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Abstract

We have identified 44 serine protease (SP) and 13
serine protease homolog (SPH) genes in the genome
of 

 

Apis mellifera

 

. Most of these genes encode putative
secreted proteins, but four SPs and three SPHs may
associate with the plasma membrane via a transmem-
brane region. Clip domains represent the most
abundant non-catalytic structural units in these SP-like
proteins −−−−

 

12 SPs and six SPHs contain at least one clip
domain. Some of the family members contain other
modules for protein–protein interactions, including
disulphide-stabilized structures (LDL

 

r

 

A, SRCR, frizzled,
kringle, Sushi, Wonton and Pan/apple), carbohydrate-
recognition domains (C-type lectin and chitin-binding),
and other modules (such as zinc finger, CUB, coiled
coil and Sina). Comparison of the sequences with
those from 

 

Drosophila

 

 led to a proposed SP pathway
for establishing the dorsoventral axis of honey bee
embryos. Multiple sequence alignments revealed
evolutionary relationships of honey bee SPs and SPHs
with those in 

 

Drosophila melanogaster

 

, 

 

Anopheles
gambiae

 

, and 

 

Manduca sexta

 

. We identified homologs
of 

 

D. melanogaster

 

 persephone, 

 

M. sexta

 

 HP14, PAP-1
and SPH-1. 

 

A. mellifera

 

 genome includes at least five

genes for potential SP inhibitors (serpin-1 through -5)
and three genes of SP putative substrates (prophe-
noloxidase, spätzle-1 and spätzle-2). Quantitative RT-
PCR analyses showed an elevation in the mRNA levels
of SP2, SP3, SP9, SP10, SPH41, SPH42, SP49, serpin-2,
serpin-4, serpin-5, and spätzle-2 in adults after a micro-
bial challenge. The SP41 and SP6 transcripts signifi-
cantly increased after an injection of 

 

Paenibacillus
larva

 

, but there was no such increase after injection of
saline or 

 

Escherichia coli

 

. mRNA levels of most SPs
and serpins significantly increased by 48 h after the
pathogen infection in 1st instar larvae. On the contrary,
SP1, SP3, SP19 and serpin-5 transcript levels reduced.
These results, taken together, provide a framework for
designing experimental studies of the roles of SPs and
related proteins in embryonic development and immune
responses of 

 

A. mellifera

 

.
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, insect immunity, serine
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Introduction

 

Serine proteases in the S1 family (e.g. chymotrypsin) are
involved in various physiological processes, such as diges-
tion, development, and defense responses (Rawlings &
Barrett, 1993; Krem & Di Cera, 2002). They are typically
synthesized as zymogens, which require proteolysis at a
specific site for activation. In some cases, after an initiation
protease becomes active upon stimulation, other downstream
SP zymogens are sequentially activated in a cascade pathway,
which eventually generates effector molecules by limited
proteolysis. High specificity of their catalytic domains, interac-
tions among the regulatory regions, and efficient removal of
active SPs by irreversible protease inhibitors ensure local,
transient reactions to physiological or pathological cues.
Human blood coagulation and complement activation are the
best known examples of such protease systems (O’Brien &
McVey, 1993; Whaley & Lemercier, 1993). The evolutionary
history of serine protease pathways can be traced back to
the divergence of deuterostomes and arthropods (Iwanaga

 

et al

 

., 1998; Jiang & Kanost, 2000; Krem & Di Cera, 2002;
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Kanost 

 

et al.

 

, 2004). Recently, biochemical and genomic
analyses revealed that catalytically inactive serine protease
homologs are also constituents of these systems (Kwon 

 

et al

 

.,
2000; Yu 

 

et al

 

., 2003). SPHs are similar in sequence to S1
proteases but lack one or more of the catalytic residues in
SPs. A human SPH named azurocidin mediates inflamma-
tion and has an antimicrobial activity (Watorek, 2003).
Invertebrate SPHs participate in acute-phase responses
(Kawabata 

 

et al

 

., 1996; Huang 

 

et al

 

., 2000; Yu 

 

et al

 

., 2003).
The horseshoe crab haemolymph clotting system repre-

sents the best characterized SP system in invertebrates
(Iwanaga 

 

et al

 

., 1998). It is composed of four proteases
(Factors C, G, B, and clotting enzyme) and one clottable
protein (coagulogen). In 

 

Drosophila

 

, genetic studies revealed
a SP pathway that establishes the dorsoventral axis of
embryos (Belvin & Anderson, 1996). This pathway also
comprises four proteases, namely nudel, gastrulation defec-
tive, Snake, and easter. Easter cleaves spätzle to form an
active ligand that binds to the Toll receptor and triggers
the intracellular signalling pathway for ventralization. In

 

Drosophila

 

 adults, another set of SPs leads to spätzle acti-
vation and drosomycin production (Lemaitre 

 

et al

 

., 1996).
Another insect defense mechanism involving a SP cascade
is the proteolytic activation of prophenoloxidase (proPO)
(Ashida & Brey, 1998; Ligoxygakis 

 

et al

 

., 2002b; Kanost

 

et al

 

., 2004). In 

 

Manduca sexta

 

, HP14 and proPO-activating
proteases (PAPs) are the first and last components of the
proPO activation cascade (Ji 

 

et al

 

., 2004; Jiang 

 

et al

 

., 1998;
Jiang 

 

et al.

 

, 2003a and 2003b; Lee 

 

et al

 

., 1998; Satoh

 

et al

 

., 1999). Our knowledge on composition, order, and
regulation of these insect SP cascades has greatly expanded
(Levashina 

 

et al

 

., 1999; Ligoxygakis 

 

et al

 

., 2002a; Kim 

 

et al

 

.,
2002; Gupta 

 

et al

 

., 2004; Tong 

 

et al

 

., 2005;  Zou & Jiang
2005; Jiang 

 

et al

 

., 2005; Wang 

 

et al

 

., 2006; Wang & Jiang,
2004 and 2006; Jang 

 

et al

 

., 2006).
Genome-wide analyses of SPs and SPHs are available for

 

Drosophila melanogaster

 

 and 

 

Anopheles gambiae

 

 (Chris-
tophides 

 

et al

 

. 2002; Ross 

 

et al

 

., 2003). However, little is
known about these proteins in the honey bee. Among

 

∼

 

1.0 

 

×

 

 10

 

4

 

 predicted genes in the genome of 

 

A. mellifera

 

,
SP and SPH genes form a large family (Honey Bee Genome
Sequencing Consortium, 2006; Evans 

 

et al

 

., 2006). To begin
to understand the potential functions of SPs in immune
responses in this beneficial insect, it is necessary to annotate
these genes, compare their protein products with homologous
molecules from other insects, and predict their functions. In
this paper, we report a genome-wide analysis of the structures,
evolutionary relationships, and possible physiological
functions of 

 

A. mellifera

 

 SPs and SPHs. Some putative sub-
strates and inhibitors of SPs are also discussed. We hope
that these results could provide evolutionary perspectives
of the S1 family of protease genes in insects and stimulate
interest for in-depth analyses of SP-related proteins (i.e.
SPs, SPHs, serpins and SP substrates) in the honey bee.

 

Results and discussion

 

Overview of the SP-SPH gene family

 

B

 

LAST

 

 searches of the 

 

A. mellifera

 

 genome yielded 57
sequences with significant similarity to the S1 protease family.
Compared with 204 in 

 

D. melanogaster

 

 (Ross 

 

et al

 

., 2003)
and 305 in 

 

An. gambiae

 

 (Christophides 

 

et al

 

. 2002), the
number of SP-like genes in the honey bee is much smaller.
We retrieved and annotated the sequences from Official Gene
Set-1 (Honey Bee Genome Sequencing Consortium, 2006).
Based on the presence or absence of residues essential for
the catalytic activity of SPs, we classify them as SPs or SPHs.
We identified 44 SP and 13 SPH genes in the bee genome
(Table 1). The ratio of SPs to SPHs is close to that in 

 

D. mel-
anogaster

 

, which has 147 SPs and 57 SPHs. 

 

A. mellifera

 

SP11, SP29, SPH50 and SPH51 are clustered in Group
9.19–20; SP4, SP5, SP8, SP13 and SP27 in Group 15.3–8;
SP25, SP33 and SPH56 in Group 13.1–3. The other genes
are widely spread over the genome. In contrast, large
clusters of SP/SPH genes are common in the genomes of

 

D. melanogaster

 

 and 

 

An. gambiae

 

. It appears that this gene
family may have undergone a major expansion in the Dip-
tera that did not occur in Hymenoptera after divergence of
these orders more than 240 million years ago.

The catalytic triad of S1 proteases is composed of His

 

57

 

,
Asp

 

102

 

 and Ser

 

195

 

 (chymotrypsin numbering). In most cases,
these residues are present in highly conserved sequence
motifs of TAA

 

H

 

C, 

 

D

 

IAL and GD

 

S

 

GGP (Table 1). One or
more of the catalytic residues are replaced in SPHs. GD

 

S

 

-
GGP is present in 32 of the honey bee SPs. In the 13 SPHs,
5 contain GDGG in the context of GDGGGP or GDGGSP.
His

 

57

 

, also critical for protease activity, is located in TAA

 

H

 

C
or its analogs: TAA

 

H

 

C and TAG

 

H

 

C are present in 67% and
12% of the SP/SPH family members, respectively. Asp

 

102

 

,
the 3rd member of the catalytic site, is located in 

 

D

 

IAL (28),

 

D

 

VAL (5), 

 

D

 

VAV (4), 

 

D

 

IAI (4), 

 

D

 

LAL (3) or 

 

D

 

IAV (3), where
the number in parentheses indicates its occurrence in the
SP-like sequences. While most SPs or SPHs are expected
to be extracellular proteins, we only found 13 with a complete
signal peptide for secretion. The gene prediction programs
apparently failed to locate exons encoding such short
sequences, which lack particular structural features other
than having a stretch of hydrophobic residues.

 

Single domain SPs

 

Digestive SPs (e.g. trypsin) have a relatively simple struc-
ture, containing 

 

∼

 

240 residues. Fourteen 

 

A. mellifera

 

 SPs,
shorter than 300 residues, may function in digestion, a
process that does not require sophisticated protein–protein
interactions. The bee has far fewer single domain SPs com-
pared with 

 

∼

 

80 in 

 

D. melanogaster

 

 and 

 

∼

 

140 in 

 

An. gam-
biae.

 

 This could be related to its relatively simple food source,
nectar and pollen. Nearly all of these putative digestive
proteases reside in one branch of the honey bee SP-SPH



 

A
pis m

ellifera
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Table 1. 

 

Serine proteases (SPs) and serine proteinase homologs (SPHs) in 

 

Apis mellifera

 

Gene 
name ID

Homologous proteins Conserved regions

 

b

 

Length

 

c

 

(aa)
Activation 
site

 

d

 

Enzyme 
specificity

 

e

 

Domain 
structure

 

f

 

Drosophila other arthropods

 

a

 

TAAHC DIAL GDSGGP

cSP1 16147 ea CG1102 MsHP5 376 TEQK^IFGG T(DGA) C-SP
cSP2 14247 ea CG1102 MsHP8

 

∼

 

391 LSQR^IIGG ?(D??) C-SP
cSP3 11698 MsHP17 353 SHTR^VVGG T(DGG) C-SP
SP4 10646 CG4914 >

 

 

 

304 EESR^IVGG T(DGG) SP
SP5 12300 CG4386 CG18735 329 VQRR^IVGG T(DGG) SP
cSP6 14077 CG8172 DVAL 622 RSNR^IVGG T(DGG) 2LC-C-SP
cSP7 17145 CG31728 512 DQER^IVGG T(DGG) C-SP
SP8 18767 CG9372 MsHP21 DIAV >

 

 

 

292 SRSR^LTGG T(DGG) SP
cSP9 18732 CG11843 MsHP13 423 DRKL^IVGG T(DGG) pSP-SP
cSP10 17927 Psh MsHP21 CfSP ?751 PNKF^IVGG T(DGG) 2(C-LC-SP)

Psh MsHP21 CfSP PNKF^IVGG T(DGG)
SP11 14654 CG11836 MsHP1 DVAL >

 

 

 

255 QEDR^IVGG T(DGG) SP
SP12 19856 CG5255 CG31265 DIGL >

 

 

 

237 EIPK^IVGG ?(GGD) SP
SP13 15640 CG7996 MsHP21 Ag18D >

 

 448 PNHL^VIGG T(DGG) 3LC(Nr)-SP
cSP14 14044 CG2056-PB,snake MsHP6 DVAI > 385 LSFH^IFNG T(DGG) C-SP
SP15 18178 > 294 TTGR^IFNG ?(GGD) SP
SP16 12253 CG16996 TAGHC DLAL ?1149 PETR^IVGG T(DGG) 2LC(HTr)-SP
SP17 14603 CG4316 TAGHC ?498 LEPR^ITGD C(SAG) SP-SP

CG4316 TAGHC FDTR^IVGG C(SGS)
SP18 10222 CG31954 CsSP DVAL > 247 LQPR^IIGG T(DGG) SP
cSPH19 17345 CG4998 TtFD DIAI GDGGGP 741 4LC-LC(Yr)-C?-SPH
SP20 19590 nudel corin BmOvarianSP DIGM ?1645 SQLR^VVGG T(DGG) 3LDLA-SP-3LDLA-pSP-

LDLA(RGD)-2LDLA(pSP)
cSP21 16220 CG7432 TtPCE DIAV > 408 GKYR^VVGG T(DGG) C-LC-SP
SP22 13791 CsSP > 259 PDTQ^IVGG T(DGG) SP
SP23 12538 Tequila CG4821 Ag22D ?2323 IFQK^VVRG T(DGG) 4LC-4CBD-SR-Clect-

KR-LDLA-PA-2LDLA-SP
SP24 14233 CG6865 DIAI > 236 ? T(DGG) SP
cSP25 19719 CG11824 DLAL ?942 PESR^IVGG T(DGG) C-10LC(STr)-SP
cSP26 18450 CG8170 CfSP TAGHC DVAV ?667 AQRR^IVGG T(DGG) TM-2LC-C-SP
SP27 11588 CG31954 AgTry ?537 MDGR^IVGG T(DGG) 2(LC-SP)

DVAV PTGQ^IIGG T(DGG)
SP28 13489 CG30375 DVAL MDSGGP > 405 NPSR^IVGG T(DGG) TM-CUB-SP
SP29 14644 CG18375 DIAI > 224 ? T(DGG) SP
SP30 19649 corin TASHC DVAL ∼944 AKTR^IVGG T(DGG) cc-LC-TM-Fri(ZnF)-

LDLA-LC-LDLA-SR-SP
SP31 11297 AaTry TAGHC > 291 EEDR^IFGG T(DGG) SP
SP32 11511 AaChy TAGHC > 260 RPTR^IVGG C(AGS) SP
cSP33 14309 CG8213 OnT2b DLAL > 1269 KSGR^IVGG T(DGG) C-5LC(Tr)-SP
SP34 11552 CG30371 CsChy TAGHC MGSGGP ∼405 NPSR^IVGG ?(DGN) TM-CUB-SP
SP35 16021 CG5255 DIAI > 255 NLEK^IVGG ?(GVD) LC-SP
SP36 19846 CG5255 > 263 PESK^IVGG ?(GGD) SP
SPH37 18944 CG13318 PlMasq TVAHC DVAV GDGGSP > 307 pC?-SPH
SP38 16214 CG10663 DVAM ∼481 YFTR^IIGG T(DGG) 2TSP1-SP
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cSPH39 14366 LD13269p CrVn50 TmPPAF DIAV GDGGGP ?783 ZnF-LC-C-LC(Tr)-C-
C(LC)-C-SPH

SP40 13263 CG32808 PlTry ?725 YNPK^IING C(GAT) ZnF-LC-Sina-LC-SP
cSPH41 10943 masquerade CG15002 GDGGGP 735 5[C-LC(STr)]-SPH
cSPH42 11298 CG5390 BmMasq CrVn50 DFAI GDGGSP 417 LC-C-SPH
SP43 18530 CG9564 DVAV 268 PTGQ^IIGG T(DGG) SP
SP44 15453 DITI GDSGGG > 340 LIGR^IVNG T(DGG) SP
SP45 17654 SAAHC DIAM 1748 RRSR^IVGG ?(D??) TM?-6LC-3LDLA-SP
SP46 16367 CG13461 stubble gd MsHP19 DLAV GDSGSG 439 FNLL^VAGG E(GSI) SP
SP47 14774 ----- > 157 ? ?(DI?) pSP
SP48 12379 CG32376 MsHP3 TALHC > 257 ATIK^IIGG T(DGG) SP
SP49 15317 CG31217 MsHP14 DIAI GDSGGG ∼628 SKTL^IVNG E(SSS) LC-4LDLA-Sushi-

Wonton-SP
cSPH50 14001 CG14945 MsPAP1 TTANC NIAM GYNGSP 707 TM-LC-PLCXc-C-SPH
SPH51 13397 CG18735 CG4386 TCGNC ---- LDVSSS > 296 SPH
SPH52 19292 ----- ---- > 136 pSP
SPH53 15702 TSAQC NIAL GNPGSP > 294 LC-SPH
SPH54 15980 ASYSC NDEGAP ?2733 TM-LC-EGF-13LC(HEPSr)-

5LDLA-SR-SPH
cSPH55 15254 CG11066 TAANC DLAT TDIGSP > 539 C-SPH
SPH56 13019 CG1632 TTASC TTVL EFAGSP ∼777 LC-TM-SEA-LC-FRI-

2LDLA-SPH
SPH57 16038 CG31954 ----- ------ > 159 pSPH

aAa, Aedes aegypti; Ag, Anopheles gambiae; Bm, Bombyx mori; Cf, Ctenocephalides felis; Cr, Cotesia rubecula; Cs, Culicoides sonorensis; Ms, Manduca sexta; On, Ostrinia nubilalis; Pl, Pacifastacus leniusculus; 
Tm, Tenebrio molitor; Tt, Tachypleus tridentatus.
bIf not listed, sequences are identical to the conserved TAAHC, DIAL, or GDSGGP. -----: conserved region not identified.
c>, incomplete sequence due to prediction errors; ∼, nearly complete (e.g. partial signal peptide); ?, prediction error?
d^, putative activation cleavage site; ?, not predicted; blank, not applicable (SPH).
eEnzyme specificity predicted based on Perona and Craik (1995). T, trypsin; C, chymotrypsin; E, elastase; ?: not predictable; blank: not applicable (SPH). Letters in parentheses: amino acid residues determining 
the primary specificity of a serine proteinase.
fC, clip domain; CBD: chitin-binding domain; cc, coiled coil region; Clect, C-type lectin domain; CUB, a domain identified in Complement 1r/s, Uegf, and Bmp1; EGF, Ca2+-binding EGF domain; FRI, frizzle domain; 
KR: kringle domain; LC, low complexity region; LDLA: low-density lipoprotein receptor class A domain; p, partial; PA, pan-apple domain; PLCXc, phospho-lipase C catalytic domain; SEA, a ∼120-residue domain in 
Sperm protein, Enterokinase and Agrin; Sina, a domain identified in Drosophila seven in absentia; SP, serine proteinase catalytic domain; SPH, serine proteinase-like domain; SR: scavenger receptor cysteine-
rich domain; Sushi, Sushi domain, also known as CCP or SCR. Wonton: a disulfide knotted domain found in M. sexta HP14; TSP1, thrombospondin type I 
repeat; TM, transmembrane region; XYr, regions rich in amino acid residues X and Y; ZnF, Zinc finger domain.

Gene 
name ID

Homologous proteins Conserved regionsb

Lengthc

(aa)
Activation 
sited

Enzyme 
specificitye

Domain 
structurefDrosophila other arthropodsa TAAHC DIAL GDSGGP

Table 1. (Continued)
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phylogenetic tree, representing descendents of a simple
ancestral SP gene (data not shown). On the other hand, 39
(or 69%) of the A. mellifera SPs and SPHs are longer than
300 residues. Only 1/2 and 1/3 of the family members in
D. melanogaster and An. gambiae may contain additional
regulatory domains. These proteins are probably involved
in more complex physiological processes in which other
structural units are needed for molecular recognition.

Clip-domain SPs and SPHs

In arthropods, clip-domain SPs mediate innate immunity
and embryonic development (Jiang & Kanost, 2000; Kanost
& Clarke, 2005). Each clip domain contains three disul-
phide bonds, and many SPs and SPHs between 300 and

400 residues contain one such domain. Although clip
domain sequences are hypervariable, we have identified
12 cSPs and six cSPHs in the honey bee by locating the
conserved pattern of Cys residues. Consistent with the
small overall family size, the total number of A. mellifera
cSPs and cSPHs is ∼1/3 of that in the Drosophila or Anoph-
eles. In the bee, we did not find any dual clip-domain SPs,
which serve as PAPs in M. sexta and Bombyx mori (Satoh
et al., 1999; Jiang et al., 2003a and 2003b).

The clip domains in A. mellifera SPs/SPHs range from 30
to 70 residues between Cys1 and Cys6, with an average
size of 45 residues (Fig. 1A). The regions between Cys2

and Cys3 are exactly five residues, except for cSPH41. The
lengths between Cys3 and Cys4 of cSPs are similar to those

   

   

   

 
    
    
    

 
             

Figure 1. Sequence comparison and phylogenetic relationships among the Apis mellifera clip-domain SPs and SPHs. A. alignment of the clip domain 
sequences. Six conserved Cys residues form 3 disulphide bonds. B. phylogenetic tree based on an alignment of the catalytic and protease-like domains. Vertical 
bars and numbers indicate the clip domain groups.
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in cSPHs. According to our previous analyses (Jiang &
Kanost, 2000; Ross et al., 2003), clip domains can be
divided into two groups based on the number of residues
between Cys3 and Cys4. Group 1 contains less than 16
residues whereas Group 2 is longer (average size: ∼23 res-
idues). All Group 1a cSPs in the honey bee are predicted
to be activated by proteolytic cleavage between Arg and Ile
(Table 1). They form one clade in the phylogenetic tree
(Fig. 1B), except for SP7. In Group 1b, the Arg residue
before the scissile bond is replaced by Phe or Leu. The
corresponding position is occupied by Arg in Group 2
SPs, except for cSP14 – cSP14 is probably cut after a His
residue, and it lacks the signature Cys pair present in
most Group 2 cSPs (Ross et al., 2003).

A multiple sequence alignment of their catalytic domains
suggests that all of the cSPs have a trypsin-like specificity,
based on residues predicted to form the primary substrate-
binding site (Table 1). A highly conserved Cys after the active
site Asp in the context of PICLP is predicted to form a disul-
phide bond with a Cys in the linker between the clip and cat-
alytic domains (based on horseshoe crab clotting enzyme).
The phylogenetic analysis also indicates that clip-domain
SPs and SPHs are more closely related to each other than
to other members of the family. The divergence of A. mel-
lifera clip-domain proteins was apparently an early evolution-
ary event with no shuffling of clip and protease domains
thereafter. Moreover, since members of the each subgroup
(group-1a, −1b or −2) are clustered with each other, they
may represent the three lineages emerged from ancient
splits of the gene family.

We identified putative Drosophila orthologs for many
A. mellifera clip-domain proteins (Table 1). cSP10 has a
four-domain structure of clip-catalytic-clip-catalytic, and both
halves of the molecule are highly similar to Drosophila
persephone. Persephone is a component of the fungal-
responsive branch of the SP system that triggers the Toll
pathway for induced synthesis of drosomycin (Ligoxygakis
et al., 2002a). A. mellifera SP17 and SP20 also contain more
than one catalytic domain. Further analyses are needed to
verify whether these three genes indeed encode proteins
with such unusual domain structures. A. mellifera cSP14
and cSP2, most similar to Drosophila Snake and easter,
may participate in the early development of honey bee
embryos. All of the cSPHs are located in one clade of the
phylogenetic tree (Fig. 1B). cSPH39 contains 4 clip domains,
and cSPH41, a homolog of Drosophila masquerade, has 5
clip domains.

SPs and SPHs with complex domain structures

Many of the SP/SPH family members contain other struc-
tural modules predicted to function in protein–protein
interactions. These include several types of disulphide-
stabilized domains (e.g. LDLrA, SRCR, frizzled, kringle,
Sushi, Wonton and Pan/apple), carbohydrate-recognition

domains (C-type lectin, chitin-binding), and other domains
(e.g. zinc finger, CUB, coiled coil, and Sina) (Table 1 and
Fig. 2A). SP20, SP23, SP30, SP45, SP49 and SP54 con-
tain LDLrA repeats, which are ∼40-residue-long Cys-rich
sequences first identified in the ligand-binding domain of
low-density lipoprotein receptor (LDLr). SP23 is most simi-
lar to An. gambiae SP22D (Danielli et al., 2000; Gorman
et al., 2000), but also resemble D. melanogaster Tequila in
domain architecture (Fig. 2). Tequila has 15 chitin-binding
domains, two scavenger receptor Cys-rich (SRCR) domains,
2 LDLr Cys-rich domains and one SP domain (Munier et al.,
2004). It also contains His- and Pro-rich regions and
NGGYQPP repeats. At least three spliced forms of Tequila
are detected throughout Drosophila development. Although
there was no phenotype in the null mutant, its up-regulation
in the wild-type fly upon fungal or bacterial infection sug-
gests a role in innate immunity. In the mosquito, SP22D
binds to chitin but not bacteria. The functions of A. mellifera
SP23 and its orthologs in the fly and mosquito are unclear.
A. mellifera SP49 is orthologous to M. sexta HP14, An.
gambiae CP12488 and D. melanogaster AY118964 (Ji
et al., 2004). These mosaic proteases have an identical
domain structure: 4–5 LDLrA repeats, a Sushi domain, a
Wonton domain and a SP catalytic domain (Wang & Jiang,
2006). M. sexta HP14 is an initiation enzyme activated
upon pathogen recognition, and it triggers the SP pathway
for proPO activation. A. mellifera SP49 may have the same
function.

A. mellifera cSPH41 is orthologous to Drosophila mas-
querade, which is essential in the development of embry-
onic nerve tissues (Murugasu-Oei et al., 1995). SPH39
is identical in domain structure to Drosophila LD13269p
(Table 1). SP30 and Drosophila corin are apparent orthologs,
both containing a frizzle domain, LDLrA repeats and a type
II transmembrane region (Fig. 2A). A. mellifera SP46 is
an ortholog of Drosophila Stubble, a transmembrane SP
required for leg and wing morphogenesis, which functions
through a RhoA intracellular signalling pathway (Bayer
et al., 2003).

SP-mediated extracellular signal transduction

Formation of SP pathways is a common strategy employed
by animals to respond to physiological or pathological
stimuli. Genetic and biochemical analyses of protease
cascades in model insects (e.g. D. melanogaster), when
combined with genome sequences, may provide useful
insights on similar processes in other arthropod species.
Therefore, we compared the SP genes in the honey bee
genome with Nudel, gastrulation defective (Gd), Snake,
and easter, which establish the dorsoventral axis of Dro-
sophila embryo (Belvin & Anderson, 1996). A. mellifera
SP20 and SP46 are orthologous to Nudel and Gd, respec-
tively (Fig. 2B). While high sequence similarity (identity:
26% and 39%) and identical domain structure suggest



Apis mellifera serine proteases and related proteins 609

© 2006 The Authors
Journal compilation © 2006 The Royal Entomological Society, Insect Molecular Biology, 15, 603–614

cSP14 and cSP2 may be honey bee Snake and easter,
respectively, we are unable to assign unambiguous orthol-
ogous relationships due to the existence of other Apis
clip-domain SPs with the same domain structure. Future
experiments are needed to test whether A. mellifera SP20,
SP46, cSP14 and cSP2 are involved in the early embryonic
development. We have identified possible substrates for
this proposed SP pathway, namely spätzle-1 (GB15688) and
spätzle-2 (GB13503). A. mellifera spätzle-1 and −2 are 47%
and 40% similar in sequence (identities: 28% and 22%) to
Drosophila spätzle (Fig. 3). The numbers and positions of
their Cys residues are conserved in most cases.

Proteolytic activation of proPO is a common defense
mechanism in insects and crustaceans (Ashida & Brey,

1998). Active PO is involved in melanotic encapsulation
and wound healing. In the last decade, this SP pathway has
been extensively studied in B. mori, M. sexta and Holot-
richia diomphalia. As described above, A. mellifera SP23,
the ortholog of M. sexta HP14, may be an initiation pro-
tease of the pathway. While intermediate steps of the
cascade are still unknown, we found A. mellifera cSP1 and
cSPH42 are similar in sequence and domain structure
to M. sexta PAP-1 and SPH-1, respectively. M. sexta PAP-
1, SPH-1 and other clip-domain proteins participate in the
proPO cleavage and activation (Tong et al., 2005; Zou &
Jiang 2005). A. mellifera GB18313, 56% identical in amino
acid sequence to M. sexta proPO-1, is the only proPO gene
identified in the genome (Lourenco et al., 2005). Like most

Figure 2. Domain organization of some SPs in 
Apis mellifera and other insects. A. Apis mellifera 
SP49 is orthologous to Manducta sexta HP14, 
An. gambiae AgCP12488 and Drosophila 
melanogaster AY118964. Apis mellifera SP23 is 
similar to Anopheles gambiae SP22D and D. 
melanogaster Tequila, whereas honey bee SP30 
is homologous to D. melanogaster corin. B. A 
proposed SP cascade (left) for establishing the 
dorsal-ventral axis of A. mellifera embryo, in 
comparison to a similar system discovered in 
D. melanogaster.

                          

        

Figure 3. Alignment of Drosophila spätzle and Apis spätzle-1 and −2. The first 127 residues at the amino terminus of the fly protein were not shown. 
*, identical:, similar.
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proPOs known so far, the honey bee proPO lacks a signal
peptide and has the consensus sequence of NR51*F52G around
the proteolytic activation site (*). These data suggest there
is a conserved SP pathway to activate proPO in the bee.

Serpins

SP inhibitors of the serpin superfamily are present in insect
haemolymph to remove excess proteases and maintain
homeostasis (Kanost, 1999). They are 45–55 kDa proteins
with a conserved tertiary structure. Serpins regulate haemo-
lymph coagulation, melanization and antimicrobial protein
synthesis in arthropods. The reactive site loop near the
carboxyl terminus is critical for inhibitory selectivity. Seven
annotated genes in the honey bee genome encode five
serpins and two serpin-like proteins with unusual insertions
or extensions that may represent errors in gene prediction
(Table 2). The ratio of SPs to serpins is 6.3 in A. mellifera,
similar to that in D. melanogaster (5.3).

While there is no experimental report on honey bee ser-
pins, these inhibitors have been extensively investigated
in moth, fly, and mosquito (Kanost et al., 2004). Through

sequence alignment, we have identified putative orthologs
of individual honey bee serpins and suggested their possible
functions in the development and immunity (Fig. 4). A. mel-
lifera serpin-1, −4 and −5 have an Arg at the predicted P1
site, the residue N-terminal to the cleavage site (Table 2), and
A. mellifera serpin-3 has a Lys at the putative P1 position,
suggesting that they may inhibit SPs with trypsin-like spe-
cificity. Consistent with the prediction that a few of the
honey bee SPs are chymotrypsin-like (Table 1), one serpin
(A. mellifera serpin-2) has a Leu at the putative P1 site.

We did not identify honey bee ortholog of Necrotic, a Dro-
sophila serpin that controls the Toll pathway activation and
spontaneous melanization. A. mellifera serpin-1 and −2
have a relatively high similarity (identity: 39%) to M. sexta
serpin-1. M. sexta serpin gene-1 encodes 12 reactive site
loop variants through alternative exon 9 usage (Kanost,
1999). Serpin-1 J blocks proPO activation by inhibiting PAP-
1, −2 and −3 (Jiang et al., 2003b). At a high concentration,
M. sexta serpin-1I partly inhibited haemolymph pro-
tease 14, an initiation protease of the proPO activation
cascade (Wang & Jiang, 2006). We identified A. mellifera

Table 2. Serine protease inhibitors (serpins) in Apis mellifera

Accession 
number GENBANK ID

Homologous proteins
Length 
(aa)

Signal 
peptide

Predicted 
reactive site

Target enzyme
specificityaDrosophila Other arthropodsa

serpin-1 GB17012 serpin-4 MsSerpin-1,2/AgSRPN-10 334 No LR*RC T
serpin-2 GB16472 serpin-4 MsSerpin-1,2 342 QG-ET PL*SS C
serpin-3 GB12279 spn-27 A MsSerpin-3/AgSRPN-2 466 DG-KE NK*NQ T
serpin-4 GB13578 CG7219 AgSRPN-6 469 FG-QL ER*DG T
serpin-5 GB19582 serpin-5 MsSerpin-6 451 SA-QC FR*SG T

GB10078b CG14470 1543 VG-SP ER*AE T
GB15070b CG12807 612 YC-VD ER*AG T

aAg, Anopheles gambiae; Ms, Manduca sexta; C, chymotrypsin; T, trypsin.
bGB10078 contains a carboxyl-terminal serpin domain; GB15070 contains a split serpin domain (maleszka3).

     
  

     
  

     
     

       
       

     
     
     
     

     
       

   

Figure 4. Sequence alignment and phylogenetic relationships of serpins from Apis mellifera and other insects. A. Amino acid sequence alignment of the 
P17-P4′ region. Identical residues are indicated by ‘*’, and similar residues by ‘:’. B. Phylogenetic tree based on alignment of full-length serpins selected 
from A. mellifera, Anopheles gambiae, Drosophila melanogaster and Manducta sexta.
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serpin-3 (GB12279) as the ortholog of D. melanogaster
Spn27A and M. sexta serpin-3, which inhibit PAPs to regu-
late melanization (Ligoxygakis et al., 2002b; Zhu et al.,
2003). During embryonic development, Spn27A inhibits
easter and suppresses activation of the Toll pathway that
establishes the dorsoventral axis. The honey bee serpin-5
(GB19582) may also be a negative regulator of melaniza-
tion, since its ortholog M. sexta serpin-6 formed stable
complexes with PAP-3 and HP8 (Zou & Jiang, 2005).
Although experimental data are unavailable to support the
proposed functions of the bee serpins, the observed
sequence similarity provides useful working hypotheses to
test.

Gene expression

To investigate transcriptional regulation of the SP-related
genes upon microbial infection, we injected adult workers
with saline, E. coli or a honey bee pathogen (Paenibacillus
larva). Real-time RT-PCR indicated that SP2, SP9, SP10
and SP23 mRNA levels increased after the saline injection
(Fig. 5A). SP3, SPH42, SP49, serpin-2, serpin-4, serpin-5
and spätzle-2 transcripts were elevated after the saline or
E. coli injection. We detected increases in the SP1, SP2,
SP3, SP6, SP41, SPH42, SP49 and serpin-2 transcript
levels after the P. larva injection. Compared with the injection
of saline or E. coli, the pathogen challenge gave rise to a
much stronger induction of SP41 and SP6 gene transcription.

In contrast, mRNA level changes in the honey bee larvae
were subtle at 24 h after the larvae fed on a diet containing
P. larva spores (Fig. 5B). At 48 h, some SP and serpin tran-
scripts became more abundant. Strong induction was
observed for SP14, SPH42, SPH42, SPH55, serpin-1 and
serpin-2 transcripts, whereas SP1, SP3, SP7, SPH19 and
serpin-5 mRNA levels decreased. Perhaps, this pathogen
evades the host defense (e.g. melanization) system by
modulating the SP gene transcription.

Conclusion

In this work, we explored the sequences and possible phys-
iological functions of honey bee SPs/SPHs and serpins.
Compared with D. melanogaster and An. gambiae, A. mel-
lifera has much smaller families of SP, SPH, serpin, proPO
and other immune proteins (Evans et al., 2006). Perhaps,
defense strategies at the colony level largely alleviate the
pressure on the immune system in individual insects,
resulting in requirement for fewer genes functioning in
defense against infection. Sequence, size, specificity and
domain structure analyses of SPs provided useful clues to
potential components of A. mellifera SP cascades. Quanti-
tative RT-PCR indicated that many SPs and their regula-
tors/substrates are immune responsive. Such information
will be useful for elucidating the composition and function of
SP-related protein systems in this social insect.

Experimental procedures

Database searching and sequence retrieving

M. sexta proPO-activating protease-1 (PAP-1) (Jiang et al., 1998)
was used as a query to perform a BLASTP search of Official Gene

 

Figure 5. Quantitative RT-PCR analyses of Apis mellifera SP-related 
transcripts. A. RNA samples from adult workers at 24 h after injections of 
Paenibacillus larvae (P.l.), E. coli (E.c.), or saline and uninjected control. 
B. RNA from the 2nd instar larvae at 24 h or 48 h after feeding on the 
regular diet (–) or diet with an infective dose of P. larvae. Gene expression 
is shown in grey scale, with darker squares indicating higher expression 
levels. SP10N and SP10C: N- and C-terminal halves.
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Set-1 (Honey Bee Genome Sequencing Consortium, 2006) in the
honey bee genome database, BeeBase (http://racerx00.tamu.edu/).
Every tenth sequence from the primary list was retrieved and used
as the query for another round of searching. The amino acid
sequences encoded by predicted genes with significant BLAST scores
(E-value < 0.1) were retrieved and numbered in the order in which
they were identified. Similarly, M. sexta serpin-1, serpin-3, serpin-
6, proPO-1 and D. melanogaster spätzle sequences were used to
search the database for homologous genes in A. mellifera.

Sequence properties of A. mellifera SPs and SPHs

Sequences were categorized as SPs and SPHs by locating the
conserved His, Asp, and Ser residues in the catalytic triad. If all
three of these residues were present in the conserved TAAHC,
DIAL and GDSGGP regions, the sequences were considered to
be SPs. Sequences lacking one or more of these key residues
were labelled SPHs. Protein sizes were calculated based on the
entire predicted sequences.

Identification of clip domains in SPs and SPHs

The retrieved A. mellifera SP and SPH sequences were reviewed
manually to search for clip domains (Ross et al., 2003). SPs and
SPHs containing regions N-terminal to the catalytic domain with
six cysteine residues with Cys5 and Cys6 at adjacent positions
were designated cSPs and cSPHs, respectively. For other SP-like
proteins, domain organization and comparison were analysed
by CDART at http://www.ncbi. nlm.nih.gov/, PROSITE at http://us.
expasy.org/prosite, and SMART at http://smart.embl-heidelberg.
de/smart. The chromosomal location and predicted exon-intron

boundaries for each annotated sequence were acquired from
BeeBase (Glean_3.gff).

Multiple sequence alignment and phylogenetic analysis

SP catalytic domains and SPH protease-like domains were
aligned using ClustalX (ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalX/),
and cladograms were constructed by the neighbour-joining method
and displayed using Treeview (http://taxonomy.zoology.gla.ac.uk/
rod/treeview.htm). A Blosum 30 matrix, with a gap penalty of 10
and an extension gap penalty of 0.1 were used in the multiple
sequence alignment. In order to compare equivalent regions, 20
sequences lacking a significant portion of the protease-like domain
were excluded from the analysis. SP catalytic domains from ∼50
residues upstream of the conserved His to ∼50 residues down-
stream of the reactive site Ser were compared. The corresponding
region in SPHs was also included in the alignment. To compare the
clip domain sequences, the region from one residue before Cys1

to one after Cys6 was analysed.

Gene expression analysis

To screen for immune-related transcript changes, adult worker
bees from a single local A. mellifera ligustica colony were injected
with either phosphate-buffered saline or saline containing 103 live
E. coli cells or 103 vegetative spores of P. larvae (Evans, 2004).
These bees, along with the uninjected ones, were maintained at
34 °C and high humidity. To assess immune responses following a
natural infection, eight 1st instar larvae from the same stock were
given per os challenges of P. larvae in their diet (5 spores/ml), and
then maintained at 34 °C and high humidity. Control larvae were

Table 3. Oligonucleotides used in real time PCR of Apis mellifera SP-related genes

Locus Forward Primer Reverse primer Gene ID

SP1 TGCTCATTGCGTTACATCGT TTGTCAGCGCAAACAACTTC GB16147
SP2 GCGTTTAGAAAGCGTTCGTC TCCGCGCAAAGTAAGCTATT GB14247
SP3 ATGGACCCTTGTTACCACCA GTTGCGAAGGGTTCAAAGAA GB11698
SP6 CGATGACGATGACATTCCTG TGTGTCCACCCACGATTCTA GB14077
SP7 GGCTGGGTTCTTGGTGTTTA GCTCGACTGTGGTGTAACGA GB17145
SP8 GTTTGGTCGACGGAAGAAAA CCGTCGACTCGAAATCGTAT GB18767
SP9 GAGATGTTGAATGGCACGAA CCACCACTATCTCCCTGACAA GB18732
SP10N CCGGTGAACTTGGAAAAGAT CTTCGCCAGGAATAATGGAA GB17927
SP10C GAGATGTTGAATGGCACGAA CCACCACTATCTCCCTGACAA GB17927
SP13 CGGAGCTTAAATGCGAAGAA TTGTTCCTAGAGCAACCATGTG GB15640
SP14 GATTACCCAATGGCATCGAC GCTGGTGAACCGCAAGTATT GB14044
SPH19 ACCATCGAGAAAACCACGAC GTACACGCTTTCCGTTGGAT GB17345
SP21 GCCGGAAACTTACACGGTTA CGATAATGTGCTTGCGGTAA GB16220
SP23 AACGGAAACGAAATGGACAG GAGCACATGCTTGAACGAAA GB12538
SP30 CACCAGAAGGCACTCTCACA CCTGAGCGAAGCCTAAATTG GB19649
SPH39 GCGCCAGGAAACTCTGTTAG ACGAAGCTTCCCCGTTTATT GB14366
SPH41 ACCGGCACAAGCAAAATTAC GCGAACTCTTCGTGTTGTCA GB10943
SPH42 GAAGTCCCCTTGTTTGTCCA TCGATCCAATCACGAACAGA GB11298
SP49 TGTGATGGCATAGCAGATTGT CAGGCACCATAATCACAACG GB15317
SPH50 GCAAATCGAAAGGGAAATGA CTGATGGAAAGCTGGTGGTT GB14001
SPH55 GTCAACGACGTGGAAGGAAT CGTTGGAAGACATCCCGTAT GB13397
serpin-1 CATGGTGACATGCCAATGTT CGAGTTGTATTTGCAAGCATTT GB17012
serpin-2 TCCATGGAGGCAGCAAATA CCATTGGCCTTTAAAATAAACTG GB16472
serpin-3 CGGGAGACGAAACTGATGAT TTCACCTTGAGCTCCTTCGT GB12279
serpin-4 CTGGGCCACGTGTAGATTTT ATGTCCATTGCTGCTTTTCC GB13578
serpin-5 ACTCAGCGAACCGATTATGG GGACAGCATTTGGATTCGTT GB19582
Spz-1 TGCACAAATTGTTTTTCCTGA GTCGTCCATGAAATCGATCC GB15688
Spz-2 AATCGAAGGTTTCGCTGAAG TTCCGGTATTATGGAACCATTT GB13503
PPO AGATGGCATGCATTTGTTGA CCACGCTCGTCTTCTTTAGG GB18313

http://racerx00.tamu.edu/
http://www.ncbi
http://us
http://smart.embl-heidelberg
ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalX/
http://taxonomy.zoology.gla.ac.uk/


Apis mellifera serine proteases and related proteins 613

© 2006 The Authors
Journal compilation © 2006 The Royal Entomological Society, Insect Molecular Biology, 15, 603–614

fed on the same diet but without the spores. Following an incuba-
tion period, the adults and larvae were instantly frozen at −80 °C
prior to RNA extraction. Total RNA was extracted from whole
abdomens of the adults using Trizol (Invitrogen, Carlsbad, CA),
whereas the larvae were extracted using the RNAqueous kit
(Ambion, Austin, TX). After DNA removal, first-strand cDNA was
synthesized as previously described (Evans, 2004).

Specific primer pairs (Table 3) with calculated annealing tem-
peratures of 59.5–60.5 °C and expected product sizes of 150–
200 bp were designed using Primer 3 (http://frodo.wi.mit.edu/cgi-
bin/primer3/primer3_www.cgi). A total of 28 cDNAs for SP-related
proteins were examined by real-time PCR. Each 25 µl reaction
contained Taq DNA polymerase (1 U), 1 × buffer (Roche Applied
Sciences), 1 mM dNTP mix, 2 mM MgCl2, 0.2 µm primers,
1 × SYBR-Green I dye (Applied Biosystems Foster City, CA), and
10 nM fluorescein. The thermal cycling conditions were 95 °C for
5 min and 40 cycles of 94 °C for 20 s, 60 °C for 30 s, 72 °C for 60 s
and 78 °C for 20 s. Amplification was monitored on an iCycler (Bio-
Rad, Hercules, CA). Primer pairs that caused dimer formation or
other artifacts in no-template controls were excluded. The remaining
pairs were arrayed randomly, in duplicate, across a 96-well plate,
and all expression data were collected in parallel for each cDNA
template. Thresholds were individually calculated for each target
gene on the array. For adult bee samples, data were combined for the
three replicates in each single-bee injection treatment (or control).
The larval RNA samples were pooled before cDNA synthesis, and
the cDNA was run in duplicate on the RT-PCR plate. Proper disso-
ciation curves and correct product sizes were examined by melting
curve analysis and agarose gel electrophoresis. The transcripts were
normalized relative to the levels of ribosomal protein S5 (Evans,
2004; Evans & Wheeler, 2000). Transcript abundance values
(Ctcontrol – Cttarget) for each gene were median-normalized across
each panel of genes, clustered by average linkage clustering, and
presented as relative grey-scale values using Eisen Cluster 3.0
and Eisen TreeView (http://rana.lbl.gov/EisenSoftware. htm).
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