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Comparative Analysis of Shift Variance and
Cyclostationarity in Multirate Filter Banks

Til Aach, Senior Member, IEEE

Abstract— Multirate filter banks introduce periodic time-
varying phenomena into their subband signals. The nature of
these effects depends on whether the signals are regarded as
deterministic or as random signals. We analyze the behavior
of deterministic and wide-sense stationary (WSS) random sig-
nals in multirate filter banks in a comparative manner. While
aliasing in the decimation stage causes subband energy spectra
of deterministic signals to become shift-variant, imaging in the
interpolation stage causes WSS random signals to become WS
cyclostationary (WSCS). We provide criteria to quantify both
shift variance and cyclic nonstationarity. For shift variance, these
criteria separately assess the shift dependence of energy and
of energy spectra. Similarly for nonstationarity, they separately
assess the nonstationary behavior of signal power and of power
spectra. We show that, under aliasing cancellation and perfect
reconstruction constraints of paraunitary and biorthogonal filter
banks, these criteria evaluate the behavior of deterministic and
WSS random signals in a consistent, dual way. We apply our
criteria to paraunitary and biorthogonal filter banks as well as
to orthogonal block transforms, and show that, for critical signals
such as lines or edges in image data, the biorthogonal 9/7 filters
perform best among these.

Index Terms— Multirate filters, decimation, interpolation,
cyclic nonstationarity, paraunitary filter banks, biorthogonal
filter banks.

I. INTRODUCTION

CONVERSION of sampling rates in multirate filter sys-
tems [1], [2] generally introduces periodic shift variance

in the sense that when a given, deterministic input signal
is shifted in time or space, its subband coefficients do not
translate correspondingly. Instead, subband energy may be re-
distributed significantly between subbands [3]. The outcome of
lossy subband compression [4], [5], [6] or of nonlinear adap-
tive subband processing for, say, X-ray image enhancement
[7], thus depends on translations of the input data. Analysis
and assessment of the shift-variant behavior of the subbands
of deterministic signals are hence important issues. Loeffler
and Burrus [8] describe multirate filters via linear periodically
time-varying (LPTV) systems, and employ two-dimensional
spectral representations — referred to as bifrequency maps
[2] — to describe the LPTV properties. In particular, they
show that the shift-invariant and shift-variant parts of an
LPTV filter are separated in the bifrequency map, and point
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out that its time-varying behavior can thus be determined
from the off-diagonal components of the bifrequency map.
Similarly, Vaidyanathan and Mitra show that LPTV systems
can be represented by critically sampled polyphase networks
[9]. Simoncelli et. al. [3] show that, as a consequence of
aliasing in the analysis stage, the subband energy of a deci-
mated deterministic signal generally oscillates when the signal
is shifted in time. Complementing these frequency-domain
descriptions, Villasenor et. al. [4] provide a time-domain
analysis of the periodic shift variance in terms of the time-
variant impulse response of wavelet filter banks when only the
low-frequency signal (or reference signal) is retained. They
show that the time-variant impulse response of the lowpass
channel of a dyadic wavelet transform can be written as a
weighted linear combination of the upsampled versions of
the synthesis lowpass [4, Eq. (12)]. The weights are taken
from shift-dependent subsets of the analysis filter coefficients,
a view which is consistent with the above result that shift
variance is generated by aliasing in the analysis filter bank.
Furthermore, [4] identifies a selection of biorthogonal filter
banks best suited for image compression, without, though,
defining a quantitative measure for shift variance.

Approaches to shift-invariant wavelet respresentations in-
clude, e.g., normalization of signals with respect to position
and width in time [10], [11], operating without sampling rate
conversion [12] and cycle spinning [13]. In cycle spinning,
several circularly translated versions of a given input signal
are processed independently. The processing results are then
shifted back and averaged, yielding the final translation-
invariant result. Liang and Parks [14] calculate the wavelet
decomposition for all circular shifts of the input signal, and
select the best representation via a binary tree search. Another
approach is the use of complex wavelets [15], [16], which,
when applied to two-dimensional images, also provide better
directional selectivity than real-valued separable wavelets [17],
[18], [19], [20]. A genetic algorithm to optimize wavelet filters
with respect to shift invariance can be found in [21].

In applications such as lossy image compression [5], [6],
[20] or filter approximation [22], performance is assessed by
the expected error, often on the basis of wide-sense stationary
(WSS) signal models. Since the statistical properties of sta-
tionary random signals do, by definition, not depend on time
shifts, the concept of shift variance cannot be applied. A WSS
random signal, however, does generally not remain stationary
when passing through a multirate filter bank branch. Rather,
the correlation structure and power spectra at the output of a
filter bank branch vary periodically, thus making the output
process wide sense cyclostationary (WSCS) [23], [24], [25],
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[26], [27], [28], [29], [30], [31]. Performance measures such as
mean square error or the nonaliasing energy ratio (NER) [32]
average over the periodical variations, thus implicitly assuming
a WSS signal. In [23], Sathe and Vaidyanathan analyze WSCS
signals with period L in terms of L-dimensional vector random
signals, where the vectors are formed from L successive coef-
ficients of the original scalar signal. While this vector signal
is WSS, the original signal is WSS if the power spectrum
matrix of the vector process is a pseudocirculant matrix.
Similarly, they relate LPTV systems to linear time-invariant
(LTI) multiple-input multiple output (MIMO) systems, and
show that, if the transfer matrix of the LTI-MIMO system is
pseudocirculant [9], the scalar filter is LTI rather than LPTV.
They prove that decimation in the analysis filter bank keeps a
WSS signal WSS, and may even turn a WSCS signal into
a WSS signal (see also [25], [27], [28], [29], [33], [34]).
Vice versa, interpolation in the synthesis bank transforms a
WSS signal into a WSCS signal unless an ideal anti-imaging
filter is used. A later paper [31] arrives at these conclusions
using bifrequency maps as in [2], [8]. In [25], [26], [27],
the power spectral matrix of an interpolator is derived. As
in [8] for LPTV systems, the cyclic nonstationary part of the
output signal is determined by its off-diagonal entries, while
the diagonal determines the stationary part. A comprehensive
list of references on cyclostationarity and multirate filter banks
can be found in sections 2.6.1 and 3.6.8 of the bibliography
by Serpedin et. al. [35].

The objective of this paper is to quantify the shift-variant
and cyclic nonstationary behavior of various multirate filter
banks in a parallel, comparative manner. From a separation
of the shift-invariant and shift-variant parts of the subband
energy spectra of a deterministic signal as well as of the
WSS and nonstationary parts of the WSCS subband power
spectra of a WSS random input signal, we develop quantitative
criteria to evaluate shift variance and cyclic nonstationarity in a
multirate filter bank. Inserting aliasing cancellation conditions
and perfect reconstruction (PR) constraints of paraunitary and
biorthogonal filter banks, we derive a duality between the
behavior of deterministic and WSS random signals with flat
spectra. Based on these criteria, we compare a variety of
paraunitary and biorthogonal filter banks as well as several
orthogonal block transforms. Our comparison is carried out for
standard input signals, such as first order autogressive random
signals, as well as for signals where, e.g., shift variance is
most critical, such as lines or edges in image data.

In a multirate PR filter bank, the aliasing terms at its
channel outputs cancel at the filter bank output provided
the subbands are not processed. Subband processing by, for
instance, quantization, compression or filtering, distorts the
balance between the aliasing terms, and thus lets effects such
as shift variance appear in the filter bank output signal. These
then depend on the properties of both the filter bank and the
type of processing. In general for the filter banks which are
of interest here, it is safe to assume that, for a given type
of subband processing, shift variance in the output signal is
low when shift variance in each filter bank channel is low.
In other words, for a filter bank with low shift variance in

Fig. 1. One channel of a multirate filter bank.

each channel, a higher degree of subband processing will
be permitted (cf. also the discussion on aliasing cancellation
in [15]). Fig. 1 shows a channel of a multirate filter bank,
consisting of a downsampler followed by an upsampler placed
between analysis and synthesis filters H(z) and G(z). The
input signal is denoted by s(n). In the deterministic case, it
is assumed to be of finite energy with z-transform S(z) and
energy spectrum RE

ss(z) = S(z)S(z−1). In the WSS case, its
autocorrelation sequence (ACS) is rss(n) = E[s(m)s(m+n)],
where E is the expectation operator. The z-transform of rss(n)
is the power spectrum Rss(z). The signals within the filter
bank channel are denoted as indicated in Fig. 1: t(n) is the
analysis-filtered signal, x(n) the downsampled signal, v(n)
the signal after upsampling, and y(n) the channel output. The
M th root of one is denoted by e−j2π/M = W , and the Fourier
matrix by W. The modulation vector of a signal s(n) is
denoted by sm(z) = [S(z), S(zW ), . . . , S(zWM−1)]T . The
modulation vectors of the filters h(n) and g(n) are denoted
by hm(z) and gm(z), respectively. The symbols ◦−• and
•−◦ denote forward and inverse Fourier- or z-transformation,
respectively.

II. DETERMINISTIC SIGNALS

A. Decimation

Downsampling the filtered signal t(n)◦−•T (z) = H(z)S(z)
yields for the spectrum of the decimated signal x(n) [36], [37]

X(z) =
1
M

sT
m(z1/M ) · hm(z1/M ) (1)

The energy spectrum is

RE
xx(z) = X(z)X(z−1) (2)

=
1

M2
sT
m(z1/M )hm(z1/M )hT

m(z−1/M )sm(z−1/M )

Shifting s(n) by m samples to s(n−m), m = 0, . . . ,M−1
multiplies T (z) by z−m. Since the energy spectrum of x(n)
generally depends on m, it is in the following denoted by
RE

xx(m, z), and it obeys with Eq. (2)

RE
xx(m, z) = 1

M

M−1∑
k=0

T (z
1

M W k) · W−km ·

1
M

M−1∑
l=0

T (z−
1

M W l) · W−lm (3)

Eq. (3) is the product of the m-th coefficients i(m) and
j(m) of the inverse discrete Fourier transforms of I(k) =
T (z

1
M W k) and J(k) = T (z−

1
M W k). With i(m) · j(m) ◦−•
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1/M ·I(k)∗J(k), and grouping RE
xx(m, z), m = 0, . . . ,M−1,

into a vector, we get[
RE

xx(0, z), RE
xx(1, z), . . . , RE

xx(M − 1, z)
]T

=
WH

M2

[
A0(z1/M ), A1(z1/M ), . . . , AM−1(z1/M )

]T

(4)

where WH is the transjugated Fourier matrix, and Ak(z) is
the convolution of modulated DFT-spectra

Ak(z) =
M−1∑
l=0

T (zW l)T (z−1W k−l) (5)

Eq. (4) permits straightforward separation of the energy spec-
trum into shift-invariant and shift-variant parts. RE

xx(m, z) is
shift-invariant, i.e., independent of m, if and only if Ak(z) = 0
for k = 1, . . . ,M − 1. This is equivalent to the absence of
aliasing. The energy spectrum is then equal to the average or
shift-invariant part of Eq. (4) given by

R
E

xx(z) =
1

M2
A0(z1/M ) (6)

With aliasing, we define the shift-variant deviations
∆RE

xx(m, z) from the shift-invariant part R
E

xx(z) by[
∆RE

xx(0, z), . . . ,∆RE
xx(M − 1, z)

]T
=

WH

M2

[
0, A1(z1/M ), . . . , AM−1(z1/M )

]T

(7)

where ∆RE
xx(m, z) = RE

xx(m, z) − R
E

xx(z).

B. Interpolation

Upsampling stretches the input signal x(n) on the time
axis, and correspondingly compresses its energy spectrum to
RE

vv(z) = RE
xx(zM ). The ACS of x(n) is therefore upsampled

like the signal x(n) itself [38], [39]. Unlike decimation,
interpolation introduces no shift dependencies into the energy
spectrum. Upsampling of the shift-variant energy spectrum
RE

xx(m, zM ) in Eq. (3) and filtering by G(z) results in

RE
yy(m, z) = G(z−1)RE

xx(m, zM )G(z) . (8)

Inserting Eq. (4) yields for the output energy spectra[
RE

yy(0, z), . . . , RE
yy(M − 1, z)

]T
=

WH

M2
[B0(z), . . . , BM−1(z)]T (9)

where
Bk(z) = G(z−1)Ak(z)G(z) (10)

As in Eq. (6), the shift-invariant part of the energy spectra is
given by the average

R
E

yy(z) =
1

M2
B0(z) (11)

and the shift-variant deviations which remain after synthesis
filtering are[

∆RE
yy(0, z), . . . ,∆RE

yy(M − 1, z)
]T

=

WH

M2
[0, B1(z), . . . , BM−1(z)]T (12)

C. Criteria for Shift Variance

Eqs. (9), (11) and (12) are the basis for our criteria assessing
shift variance. We first develop a measure for the shift variance
of the energy of y(n). By integrating Eq. (9) over the unit
circle, we obtain the shift-variant energies Eyy(m)

[Eyy(0), . . . , Eyy(M − 1)]T = WH [e0, e1, . . . , eM−1]
T

(13)
where

Eyy(m) =
1
2π

∫ π

−π

RE
yy(m, ejω)dω . (14)

The energies ek are given by

ek =
1

2πM2

∫ π

−π

Bk(ejω)dω (15)

where

Bk(ejω) =
M−1∑
l=0

T (ej(ω− 2πl
M ))T ∗(ej(ω+

2π(k−l)
M ))|G(ejω)|2

(16)
The shift-invariant part of the energy of y(n) is then equivalent
to the average Eyy = e0. The shift-variant energy deviations
are

[∆Eyy(0), . . . ,∆Eyy(M − 1)]T = WH [0, e1, . . . , eM−1]
T

(17)
with ∆Eyy(m) = Eyy(m)−Eyy . We assess the shift variance
of signal energy by the normalized mean square energy devia-
tion from the shift-invariant average. With Parseval’s theorem
for the DFT, this criterion becomes

C2
e =

1
M

∑M−1
m=0 |∆Eyy(m)|2

(Eyy)2
=

∑M−1
k=1 |ek|2

|e0|2
. (18)

Evidently, the amount of shift variance generated depends
on the anti-aliasing filter H(z), while the anti-imaging filter
G(z) tends to attenuate the shift-variant components. If the
bandwidth of G(z) is sufficiently narrow (less than 2π/M if
the anti-aliasing filter H(z) does not prevent aliasing), shift
variance in the output signal of the filter bank branch could
even be eliminated. In PR filter banks, analysis and synthesis
filters are, however, closely related. For instance, in orthogonal
filter banks, filters are designed from a common lowpass
FIR prototype H(z) by modulation, time reversal and shifts.
The bandwidths of H(z) and G(z) are then identical, since
|H(ejω)| = |G(ejω)|. The energy spectrum of y(n) is then
always shift-variant.

The above criterion C2
e assesses the variance of signal

energy over shift m, and, via the ek, also provides information
on which aliasing components are responsible for most of
the variation. Changes in the shape of the energy spectrum,
however, which do not result in a change of energy, escape
evaluation by C2

e . To devise an alternative criterion which
captures all variations of the shape of the energy spectrum
— including variations of signal energy — we interchange
the order of integration and application of Parseval’s theorem.
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With

σ2
e(ejω) =

1
M

M−1∑
m=0

|∆RE
yy(m, ejω)|2

=
1

M4

M−1∑
k=1

|Bk(ejω)|2 (19)

denoting the variance of the energy spectrum RE
yy(m, ejω)

over m for each ω, a frequency-resolved criterion of the
relative variation of the energy spectrum can be obtained by
the normalization

σ2
eN (ejω) =

σ2
e(ejω)

|RE
(ejω)|2

=
∑M−1

k=1 |Bk(ejω)|2

|B0(ejω)|2
. (20)

This expression is defined for all ω with |B0(ejω)| > 0. Since
the energy spectra are non-negative, |B0(ejω)| = 0 for some
frequency ω implies that the numerator of Eq. (20) is zero as
well, which we take into account by setting σ2

eN (ejω) = 0 for
these frequencies. Finally, averaging over ω yields the criterion

L2
e =

1
2π

∫ π

−π

σ2
eN (ejω)dω

=
1
2π

∫ π

−π

∑M−1
k=1 |Bk(ejω)|2

|B0(ejω)|2
dω (21)

Unlike the criterion C2
e above, this measure also captures

changes in the energy spectra which do not result in a change
of energy. Finally note that both criteria can equally be applied
to assess the degree of shift variance in the subbands after
analysis filtering and downsampling by replacing the power
spectra in C2

e and L2
e with those derived in section II-A.

III. WSS RANDOM SIGNALS

A. Decimation

Decimation adds aliased components to the original power
spectrum, but leaves the signal WSS. The power spectrum of
the downsampled signal obeys (see, e.g., [32, Eq. (2)], or [39,
Section 2.2])

Rxx(z) =
1
M

·
M−1∑
k=0

H(z−1/MW−k) ·

Rss(z1/MW k)H(z1/MW k) . (22)

B. Interpolation

Upsampling and synthesis filtering generally causes a WSS
signal to become WSCS [23], [25], [27], [31]. The ACS
ryy(m,n) = E[y(m)y(m + n)] then depends periodically on
the reference position m with period M . Consequently, the
power spectrum Ryy(m, z) — defined as the z-transform of
ryy(m,n) with respect to the lag parameter n — also depends
on the position m 1. Arranging the power spectra Ryy(m, z)

1In, e.g., [40, Eq. (2)], the spectrum of the time-varying ACS with respect
to the time lag is called the instantaneous probabilistic spectrum. As we will
later on use Ryy(m, z) to compute the periodically time-varying power, we
continue to refer to it as power spectrum. For an interpretation of this quantity
in terms of the Wiener-Khinchin theorem, see [40, p. 289].

for m = 0, . . . ,M−1 into a vector, it is shown in the appendix
that

[Ryy(0, z), . . . , Ryy(M − 1, z)]T =
Rxx(zM )WG(z)

M
gm(z−1) (23)

holds. The average power spectrum is

1
M

M−1∑
m=0

Ryy(m, z) =
Rxx(zM )

M
G(z)G(z−1) . (24)

The nonstationary differences ∆Ryy(m, z) to the average
spectrum are

[∆Ryy(0, z), . . . ,∆Ryy(M − 1, z)]T =
Rxx(zM )

M
WG(z)

[
0, G(z−1W ), . . . , G(z−1WM−1)

]T
(25)

These vanish for ideal anti-imaging filtering.

C. Criteria for Cyclostationarity

To quantify the cyclic nonstationarities of y(n), we calculate
the periodically varying power Py(m) by integrating Eq. (23)
over the unit circle. The left-hand side yields

Py(m) =
1
2π

∫ π

−π

Ryy(m, ejω)dω , m = 0, . . . ,M − 1

(26)
With the power pn from the overlap of G(z) and G(z−1Wn)
defined as

pn =
1

2πM

∫ π

−π

Rxx(ejωM )G(ejω)G(e−j(ω+2πn/M))dω ,

(27)
where, from Eq. (22),

Rxx(ejωM ) =
1
M

M−1∑
k=0

Rss(ej(ω− 2πk
M ))|H(ej(ω− 2πk

M ))|2 ,

(28)
we obtain with Eq. (23)

[Py(0), . . . , Py(M − 1)]T = W[p0, . . . pM−1]T (29)

The stationary power average P y then is

P y =
1
M

M−1∑
m=0

Py(m) = p0 (30)

and the nonstationary deviations ∆Py(m) from the mean are

[∆Py(0), . . . ,∆Py(M − 1)]T = W[0, p1, . . . , pM−1]T (31)

To quantify the resulting cyclic nonstationarity, we define the
normalized mean square power deviation from the average
power as

C2
p =

1
M

∑M−1
m=0 |∆Py(m)|2(

1
M

∑M−1
m=0 Py(m)

)2 =
∑M−1

n=1 |pn|2

p2
0

(32)

In comparison to shift variance of deterministic signals, anal-
ysis and synthesis filters have now exchanged their roles:
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the amount of nonstationarity generated depends on the anti-
imaging filter G(z), while the anti-aliasing filter H(z) tends to
attenuate the nonstationary components caused by an insuffi-
ciently narrow anti-imaging filter. As is evident from Eq. (23),
if G(z) eliminates all frequency images, y(n) is again WSS
[23], [31]. In channels of PR multirate filter banks with FIR
filters, the channel output signals are always nonstationary.

The above criterion is the counterpart of the shift variance
criterion C2

e in Eq. (18) for deterministic signals, and evaluates
the periodic variations of the power of y(n), but not variations
of the shape of Ryy(m, z) which do not lead to a change in
power. To capture also changes in power spectra which do not
result in a change of signal power we first apply Parseval’s
theorem to Eq. (25) and integrate then over frequency. For the
left-hand side of Eq. (25), this leads to

σ2
p(m) =

1
2π

∫ π

−π

|∆Ryy(m, ejω)|2dω (33)

which can be viewed as the energy of ∆Ryy(m, ejω) for a
given m. From the right-hand side of Eq. (25), we obtain

D2
p(k) =

1
2π

∫ π

−π

|Ck(ejω)|2dω (34)

where

Ck(z) =
Rxx(zM )

M
G(z)G(z−1W k) (35)

The energy average over m = 0, . . . ,M − 1 then is

1
M

M−1∑
m=0

σ2
p(m) =

M−1∑
k=1

D2
p(k) (36)

Normalizing by the energy of the average spectrum

µ2
p =

1
2π

∫ π

−π

|Ryy(ejω)|2dω (37)

leads to the normalized criterion

K2
p =

1
M

∑M−1
m=0 σ2

p(m)
µ2

p

=
∑M−1

k=1 D2
p(k)

D2
p(0)

(38)

Note that this criterion is not fully analog to L2
e in Eq. (21): in

Eq. (21), we first normalized to |B0(ejω)|2 and integrated only
then over ω, whereas in Eq. (38), numerator and denominator
are separately integrated over ω. The reason for this is that,
since the cyclostationary ACS ryy(m,n) is formed from
crosscorrelation sequences according to Eq. (56), C0(ejω) may
vanish for some ω, while one or more of the Ck(ejω) with
k = 1, . . . ,M − 1 do not. In contrast to this, D2

p(0) is always
larger than zero (unless the signal y(n) vanishes), so that Eq.
(38) always exists.

Invoking Parseval’s theorem, Eq. (38) can also be written
in terms of the ACS ryy(m,n) as

K2
p =

1
M

∑M−1
m=0

∑∞
n=−∞ |ryy(m,n) − ryy(n)|2∑∞
n=−∞ |ryy(n)|2

(39)

where ryy(n) = 1/M
∑M−1

m=0 ryy(m,n) is the average ACS.
This shows that Eq. (38) can be viewed as a discrete-time
version of the so-called degree-of-cyclostationarity (DCS)

measure introduced by Zivanovic and Gardner in [40, Eq.
(16)], which was defined for continuous-time cyclostationary
signals and a symmetrically defined ACS. Eq. (38) can thus
be regarded as evaluating the distance of the cyclostationary
ACS ryy(m,n) to the nearest stationary ACS, or, equiva-
lently, as the distance of the cyclostationary power spectrum
Ryy(m, ejω) to the closest stationary power spectrum. For
the type of distance used, the closest stationary ACS and the
closest stationary power spectrum are those of the stationary
process obtained from the cyclostationary one by phase ran-
domization [41], [42], and are given by the time averages
ryy(n) and Ryy(ejω), respectively [43, p. 373],[40]. In a
similar manner, we may rewrite Eq. (32) in the time domain
to

C2
p =

1
M

∑M−1
m=0 |ryy(m, 0) − ryy(0)|2

r2
yy(0)

(40)

In terms of the ACS ryy(m,n), the criterion C2
p thus assesses

only the periodic changes of ryy(m, 0) over m rather than
those of the entire ACS. A comparable observation with re-
spect to rE

yy(m, 0) can be made for the shift variance criterion
of C2

e in Eq. (18). Although the most appropriate criteria to
assess shift variance and cyclostationarity may depend on the
application, the criteria L2

e in Eq. (21) and K2
p in Eq. (38) are

generally more comprehensive than C2
e and C2

p , respectively.
Based on the latter criteria, however, a relation can be derived
between shift variance and cyclostationarity, as we will show
in the next section.

IV. FLAT-SPECTRUM SIGNALS: A DUALITY

We have seen that for deterministic signals, shift variance
is caused by decimation and thus mainly determined by the
properties of the anti-aliasing filter H(z). Conversely, for WSS
signals, WS cyclostationarity is introduced by interpolation,
thus being mainly determined by the anti-imaging filter G(z).
The structures of the expressions which describe shift variance
of the signal energy in Eq. (18) and cyclostationarity in
Eq. (32) are very similar: shift variance is introduced by
the energies ek, k = 1, . . . ,M − 1, in Eqs. (15) and (16).
Cyclostationarity is captured by the filter-overlap powers pk in
Eqs. (27) and (28). Though shift variance and cyclostationarity
are different phenomena, they are closely related. We illustrate
this by comparing the behavior of a deterministic unit impulse
and WSS white noise. In the deterministic case with s(n) =
δ(n), we have S(z) = 1 and T (z) = H(z), whereas for the
WSS case, we have rss(n) = δ(n) and Rss(z) = 1. Eqs. (15)
and (16) then simplify to

ek =
1

2πM2

M−1∑
l=0

∫ π

−π

∣∣G(ejω)
∣∣2 ·

H(ej(ω− 2πl
M ))H∗(ej(ω+

2π(k−l)
M ))dω (41)

For the WSS signal, Eqs. (27) and (28) to calculate pk become

pk =
1

2πM2

M−1∑
l=0

∫ π

−π

∣∣∣H(ej(ω+ 2πl
M ))

∣∣∣2 ·
G(ejω)G∗(ej(ω+ 2πk

M ))dω (42)



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 54, NO. 5, 2007 (PREPRINT) 6

where, in Eq. (28), ω − 2πl/M was replaced by ω + 2πl/M ,
which changes only the order of the summation. After rotating
each integrand by 2πl/M by the substitution ω̃ = ω+2πl/M ,
we obtain for pk

pk =
1

2πM2

M−1∑
l=0

∫ π

−π

∣∣∣H(ej(ω̃)
∣∣∣2 ·

G(ej(ω̃− 2πl
M ))G∗(ej(ω̃+

2π(k−l)
M ))dω̃ . (43)

This expression is identical to Eq. (41) for ek, except that the
analysis filter H(z) and the synthesis filter G(z) exchanged
their places.

A. Paraunitary Filter Banks

Let us denote the filters in the i-th channel by Hi(z) and
Gi(z). For the i-th channel, i = 0, . . . ,M − 1, Eq. (41)
becomes

ek(i) =
1

2πM2

M−1∑
l=0

∫ π

−π

Jk,i(l, ejω)dω (44)

where the l-th integrand is given by

Jk,i(l, z) = Gi(z)Gi(z−1)Hi(zW l)Hi(z−1W k−l) (45)

In a similar manner, Eq. (43) becomes

pk(i) =
1

2πM2

M−1∑
l=0

∫ π

−π

Ik,i(l, ejω)dω (46)

with

Ik,i(l, z) = Hi(z)Hi(z−1)Gi(zW l)Gi(z−1W k−l) (47)

In a paraunitary FIR filter bank, the synthesis filters are
time-reversed versions of the analysis filters, since Gi(z) =
Mz−(L−1)Hi(z−1), where L is the number of filter coeffi-
cients. Therefore,

Jk,i(l, z) = W k(L−1)I∗k,i(l, z−1)

Jk,i(l, ejω) = e−jωk(L−1)I∗k,i(l, e
jω) (48)

where the subscript asterisk denotes complex conjugation
of the coefficients of a function. This relationship between
Jk,i(l, z) and Ik,i(l, z) reflects the time reversal and shifts.
The absolute values of ek and pk are thus identical, and the
criteria for shift variance and cyclostationarity take the same
values:

|pk(i)| = |ek(i)| ⇒ C2
p(i) = C2

e (i) (49)

B. Biorthogonal Filter Banks

In a two-channel birthogonal filter bank, the synthesis filter
of channel 0 is related to the analysis filter of channel 1 and
vice versa [37], [44], i.e. G0(z) = 2H1(−z) and G1(z) =
−2H0(−z). Consequently, we obtain the cross relationships
|e1(0)| = |p1(1)| and |e1(1)| = |p1(0)|, yielding

C2
p(1) = C2

e (0) , C2
p(0) = C2

e (1) . (50)

The shift variance as evaluated by C2
e (0) in the lowpass

channel is thus equal to the cyclic nonstationarity generated in
the highpass channel as evaluated by C2

p(1), and vice versa.

V. RESULTS

To apply our criteria to the evaluation of different filter
banks, we reformulate them using the DFT. In the follow-
ing, all DFTs are taken with length N (here: N = 128),
which should be an integer multiple of M , where appropriate
zero padding is applied. The discrete-time Fourier transform
(DTFT) H(ejω) of h(n) is replaced by the DFT H(k), and
H∗(ejω) by H(N − k) = H∗(k). The modulated filter DTFT
H(ej(ω− 2πk

M )) is translated according to

H(ej(ω− 2πk
M ))•−◦h(n)ej

2π N
M

kn

N ◦−•H

[(
q − N

M
k

)
N

]
(51)

with q = 0, . . . , N − 1, and where the subscript N indi-
cates that the corresponding arguments are taken modulo N .
Replacing the DTFT versions of our criteria by their DFT
counterparts is now straightforward.

We first evaluate shift variance and cyclic nonstationarity
using the criteria C2

e and C2
p , respectively. Table I shows

the results for paraunitary two-channel filter banks with input
s(n) = δ(n) in the deterministic case, and white noise (i.e.,
rss(n) = δ(n)) in the WSS random case. As derived in section
IV-A, results for shift variance and nonstationarity are then
identical, and are therefore both given in Table I. To allow
a direct comparison of the energies ek and powers pk, the
coefficient sum of each lowpass prototype was normalized
to one; this does not affect C2

e and C2
p . The first two rows

(john16, john8) refer to the Johnston filters of lengths 16 and
8, respectively. These are linear-phase quadrature mirror filters
with approximate PR properties [45], [36]. The next two rows
(prcqf16, prcqf8) denote the PR-conjugated quadrature filters
by Smith and Barnwell, which are not linear phase, but provide
PR [46], [47], [36]. The filter denoted by sha03 is the wavelet
filter of length 8 developed specifically for low shift variance
in [21] (coefficients: 0.0073, 0.015, -0.1197, 0.0698, 0.7196,
0.6711, 0.0999, -0.0488). The last row contains the Haar filter.
Input energy and power are divided equally between both
channels, therefore, |e0| = |p0| = 0.5 for each channel. For the
prcqf-filters, the longer impulse response of the prcqf16 filter
results in lower values of |e1| and |p1| and correspondingly
lower shift variance and nonstationarity than the prcqf8 filter
does. Shift variance and nonstationarity values for the sha03-
filter are even lower. For the Johnston filters as well as for the
Haar filter, the measures C2

e and C2
p both vanish, therefore,

a shift of the input signal does not result in a change of
energy of the output signal y(n) of each filter bank channel.
Similarly, if the input is white noise, the power of y(n) is
position independent. As discussed in sections II-C and III-
C, this does not necessarily imply that the energy spectrum
is shift invariant or that the correlation structure is position
independent. Vanishing of C2

e despite non-ideal filtering is
perhaps easiest explained for the Haar filter: the impulse
response of the lowpass prototype and the absolute impulse
response of the highpass filter are both constant. A shift of a
single impulse at the input has thus no influence on subband
energy.

Table II shows energies |ek(i)| and shift variance criteria
C2

e (i) for both channels of the biorthogonal filters of lengths
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filter, subband |e0|, |p0| |e1|, |p1| C2
e , C2

p

john16 0.5 0 0
john8 0.5 0 0

prcqf16 0.5 0.0702 0.0197
prcqf8 0.5 0.1317 0.0693
sha03 0.5 0.0422 0.0071
Haar 0.5 0 0

TABLE I
ENERGIES |ek|, POWERS |pk|, BOTH FOR k = 0, 1, AND CRITERIA C2

e , C2
p

FOR PARAUNITARY TWO-CHANNEL FILTER BANKS. THE DETERMINISTIC

INPUT SIGNAL WAS s(n) = δ(n), AND THE ACF OF THE WSS RANDOM

INPUT SIGNAL rss(n) = δ(n). ALL VALUES ARE IDENTICAL FOR BOTH

CHANNELS OF EACH FILTER BANK.

9/7, 6/10, and 5/3, and s(n) = δ(n). In addition, the averages
over both channels are provided. For the 9/7 and 5/3 filters,
the energy |e1| is larger for the lowpass channel (i = 0) than
for the highpass channel, generating a correspondingly higher
shift variance. For the 6/10 filters, shift variance of energy
practically vanishes, this is consistent with the observations
made in [4], [48] with respect to the low shift variance of
these filters. For a cyclostationarity analysis of these filters
based on white noise as input, the values of |pk(i)| and C2

p(i)
are identical to those of |ek(i)| and C2

e (i) in Table II with
subband indices interchanged, as derived in section IV-B.

filter, subband |e0(i)| |e1(i)| C2
e (i)

bior9/7, i = 0 0.5041 0.2070 0.1686
i = 1 0.5041 0.1557 0.0954

avg. 0.5041 0.1813 0.132
bior6/10, i = 0 0.5033 0 0

i = 1 0.5033 0 0
avg. 0.5033 0 0

bior5/3, i = 0 0.5078 0.2891 0.3240
i = 1 0.5078 0.2109 0.1725

avg. 0.5078 0.2500 0.2483

TABLE II
ENERGIES |ek| FOR k = 0, 1, AND CRITERION C2

e (i) FOR BOTH

CHANNELS OF BIORTHOGONAL TWO-CHANNEL FILTER BANKS WITH

INPUT s(n) = δ(n).

Table III shows the values of C2
e and C2

p averaged over both
channels of various two-channel filter banks. The deterministic
input signal was a double-sided exponential impulse with
energy spectrum equal to the power spectrum of a first-order
autoregressive (AR(1)) WSS random signal with correlation
coefficient ρ = 0.9, and the WSS input was an AR(1) random
signal with ρ = 0.9. M-PRQMF4, -6, and -8 denote the
multiplierless PR quadrature mirror filters of lengths 4, 6, and
8, respectively; their coefficients can be found in [36]. Table IV
gives the results for each subband of the 8-channel DCT, MLT,
and LOT with these input signals. The basis functions of the
LOT are calculated from an eigensystem analysis of a Toeplitz
covariance matrix with ρ = 0.9 [49, Chapter 1],[20, p.32]. Due
to their longer basis functions, the MLT and LOT perform
better than the DCT, with the LOT — the basis functions
of which are specifically matched to the AR(1)-process —
performing best.

filter C2
e C2

p

john16 0 0
john8 0 0
prcqf16 0.0266 0.0196
prcqf8 0.0942 0.0589
M-PRQMF4 0.2702 0.1461
M-PRQMF6 0.0026 0.0016
M-PRQMF8 0 0
sha03 0.0132 0.0046
Haar 0 0
bior9/7 0.1283 0.1271
bior6/10 0 0
bior5/3 0.2477 0.2139

TABLE III
C2

e AND C2
p FOR PARAUNITARY AND BIORTHOGONAL TWO-CHANNEL

FILTER BANKS AVERAGED OVER BOTH CHANNELS. FOR THE INPUT

SIGNALS SEE TEXT.

The results given so far capture changes only variations in
energy and power, respectively. Table V lists the values of
the shift variance criterion L2

e, which also captures changes
in the shape of the energy spectrum, for both channels of the
two-channel filter banks. Since in image data shift variance is
visually most critical at fine detail structures such as lines and
edges, the input signal here is s(n) = sgn(n) · exp{−0.9|n|},
where sgn(n) = 1 for n ≥ 0, and sgn(n) = −1 for n < 0. This
is a double-sided exponential impulse with a sign change at the
origin, which can be regarded as the gray level profile across
an edge. The Haar filter now performs poorest, as expected,
while the prcqf16 filters exhibit lowest shift variance. Among
the linear phase filters, the biorthogonal 9/7 filters now perform
best; in fact, they leave the biorthogonal 6/10 filters - which
led the field in Table III - far behind. The sha03-filter is now
also relatively weak. Among the M-PRQM-filters, the filters
of length 4 outperform the others. To learn which spectral
components contribute strongest to shift variance, Figure 2
shows the average of the normalized variance σ2

eN (ejω) in Eq.
(20) over both filter bank channels of the Haar-, biorthogonal
9/7-, biorthogonal 6/10- and the M-PRQMF4 filters. Evidently,
the area under the variance average is largest for the Haar
filters. While for the M-PRQMF4 filters, the bandwidth of
the averaged variance is comparable to that one of the Haar
filters, the maximum value is only about a third of that of
the Haar filters, thus explaining the lower value for L2

e in
Table V. For the longer biorthogonal filters, the bandwidths
of the variance averages are correspondingly narrower, with
the biorthogonal 9/7 filters reaching only a maximum of about
0.12, thus explaining their low value for L2

e in Table V.

Table VI lists the values of L2
e(i) for all eight channels of

DCT, MLT, and LOT driven by the same input signal. The
DCT is still weakest, but the performance of the MLT is now
rated better than that of the LOT.

We conclude our evaluations by an analysis of the nonsta-
tionarity introduced into an AR(1)-random process (ρ = 0.9),
as captured by the criterion K2

p . This criterion assesses the
cyclic nonstationarity of the power spectrum, i.e, of the entire
correlation structure, rather than only of the power. The results
are listed in Tables VII and VIII. For the two-channel filter
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C2
e (0) C2

e (1) C2
e (2) C2

e (3) C2
e (4) C2

e (5) C2
e (6) C2

e (7) avg.
DCT 0.0028 0.3359 0.6884 0.5233 0.0809 0.6444 0.5508 0.5038 0.4163
MLT 0.0069 0.3906 0.2678 0.3291 0.4177 0.2609 0.2478 0.1297 0.2563
LOT 0.0063 0.3029 0.3066 0.0702 0.0816 0.1414 0.2518 0.075 0.1545

C2
p(0) C2

p(1) C2
p(2) C2

p(3) C2
p(4) C2

p(5) C2
p(6) C2

p(7) avg.
DCT 0 0.5 0.5 0.5 0 0.5 0.5 0.5 0.3750
MLT 0.0238 0.2664 0.2578 0.3515 0.3976 0.2507 0.2502 0.1274 0.2407
LOT 0.0185 0.1854 0.2614 0.0637 0.1042 0.2396 0.2495 0.0552 0.1472

TABLE IV
UPPER HALF: SHIFT VARIANCE MEASURE C2

e (i) FOR EACH CHANNEL OF DCT, MLT, AND LOT. LOWER HALF: NONSTATIONARITY MEASURES C2
p(i)

FOR THESE TRANSFORMS. THE LAST COLUMN LISTS THE AVERAGES.

L2
e(0) L2

e(1) L2
e(2) L2

e(3) L2
e(4) L2

e(5) L2
e(6) L2

e(7) avg.
DCT 0.4463 0.5960 0.4434 0.4570 0.8253 0.4213 0.4961 0.4770 0.5203
MLT 0.1468 0.3770 0.3453 0.2162 0.1904 0.3227 0.3283 0.1655 0.2615
LOT 0.1969 0.5878 0.3858 0.5258 0.5298 0.3221 0.3712 0.1231 0.3803

TABLE VI
CRITERION L2

e(i) FOR ALL CHANNELS OF DCT, MLT, AND LOT, AND ITS AVERAGE OVER ALL CHANNELS.THE INPUT SIGNAL WAS A DOUBLE-SIDED

EXPONENTIAL IMPULSE WITH A SIGN CHANGE AT THE ORIGIN.

filter L2
e(0) L2

e(1) avg.
john16 0.1034 0.1277 0.1156

john8 0.1991 0.3017 0.2504
prcqf16 0.0060 0.0068 0.0064

prcqf8 0.1116 0.1520 0.1318
M-PRQMF4 0.1224 0.3071 0.2148
M-PRQMF6 0.2157 0.3215 0.2686
M-PRQMF8 0.2036 0.3222 0.2629

sha03 0.2291 0.3723 0.3007
Haar 0.3202 0.6720 0.4961

bior9/7 0.0267 0.0273 0.0270
bior6/10 0.2176 0.2383 0.2279

bior5/3 0.0351 0.0397 0.0374

TABLE V
CRITERION L2

e(i) FOR BOTH CHANNELS OF VARIOUS TWO-CHANNEL

FILTER BANKS, AND ITS AVERAGE OVER BOTH CHANNELS. THE INPUT

SIGNAL WAS A DOUBLE-SIDED EXPONENTIAL IMPULSE WITH A SIGN

CHANGE AT THE ORIGIN.

banks, the resulting nonstationarity is lowest for the prcqf16-
filters, and strongest for the biorthogonal 5/3 filters. The
biorthogonal 9/7 and 6/10 filters perform almost identically.
The linear phase filters generating lowest nonstationarity are
the john16-filters. Unlike in Table IV, the MLT is here slightly
ahead of the LOT. Due to the higher downsampling ratio M ,
the eight-channel filter introduce more nonstationarity than the
two-channel filter banks.

VI. CONCLUSIONS

We have analyzed the introduction of shift variance and
the generation of cyclic nonstationarity in multirate filter
banks in a parallel, comparative manner. We furthermore
developed criteria for the quantitative asssessment of shift
variance and nonstationarity. For shift variance, these criteria
allow to separately assess the shift dependence of energy and
of energy spectra. Similarly for nonstationarity, they allow to
separately assess the nonstationary behavior of signal power

Fig. 2. Average of normalized variance σ2
eN (ejω) over all subbands for the

Haar filters (solid line), biorthogonal 9/7 filters (dashed line), biorthogonal
6/10 filters (dotted line), and the M-PRQMF4 filters (dash-dotted line), plotted
for 0 ≤ ω < 2π.

and of power spectra or correlation structure. We also derived
a duality between the shift-variant behavior of channel energy
and the nonstationary behavior of channel power: For flat-
spectrum signals in a paraunitary PR filter bank, the variations
of channel energy and channel power as assessed by the
criteria C2

e and C2
p are identical. Similarly for a biorthogonal

filter bank, the shift variance measured in its lowpass channel
is identical to the nonstationarity measured in its highpass
channel, and vice versa. We have provided results for a variety
of orthogonal and biorthogonal filter banks. With respect to
filters such as the biorthogonal 6/10 filters, these results are
consistent with observations in, e.g., [4], [48], where their
low shift variance is highlighted. However, our results also
show that considering channel energies or channel powers
alone may provide an incomplete picture: for several filters
including the Haar filters, channel energy is not shift variant
and channel power is stationary for certain input signals,
while energy spectrum and power spectrum vary considerably
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K2
p(0) K2

p(1) K2
p(2) K2

p(3) K2
p(4) K2

p(5) K2
p(6) K2

p(7) avg.
DCT 0.0574 1.3188 1.7589 1.7721 1.7803 1.6941 1.4695 0.6821 1.3166
MLT 0.0293 0.7016 0.7006 0.6997 0.6993 0.6990 0.6968 0.2794 0.5632
LOT 0.0389 0.7472 0.6843 0.7332 0.7079 0.8186 0.7875 0.3508 0.6085

TABLE VIII
NONSTATIONARITY CRITERION K2

p(i) FOR ALL CHANNELS OF DCT, MLT, AND LOT, AND ITS AVERAGE OVER ALL CHANNELS. THE INPUT SIGNAL WAS

AN AR(1)-PROCESS.

filter K2
p(0) K2

p(1) avg.
john16 0.0003 0.1426 0.0714
john8 0.0004 0.2887 0.1445

prcqf16 0.0002 0.1382 0.0692
prcqf8 0.0003 0.2450 0.1226

M-PRQMF4: 0.0020 0.3539 0.1780
M-PRQMF6: 0.0019 0.3110 0.1564
M-PRQMF8: 0.0002 0.2946 0.1474

sha03 0.0002 0.3059 0.1531
Haar 0.0047 0.3696 0.1872

bior9/7: 0.0001 0.3341 0.1671
bior6/10: 0.0001 0.3231 0.1616

bior5/3: 0.0003 0.4592 0.2297

TABLE VII
CRITERION K2

p(i) FOR BOTH CHANNELS OF VARIOUS TWO-CHANNEL

FILTER BANKS, AND ITS AVERAGE OVER BOTH CHANNELS. THE INPUT

SIGNAL WAS AN AR(1) RANDOM SIGNAL WITH ρ = 0.9.

over shift and position, respectively. We therefore believe that
our criteria which quantify the variations of energy spectra
and power spectra provide, for applications such as image
filtering and compression, a more realistic view. When thus
analyzing the shift variance of a test signal which can be
regarded as representing the gray level profile across an edge
in an image, the biorthogonal 9/7 filters outperformed the
6/10 filters by a wide margin, while the Haar filter fell to the
bottom of the list, as expected. A similar observation holds for
the introduction of nonstationarities: when examining channel
powers only, as done in Table III, the biorthogonal 6/10 filters
appear to outperform the 9/7 filters, while Table VII shows
that when considering the power spectrum, both filters behave
in a similar way. In all cases, our criteria take the properties of
the input signals into account in terms of their energy spectra
and power spectra. The evaluation can thus be carried out
specifically for the signals where, e.g., shift variance is most
critical, such as lines or edges in image data. This would
allow to assess up to a certain degree the effects of, e.g., shift
variance on the perceived subjective image quality, although no
attempt was made to directly predict the visual image quality
as in [50] for static images.

VII. APPENDIX

We provide two approaches to derive Eq. (23), viz. a direct
one based on the polyphase decomposition of the interpolator
[36], [37] shown in Fig. 3, and an alternative one using the
effects of interpolation on cyclic correlation functions and
cyclic spectral densities described in [29].

Fig. 3. Polyphase decomposition of the interpolator.

With the kth polyphase component Gp
k(z) of G(z) given by

Gp
k(z) =

∞∑
n=−∞

g(nM + k)z−n , k = 0, . . . ,M − 1 (52)

the filter G(z) can be written as [51]

G(z) =
M−1∑
k=0

z−kGp
k(zM ) (53)

Vice versa, the polyphase components depend on the modula-
tion vector of G(z) according to[

Gp
0(z), z−1/MGp

1(z), . . . , z−(M−1)/MGp
M−1(z)

]T

=

W
M

gm(z1/M ) (54)

As is evident from Fig. 3, the ACS ryy(m,n) corresponds
to the crosscorrelation sequence between the outputs of two
polyphase components of G(z) [52]. Since ryy(m,n) depends
periodically on m, we set m = lM + i, i = 0, . . . ,M −1, and
calculate the ith power spectrum Ryy(i, z) by the transform
ryy(lM + i, n) ◦−• Ryy(i, z). Its polyphase representation is

Ryy(i, z) =
M−1∑
k=0

z−kRp
yyk(i, zM ), i, k = 0, . . . ,M − 1

(55)
The kth polyphase component Rp

yyk(i, z) is the crosscorrela-
tion of the outputs of Gp

i (z) and Gp

(i+k)mod M
(z):

Rp
yyk(i, z) = Rxx(z)zb

i+k
M cGp

i (z
−1)Gp

(i+k)mod M
(z) (56)

where bxc is the floor of x. Since here⌊
i + k

M

⌋
M = i + k − (i + k)mod M (57)
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and with Eqs. (53) and (55), we obtain

Ryy(i, z) = Rxx(zM )ziGp
i (z

−M )G(z) (58)

Applying the ith component of Eq. (54) to the upsampled and
mirrored polyphase component Gp

i (z
−M ), and stacking the

results for i = 1, . . . ,M − 1 leads to Eq. (23).

Alternatively, we may start from the cyclic correlation
function defined in [29, Eq. (21)], which, translated into our
notation, reads

rc
yy(m,n) =

1
M

M−1∑
k=0

ryy(k, n)W−mk (59)

The cyclic spectral density function Syy(m, z) [29, Eq. (22)]
is defined as the transform of rc

yy(m,n) with respect to n,
yielding

Syy(m, z) =
∞∑

n=−∞
rc
yy(m,n)z−n

=
1
M

M−1∑
k=0

W−mk
∞∑

n=−∞
ryy(k, n)z−n (60)

Since
∑

n ryy(k, n)z−n = Ryy(k, z), this can be written as

[Syy(0, z), . . . , Syy(M − 1, z)]T =
WH

M
[Ryy(0, z), . . . , Ryy(M − 1, z)]T (61)

Vice versa, we obtain

[Ryy(0, z), . . . , Ryy(M − 1, z)]T =
W[Syy(0, z), . . . , Syy(M − 1, z)]T (62)

As derived in [29, Eq. (36)], the cyclic spectral density of the
interpolated signal obeys

Syy(m, z) =
1
M

G(z)Rxx(zM )G(z−1Wm) (63)

which, with Eq. (62), leads to Eq. (23).
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and J. Astola, Eds. Vienna: TICSP Series, ISBN: 952-15-1229-6 (print),
952-15-1241-5 (CD-ROM), Sept. 11 – 12 2004, pp. 7–14.

[40] G. D. Zivanovic and W. A. Gardner, “Degrees of cyclostationarity and
their application to signal detection and estimation,” Signal Processing,
vol. 22, pp. 287–297, 1991.

[41] W. A. Gardner, “Stationarizable random processes,” IEEE Transactions
on Information Theory, vol. 24, no. 1, pp. 8–22, 1978.

[42] W. A. Gardner, A. Napolitano, and L. Paura, “Cyclostationarity: Half a
century of research,” Signal Processing, vol. 86, pp. 639–697, 2006.

[43] A. Papoulis, Probability, Random Variables, and Stochastic Processes
(3rd ed.) New York: McGraw-Hill, 1991.

[44] J. R. Ohm, Multimedia Communication Technology. Berlin: Springer
Verlag, 2003.

[45] J. D. Johnston, “A filter family designed for use in quadrature mirror
filter banks,” in Proc. ICASSP 1980. Piscataway: IEEE, 1980, pp.
291–294.

[46] M. J. T. Smith and T. P. Barnwell III, “A procedure for designing
exact reconstruction filter banks for tree-structured subband coders,” in
Proceedings IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP). Denver: IEEE, March 1984, pp. 27.1.1–
27.1.4.

[47] ——, “Exact reconstruction for tree-structured subband coders,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 34, pp.
434–441, 1986.

[48] J. Zan, M. O. Ahmad, and M. N. S. Swamy, “Comparison of wavelets
for multiresolution motion estimation,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 16, no. 3, pp. 439–446, 2006.

[49] H. S. Malvar, Signal Processing with Lapped Transforms. Norwood,
MA: Artech House, 1992.

[50] Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE
Signal Processing Letters, vol. 9, pp. 81–84, 2002.

[51] H. Johansson and O. Gustafsson, “Linear-Phase FIR Interpolation,
Decimation and Mth-Band Filters Utilizing the Farrow Structure,” IEEE
Transactions on Circuits and Systems–I:Regular Papers, vol. 52, no. 10,
pp. 2197–2207, 2005.

[52] T. Aach, “Shift variance in multiscale filtering,” in International Work-
shop on Spectral Methods and Multirate Signal Processing (SMMSP),
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