied to an RNA-Seq dataset from mouse retina, RUM

detected 47 078 novel splice junctions with a read depth of ≥2.

To explore the reliability of detection for these novel events, we

used RT–PCR and Sanger sequencing to validate 75 of them with a

focus on the less abundant cases in order to achieve a lower bound

on the true occurrence of such novel splicing. We were able to

empirically validate 81% of a subset of selected novel junctions

in independent RNA samples, indicating the accurate identification

of novel junctions by RUM. We believe that the true accuracy

of RNA-Seq and RUM are higher than indicated by the RT–PCR

and sequencing validation studies we performed due to technical

reasons. For example, it is possible that some transcript variants

produced by the novel junctions detected by RUM are present at

too low a concentration to be detected on agarose gels following

RT–PCR. Further, low abundance transcripts detected by RT–PCR

are more difficult to isolate for sequencing. We have also found that

RUM works well with RNA-Seq data from other species, including

human, zebrafish and microorganisms (data not shown).

Perhaps the most important output of RNA-Seq analyses is the

identification of novel transcript variants and novel transcripts.

Indeed, RNA-Seq data are already being used to improve annotation

of the human and mouse transcriptomes (Werner, 2010). The

ability to accurately detect the complete complement of transcripts

expressed in a given cell or tissue type is especially important

for identification of genes, which harbor mutations that cause

inherited disorders, and for accurate genetic diagnostic testing

of patients with these disorders. A pertinent example of this is

the recent identification of a novel, retina-specific isoform of

the Bardet-Biedl syndrome 8 (BBS8) gene. Mutations in BBS8

typically cause a multi-system cilia disorder characterized by cystic

renal disease, polydactyly, mental retardation, retinal degeneration,
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Fig. 11. Validation of novel splice junctions detected by RUM. Exon junctions detected by RUM are displayed as a track using the UCSC Genome Browser.

The reads with annotated junctions are displayed in blue; reads with novel junctions are shown in green. The depth of uniquely mapped sequence reads is

shown in the Coverage Plot in red. The BLAT aligned Sanger sequenced reads from RT–PCR products are shown in black under the coverage plot. Annotated

Ensemble and UCSC genes are indicated at the bottom of the images. (A) RUM aligned five RNA-seq reads cleanly across a putative novel junction between

exons 29 and 31 of the Usp32 gene, compared with 525 and 349 reads that detected the 5′ and 3′ ends of annotated exon 30, respectively. RT–PCR and Sanger

sequencing in independent biological samples confirmed the presence of the mRNA lacking exon 30. (B) The 47 reads aligned to a putative novel alternate

splice junction at the 5′ end of 7th and final exon of Bcl9, while 144 reads aligned to the known junction. The novel junction removes 36 bases, and 12 amino

acids in frame from the coding sequence. RT–PCR and Sanger sequencing in independent biological samples confirmed the presence of the mRNA with this

novel junction. (C) An abundant putative novel exon was detected between exons 50 and 51 of Mll2 gene. In addition to detection by the RUM junction track,

this exon is also evident in the coverage plot. The 48-bp novel exon is predicted to add 16 amino acids in frame to the Mll2 protein. RT–PCR and Sanger

sequencing in independent biological samples confirmed the presence of this novel transcript. (D) A low abundance putative novel exon was detected between

exons 2 and 3 of the Gtf2a1 gene. RT–PCR and Sanger sequencing in independent biological samples validated the expression of the novel Gtf2a1 transcript

containing this 81 bp exon.
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obesity, gonadal malformations, diabetes and situs inversus (Ansley

et al., 2003; Badano et al., 2006). In contrast, mutations in the

retina-specific isoform of BBS8, which was not annotated in the

human genome, have recently been identified to cause the retina-

specific disorder retinitis pigmentosa (RP) (Riazuddin et al., 2010).

The retina-specific isoform of Bbs8, including exon 2a, was readily

detected by RUM (Supplementary Fig. 2).

Several of the novel junctions detected in the retina RNA-

Seq dataset and validated in these studies also demonstrate the

importance of complete characterization of transcriptomes. For

example, BCL9 is a component of the Wnt signaling cascade, and

is aberrantly expressed in several malignancies. It is hypothesized

that deregulation of BCL9 is an important contributing factor to

tumor progression (Mani et al., 2009). The variation in splicing

of exon 7 of Bcl9 detected in our studies could be relevant to

protein function. As a further example, the novel isoform of Mll2

identified in these studies may also have biologic importance,

given the known role of the Mll2 protein in histone methylation

and regulation of gene expression (Andreu-Vieyra et al., 2010)

(Demers et al., 2007). In addition, mutations in MLL2 were recently

identified to cause Kabuki syndrome, a form of congenital mental

retardation syndrome characterized by post-natal dwarfism, peculiar

facies characterized by long palpebral fissures with eversion of

the lateral third of the lower eyelids (reminiscent of the makeup

of actors of Kabuki, a Japanese traditional theatrical form) and

other features (Ng et al., 2010; Niikawa et al., 1981). A complete

knowledge of the isoforms of MLL2 expressed in different tissues

will be important for investigations of the genetics and pathogenesis

of Kabuki syndrome. This idea also applies to other genes and other

disorders, and demonstrates the importance of an accurate alignment

to the analysis of RNA-Seq and other HTS data.
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