
Published in IET Computers & Digital Techniques

Received on 15th December 2011

Revised on 14th July 2012

doi: 10.1049/iet-cdt.2011.0169

ISSN 1751-8601

Comparative analysis of soft and hard on-chip
interconnects for field-programmable gate arrays
J.Y. Hur1 K. Goossens2 L. Mhamdi3 M.A. Wahlah1

1Computer Engineering Laboratory, TU Delft, The Netherlands
2Faculty of Electrical Engineering, TU Eindhoven, The Netherlands
3School of Electronic and Electrical Engineering, University of Leeds, West Yorkshire, Leeds LS2 9JT, UK

E-mail: JaeYoung.Hur@gmail.com

Abstract: It is well-known that any logical functionality can be implemented using the reconfigurability in field-programmable
gate arrays (FPGAs). However, the reconfigurability is traded with the reduced functional performance, increased cost and
increased configuration overheads. Hardwiring the interconnect fabric is gaining notice as an alternative solution to tackle the
mentioned problems. In this article, first, the authors present that hardwired built-in crossbars that can improve the
performance of the inter-processor communication. The authors conduct an analysis of functional performance, cost and
configuration cost for soft and hard crossbar (SBAR and HBAR) interconnects. The queuing model is applied to compare soft
and hard interconnects. A motion JPEG (MJPEG) case study suggests that HBAR achieve significantly better throughput and
less cost compared to SBAR. Second, the authors present the effectiveness of the hardwired network-on-chip (NoC) in
FPGAs. Considering the Æthereal NoC, an analysis is conducted to compare hard and soft NoCs. Consequently, the analysis,
implementation and simulation indicate that the hardwired networks perform significantly better than soft networks.

1 Introduction

Field-programmable gate array (FPGA), as a key component
in a modern reconfigurable platform, is increasingly used to
implement modern systems on a chip. FPGA contains the
configurable logic blocks (CLBs) and reconfigurable
interconnects. The flexibility in FPGAs is realised by the
configuration circuitry. Any logical functionality can be
mapped by exploiting the reconfigurability of the device.
We call an IP block ‘soft’ when it is mapped on the
reconfigurable resources. Modern FPGAs are dominated by
millions of regularly structured bit-level wire segments. The
fine-grained reconfigurability is a valuable asset to
implement any IP functionality with the desired granularity.
However, the interconnect fabric itself has the following
limitations:

(1) Functional performance and cost: Compared to the
application specific integration circuit (ASIC) counterpart,
FPGAs are slow in speed [1]. FPGA implementations are
reported to occupy 35× more area, operate 3.5× slower,
and use 14× more energy [1], when compared to ASIC
implementation. This is mainly because of the bit-level
reconfigurable interconnects. Interconnects account for more
than 60% of the delay, 75% of area and 80% of power
consumption [2]. Moreover, inter-IP communication
functionality requires (usually significant) on-chip logic
resources.
(2) Granularity: An inter-IP communication is mostly
required to be coarse-grained (e.g. words, flits, packets,

messages or transactions). However, an underlying fabric is
still bit-level. The fine-grained interconnects must be used
to implement any intra-IP functionality with the desired
granularity. Owing to these different requirements, inter-IP
and intra-IP interconnects should be differently designed. It
can be noted that the interconnect fabric in modern FPGAs
does not distinguish the intra-IP and inter-IP interconnects.
(3) Wire delay and variation: The (bit-level) wire delay in the
soft networks are highly unpredictable before placement and
routing step. Subsequently, it may be difficult to meet the
timing requirements at design-time because of the
unpredictable net delay skew.
(4) Configuration performance and cost: The configuration
circuit contains a controller and a datapath including the
configuration memory cells. Each element in FPGAs is
configured by writing bitstreams onto associated
configuration memory cells. Typically, the internal
configuration space of the FPGA is partitioned into
primitive segments, namely ‘frame’, which is the smallest
load unit [3]. When a system is dynamically reconfigured,
the functional interconnect must be (partially) reconfigured.
The computation IPs are typically rectangle-shaped and
they can be efficiently configured by the frame (or module)
based configuration circuit. Typically, bus macros are
required to be geographically spread out between different
modules [3]. The partial reconfiguration of the soft
networks is then not efficient because the interconnect is
spread over large surface area. In this case, the network IPs
occupy significant reconfigurable resources. Additionally, a
significant portion of the configuration memory is

IET Comput. Digit. Tech., pp. 1–10 1

doi: 10.1049/iet-cdt.2011.0169 & The Institution of Engineering and Technology 2012

www.ietdl.org

unnecessarily allocated for the partial reconfiguration of the
inter-IP networks, leading to increased configuration cost
and increased configuration time.

These problems can be solved by implementing the
networks directly in (‘hard’) silicon [4–6] rather than
configurable elements of the FPGA. First, the performance
of the hardwired network is better and occupies less area
than the soft networks. Second, the granularity problem can
be solved by implementing the hardwired network at a
coarse-grain. Third, the hardwired network is a pre-verified
IP and provides highly predictable timing information.
Fourth, the partial reconfiguration is highly efficient because
the hardwired fabric and reconfigurable fabric are by nature
decoupled. Regular hardwired NoC is promising for future
FPGAs. To bridge the gap between the state-of-the-art soft
interconnects and the future hardwired NoC, we also
propose to hardwire crossbars (HBAR) in FPGAs. We
conduct a comparative analysis of functional performance
of soft and hard interconnects using queuing theory.
Furthermore, we evaluate the functional cost, configuration
performance and configuration cost. The main contributions
of this work are:

† We conducted wire fabric and bitstream analysis.
Considering Virtex-II Pro as a targeted device, we derive
Rent’s exponent from the number of wires per logic block.
Our study indicates that wires become increasingly critical
resources.
† We propose that HBAR are built in FPGAs for the inter-IP
communications. In our MJPEG case study, the HBAR is 5×
better in network throughput, compared to the soft crossbar
(SBAR).
† We present the effectiveness of the hardwired circuit-
switched NoCs (HCSN) in FPGAs. Considering the
Æthereal NoC [7] as an example, we apply the Jackson’s
queuing model [8] to compare with the soft circuit-switched
NoCs (SCSN). The simulation and analysis results indicate
that HCSN provides 4.2× better network latency for the
MJPEG task graph, when compared to SCSN.
† The functional cost is obtained from the implementation.
Additionally, configuration performance and cost are
derived. We present that these overheads can be reduced
using the hardwired interconnects.

This paper is organised as follows. In Section 2, the related
work is reviewed. In Section 3, wire fabric is analysed and
HBAR are discussed. We present our performance analysis
for hard and soft on-chip networks with a case study in
Sections 4 and 5. Implementation and experimental results
are presented in Section 6. Finally, conclusions are drawn
in Section 7.

2 Related work

In [5, 6], general approaches on the hardwired packet-
switched NoCs are discussed, where architectures,
implementations, and analysis details are not presented.
Architectures and implementations of soft, firm, and hard
Æthereal NoC [7] instances are compared in [4].
Additionally, the HCSN in [7] is reprogrammable in that
network parameters (such as routing paths or slot
allocations) can be dynamically ‘programmed’ by means of
memory-mapped I/O (MMIO) registers rather than
‘configured’. Furthermore, unification of configuration and
functional network is proposed in [4]. In [4], usage

examples to use the hardwired NoC is described. To our
knowledge, there is no prior work related to HBAR
interconnects in FPGAs. In [9], we presented the HBAR
and an analysis. In this paper, we additionally present an
analysis of the wire fabric, bitstreams, configuration
performance and cost.
Little has been reported regarding the queuing analysis of

on-chip networks. In [10], a single router with virtual
channels is modelled. In this work, we present an analysis
of a network on chip. In [11], a queuing analysis for a
single output-queuing router is conducted to determine the
buffer size and reduce packet loss probability. An M/D/1/B
model with deterministic service rate is used. In practice,
packet loss should be avoided. In [12], Jackson’s model is
applied to analyse SBAR interconnects. In this work, we
also present an analysis of hardwired circuit-switched
networks (CSN).

3 HBAR in FPGAs

In this section, we first describe the relationship between the
number of wires and logic blocks. Second, we describe the
portion for bitstream wiring resources. Third, the HBAR
interconnect fabric is discussed.

3.1 Wire fabric analysis

The relationship between the average number of terminals
and blocks in a partitioned design can be described by the
Rent’s rule [13]. This is represented by T ¼ tBp, where T is
the total number of terminals, t is the average number of
terminals per logic block, B is the number of logic blocks,
and p is the Rent exponent. The t and the p values vary
depending on the design. An experimental study in ASIC
technology indicates that the typical value of p is between
0.5 and 0.75 [13]. To derive the p value in modern FPGAs,
we used FPGA editor [3] tool. Fig. 1 depicts a primitive
CLB tile of the Virtex-II Pro device consisting of logic
slices and wiring resources. The FPGA device consists of
regularly structured CLB tiles and interconnects. A logic
slice cell contains look-up tables (LUTs), flip-flops, and
associated logic gate resources. The rest are wiring
resources that include the switch-box and various types of
wires. We counted the number of wires (in a handcrafted

Fig. 1 Tile in Virtex-II Pro xc2vp30 device

2 IET Comput. Digit. Tech., pp. 1–10

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cdt.2011.0169

www.ietdl.org

way) around the CLB tile in the Virtex-II Pro device. As a
result, we obtained the value t of 936. Fig. 2 depicts the
relationship between the number of wires and the number
of CLB tiles. The number of wires is taken from [14, 15].
The number of CLB tiles are also depicted in the
parenthesis of the x-axis in Fig. 2. Fig. 2 can be interpreted
in the following ways. The value of Rent exponent p is in
the range of [0.78, 0.87], which is greater than the typical
range [0.5, 0.75]. This indicates that the routing wires in
FPGAs are more abundant than typical ASIC
implementations. However, as the number of tiles increases,
the number of wires increases in a similar ‘linear’ manner.
This is due to the fact that CLB tiles and wires are regularly
structured in an island style. Obviously, the ‘number of
wires’ should grow more than linear manner to maintain the
point-to-point wirability between (especially long-distance)
logic tiles. This indicates that the routing wires become
increasingly critical and decreasingly scalable resources.
We also study how the wires are utilised in the bitstream.

This can be quantified by Number of frames for wires/
Total number of frames because the frame is the atomic
configuration unit. Fig. 3 depicts the portion that on-chip
resources occupy in the bitstream for the Virtex-II Pro
xc2vp30 device. The xc2vp30 device contains 1756 frames
in total [16] and wires occupy 1064 frames [17]. Therefore
the routing wires occupy 1064/1756 or 60% of the entire
bitstream, whereas the logic slices occupy only 7%. This
means that the majority of the bitstream (or the configuration
memory) is occupied by the wire resources. It can be noted
that the configuration time is proportional to the bitstream
size. Accordingly, the routing wires contribute to the
configuration time of the entire device by 60%. Our analysis
indicates that the bit-level interconnects are not only the
critical component for the functional performance and cost
but also for the configuration performance and cost. We

targeted a Xilinx Virtex-II Pro device particularly because a
partial reconfiguration is supported, whereas any
reconfigurable hardware can be a targeted device as well.
The state-of-the-art FPGA devices have reduced
configuration frame size and increased logic density.
However, all of these devices stem from the same origin and
the architectural difference is minor.

3.2 HBAR interconnects

A soft shared bus is widely used for FPGA platforms.
Disadvantages of soft interconnects and advantages of
hardwired interconnects are described in Section 1. We
propose to HBAR in FPGAs to bridge the gap between the
soft interconnects [3] and the future hardwired NoCs [4].
When the bus fabric is hardwired, the available bandwidth
in the hardwired bus significantly increases because of the
increased clock frequency. The bus component is only
needed to be instantiated as a hard macro. Accordingly, the
contention probability of a network is reduced, which
means that the hardwired bus performs better than the soft
bus. However, because many buses are sequential, they
suffer from traffic congestion before concurrent
interconnects do. Therefore we propose to hardwire the
crossbars as built-in components in FPGAs. The main
advantage of a crossbar is that minimum traffic congestion
occurs inside the crossbar because the dedicated
interconnects are physically established. Data transactions
inside a crossbar can be fully parallel. Although an area
cost is a bottleneck, the area of the crossbar can be
adequate for small or intermediate sized interconnects [18].
The cost of crossbars quadratically increases as the number
of ports increase. As described in Section 6, our experiment
indicates that a radix of 8 or 12 can be the feasible option.
However, the optimal radix can vary with different target
systems and technologies.
Fig. 4a depicts the HBAR as built-in components in

FPGAs. Fig. 4b depicts the transaction protocol example in
[19]. The transaction traffic on the master–slave
architecture can operate with the local-write and remote-
read scheme. The master processor locally writes data to the
local slave first in first out (FIFOs). The master processor
remotely requests data to the remote slave FIFOs. If the
remote FIFOs are not empty, the master processor remotely
reads the FIFOs. The interconnects forward these requests

Fig. 2 Total number of wires in Virtex-II Pro device series

Fig. 3 Percentile occupation of a bitstream in Virtex-II Pro

xc2vp30 device

IET Comput. Digit. Tech., pp. 1–10 3

doi: 10.1049/iet-cdt.2011.0169 & The Institution of Engineering and Technology 2012

www.ietdl.org

(from the master processor) and data (from the slave FIFOs).
It can be noted that the transactions can be based on any
protocol, such as AXI [20] and OCP [21]. In practice,
significant overheads for reading words from the FIFOs in
the soft domain can be a bottleneck in the system. This may
render the speedup offered by the crossbar insignificant. In
this work, we focus on the comparative interconnect
performance analysis. It can be noted that the hardwired
interconnects have better functional interconnect
performance per area, given that the area of hard
interconnects is significantly less than the soft
interconnects. Furthermore, by accommodating the hard
interconnects, the bitstream size, required configuration
memory, and the configuration time can be significantly
reduced in FPGAs, because the hard domain does not need
to be configured as described in the next sections. In the
presented scheme, a synchronisation needs to take place
between the soft and the hard clock domain. Fig. 4c depicts
a possible micro-architecture of a crossbar including
asynchronous FIFOs (for the clock domain crossing), an
arbiter, a routing table and a switch. Asynchronous FIFOs
are instantiated at each crossbar port. Although these FIFOs

typically add a few cycles of latency, with proper
dimensioning they do not reduce throughput. It can be
noted that clock synchronisers can be required at each
router port in the general NoC-based GALS architectures
[22]. Fig. 4d depicts a physical layout for the Xilinx FPGA.
The soft portion consists of reconfigurable logic elements
(such as LUTs) interconnected by reconfigurable
interconnects (such as switch box and wires). Fig. 4e
depicts a possible hard and soft interface circuit, in which
the interconnection is controlled by the configuration bits.
The data width should be coarse-grained. In this work, we

considered the data-width of 32-bit. It is possible that a
monolithic or multiple crossbars can be utilised for different
use-cases with different connectivity options. Multiple
crossbars can be connected across the soft domain with
different topologies as far as traffic does not incur deadlock.
The deadlock avoidance conditions vary with
communication protocols. When AXI protocol (e.g. in
Xilinx Virtex-5) is considered, a deadlock can occur when
transactions with the same one-dimensional (ID) have
different routing paths [23]. Since the crossbar is hardwired
and the topology can be configurable, the traffic initiator

Fig. 4 Built-in crossbars and physical interface in Xilinx FPGAs

4 IET Comput. Digit. Tech., pp. 1–10

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cdt.2011.0169

www.ietdl.org

can maintain the deadlock free routing by deterministic
source routing [7]. In the next section, the presented
hardwired interconnects are evaluated in the following
perspectives:

† Functional performance and cost: Based on our
implementation of hard and soft interconnects, we
analytically derived comparative functional crossbar
performance in Section 4 and NoC performance in Section
5. Functional cost is evaluated in Section 6.
† Configuration performance and cost: We derived
configuration time and bitstream size for soft interconnects
in Section 6.

4 Performance analysis of HBAR

To conduct functional performance analysis in FPGAs, we
conduct queuing analysis based on the following
considerations. First, we exploit the fact that traffic
information can be extracted from the application
specification. This means that a-priori logical information
such as topology and bandwidth can be exploited for the
analysis and design. Second, we usually reuse pre-verified
IP components and their specifications. This means that the
physical information such as the area, the clock speed, and/
or latency of IPs are available at design time. Third, the
network performance varies with specific communication
patterns. Our analysis intends to compare hard and soft
interconnects by deriving relative network performance.
The network parameters (e.g. buffer sizes) are usually
conservatively dimensioned at design time [24].
Subsequently, it is desirable to derive the performance
conservatively. To do this, we derive an approximated
service time and utilise the open queuing model [8] for the
comparative analysis. The functional performance is derived
using our simplifying assumptions, for example, the clock
speed and the area for hard and soft interconnects were
independently measured. Additionally, we assumed that
traffic has Poisson-distributed patterns and independent
inter-arrival time, as these assumptions are often utilised in
the literature [8, 25, 26]. Although the traffic may be non-
Poisson distributed and inter-related, we were able to
efficiently derive the comparison (network throughput and
latency) between hard and soft interconnects, which is
sufficiently accurate for relative comparisons. For Poisson-
distributed incoming traffic, Jackson model can be used for
a network of queues [26]. For the analysis, we reuse
specifications of network IPs in [7, 12]. As a system model,
we assume that the physical FIFOs are established for a
logical connection to constitute a network of queues.

4.1 Queuing model

Jackson’s model states that the number of items in the system
is the summation of the number of items in the individual
queuing systems. Then the response time is derived by
dividing the number of items (in the system) by the arrival
rate of the incoming traffic. Accordingly, the response time
is formulated as

Tresponse =
1

l

∑

N

i=1

li
mi − li

(1)

where N is the number of individual queuing systems. l is the
incoming arrival rate to the entire system. li is the incoming

arrival rate to the ith queuing system. mi is the service rate of
the ith queuing system. Subsequently,

∑N
i=1 li/(mi − li)

corresponds to the number of items in the entire system.
Fig. 5 depicts our model for an MJPEG application. A task

graph with seven logical connections is depicted in Fig. 5(1a),
where numbers on the edge indicates the minimum bandwidth
requirement of an application. The bold line represents
streaming data path for an application. The corresponding
network of queues is depicted in Fig. 5(1b). N is 7, which
means that there are seven queuing systems (numbered
1–7). Fig. 5(1c) depicts individual queuing systems for
each logical connection. The queuing system consists of the
waiting queue and the server. A server means the network
component that provides transportation service. To
compute li in (1), we utilise the bandwidth information in
Fig. 5(1a). As an example, l1 is computed by
(62/(62+ 0.6+ 1+ 0.6))l = 0.97l. For a given l, the
response time is determined from mi. Figs. 5b and c depict
the traffic mapping onto different interconnects such as
crossbars or NoCs. The service rate mi varies with different
network components. As depicted in Fig. 5b, a connection
consists of two logical channels, a ‘request’ and a
‘response’ channel.

4.2 Network performance

(1) Network service rate: The network service rate mtoken for
a single token can be derived by

mtoken = T−1
token = (Tarbit + Ttransmit)

−1 (2)

where Ttoken is the network service time for a single token,
from the first word (in the departure queue) to the last word
(absorbed by the destination IP). A ‘token’ is the set of
consecutive words and refers to the primitive
communication unit. The service time Ttoken is composed of
the arbitration time Tarbit and the actual data transmission
time Ttransmit.
(2) Network performance: The network response time
Tresponse can be derived by substituting the mtoken in (1).

4.3 Crossbar analysis

We consider the SBAR or HBAR as depicted in Fig. 5b. For
these crossbars, we use the formulation in [12] summarised as
follows. The arbitration time Tarbit for a full crossbar is
approximated as

Tarbit ≃

#ports

2

⌊ ⌋

+ Chand

fnet
(3)

where a request check latency is approximated as #ports
2

⌊ ⌋

cycles. Chand refers to the handshaking latency in number of
cycles. The arbitration time Tarbit in our crossbar varies with
the number of ports #ports. The transmission time Ttransmit

in (2) corresponds to the token size as derived below

Ttransmit =
Stoken
fnet

(4)

where Stoken denotes the token size or the number of words.
fnet refers to the clock frequency of a network.

IET Comput. Digit. Tech., pp. 1–10 5

doi: 10.1049/iet-cdt.2011.0169 & The Institution of Engineering and Technology 2012

www.ietdl.org

4.4 MJPEG case study for HBAR

We derive the functional performance of SBAR and HBAR
for the MJPEG specification depicted in Fig. 5(1a). We
consider the token size Stoken ¼ 3 words and the number of
ports #ports ¼ 8 ports. The handshaking latency Chand is 2
cycles and the clock frequency fnet is 446 MHz from the
implementation (see Table 1 in Section 6). The actual
arbitration delay depends on the arbitration (e.g. priority,
sequential) and how it is implemented. Here we use the
sequential arbiters of [12] that have a variable arbitration
time. The worst-case arbitration delay is shown in (3). To
roughly compare the HBAR and SBAR, (3) is a
conservative approximation based on our implementation.

The handshake time is added since the handshaking can
require a latency (request 1 cycle and response 1 cycle).

1. Network service rate: The network service rate mtoken in
the HBAR is derived as follows. Since Chand ¼ 2 cycles
and fnet ¼ 446 MHz, Tarbit is derived by
8
2

⌊ ⌋

+ 2/446× 106 s for (3). Since Stoken ¼ 3 words, the
transmission time Ttransmit is derived by 3/446 × 106 s. The
mtoken is derived by substituting Tarbit and Ttransmit in (2).
Subsequently, mtoken = 446× 106/ 8

2

⌊ ⌋

+ 2+ 3 = 49× 106

tokens/s. This means that the HBAR provides a physical
network bandwidth of 49 × 106 tokens/s for a logical
connection. Since word rate is derived by (token
rate) × (token size in words), this is equivalent to
147 × 106 words/s for a connection.
2. Network performance: The network response time is
derived by substituting the network service rate mtoken in
(1). The network performance for SBAR can be derived
similarly. Fig. 6 depicts the network performance for SBAR
and HBAR. As a result, HBAR performs significantly
better and provides 5× better throughput than SBAR. This
is mainly because of the higher clock frequency.

5 Performance analysis of CSN

In this section, we extend our performance analysis for the
CSN. We consider guaranteed throughput (GT) Æthereal

Table 1 Hardware implementation of crossbars

Type Size Area, slices Clock freq., MHz

Soft (90 nm CMOS FPGA Virtex-II Pro)

SBAR 8 ports 2052 95

12 ports 4188 73

Hard (130 nm CMOS ASIC)

Area, mm2

HBAR 8 ports 0.11 446

12 ports 0.29 410

Fig. 5 Queue model for MJPEG application and mapping onto networks

6 IET Comput. Digit. Tech., pp. 1–10

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cdt.2011.0169

www.ietdl.org

NoC [7] as an example. The required bandwidth for each
logical connection is reserved by allocating time-division-
multiplexed slots. The global scheduler in the network
interface multiplexes (or arbitrates) channels based on the
allocated slot table and the remote buffer space. When
the channel is arbitrated, the worst-case transmission time in
the router network is derived similarly to a crossbar. This
means that the worst-case performance of the CSN can be
analysed similarly to the crossbar. The main differences are
the arbitration time and the number of hops that the packet
(or token) traverses in the multi-hop router network. This
also means that the GT-mode Æthereal NoC operates as a
virtual crossbar with a physically pipelined transmission.
We assume that connections are long-lived, and ignore the
time associated with their set up and tear down [27].
Similar to crossbar analysis in the previous section, the
network performance can be derived by substituting the
service rate mi in (2) to (1). The service time Ttoken in (2) is
composed of the arbitration time Tarbit and the actual data
transmission time Ttransmit as derived by the following
latency model.

5.1 Latency model

(1) Arbitration time: The arbitration time is determined by
the slot size, the slot table size, and the number of allocated
slots for a channel. The arbitration time Tarbit for a token is
approximated by

Tarbit = Sslot⌈
Stab
2Aslot

⌉/fnet (5)

where Sslot denotes the slot size in number of words. Stab
denotes the slot table size in number of slots. Aslot denotes
the number of slots that is reserved for a channel in the slot
table. In this work, a ‘slot’ contains three words (in the
worst case, 1 header and 2 payload words). Similar to (3),
we divide by 2 for the circular round-robin to derive an
approximate average arbitration time. Note that Tarbit is an
approximation because it assumes slots are equally
distributed and does not consider the (small) messagisation
overhead.
(2) Transmission time: Similar to the crossbar in Fig. 5b, the
transaction consists of ‘read request’ and ‘data response’
channels. The transmission time consists of the time to send
data, the pipeline delay, and the length of a message, which

can be approximated by

Ttransmit =

⌈
Sreq

Sslot−1

Stab
Aslot

⌉ + #hopCSW + Cmisc

fnet
for request

⌈
Sresp

Sslot−1

Stab
Aslot

⌉ + #hopCSW + Cmisc

fnet
for response

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(6)

where (Sslot2 1) refers to the slot size in number of payload
words, whereas a slot contains 1-word of header. Sreq and Sresp
denote the token size in the number of words for the request
and response channel, respectively. The first term

⌈
Sreq

Sslot−1

Stab
Aslot

⌉ refers to the number of cycles to send data.

This is an approximation because it assumes slots are
equally spaced. The second term refers to the pipeline
delay. #hop refers to the number of intermediate routers in
the routing path. CSW denotes the number of cycles for the
switching per router hop. The third term Cmisc denotes the
number of cycles spent in the network interfaces for
packetisation and de-packetisation.

5.2 MJPEG case study for hardwired
circuit-switched networks (HCSN)

We derive the performance of the HCSN. The MJPEG task
graph is mapped to 2 × 3 two-dimensional (2D)-mesh
topology as depicted in Fig. 5c. Fig. 7a depicts the
connection between P1 and P2, where P1 sends data to P2

through the response channel. Design parameters of the
Æthereal NoC are the following. The slot size Sslot is three
words. The clock frequency of the hardwired network
fnet ¼ 500 MHz from the implementation. The switching
latency per router hop CSW is 3 cycles from the
implementation. The slot table size Stab and number of
the reserved slots per channel Aslot are derived from the
bandwidth distribution. The miscellaneous cycles Cmisc is 3
cycles, since the request, packetisation, and de-packetisation
requires 1 cycle each. We used the automated design flow
of [28] to obtain Stab and Aslot for an MJPEG task graph.
As a result, Stab is 4 slots and Aslot is 1 slot per channel.

Fig. 6 Crossbar performance for a single token for MJPEG task graph in Fig. 5

IET Comput. Digit. Tech., pp. 1–10 7

doi: 10.1049/iet-cdt.2011.0169 & The Institution of Engineering and Technology 2012

www.ietdl.org

The arbitration time and transmission time are derived as
follows:

(1) Arbitration time: The arbitration time is derived by
substituting the Sslot ¼ 3 words, Stab ¼ 4 slots, and Aslot ¼ 1
slot in (5). Fig. 7b depicts an example. The round-robin
pointer points to the 3rd slot and the 1st, 2nd, 4th slots are
occupied by other channels. Since each slot contains three

words, the arbitration requires approximately 3⌈
4

2× 1
⌉

()

¼6 cycles. Subsequently, the arbitration time Tarbit is

derived by 3⌈
4

2× 1
⌉/500× 106 = 12 ns per channel. In

Fig. 7, we clarify the definitions of word, flit, packet and
token. Flit is the minimum flow control unit. Packet can be
composed of multiple flits. In the examples in the paper, a
token is the primitive communication unit, which is
equivalent to a packet. A packet consists of one or more
flits, each of which contains three words (or phits) of

32 bits. Each packet contains one header phit, and zero or
more data phits, depending on the slot assignment and data
availability.
(2) Transmission time: Fig. 7c depicts a latency from the
source queue to the destination queue. Since Sslot ¼ 3
words and Sreq ¼ Sresp ¼ 3 words, the time to send data is

⌈
3

3− 1

4

1
⌉/500× 106 = 12 ns. This means that a single flit

(2 payload words) can be transmitted per every revolution
of 12 (¼3 words × 4 slots) cycles. From the topology
mapping and the routing strategy, the number of hops #hop
is obtained for each channel. The routing paths are depicted
in Fig. 5c for the response channels. As an example, #hop
between P1 and P2 is 2 (see bold line in Fig. 5c). Since
CSW ¼ 3 cycles and Cmisc ¼ 3 cycles, Ttransmit is derived by

⌈
3

3− 1

4

1
⌉ + 2× 3+ 3/500× 106 = 30 ns for a channel

between P1 and P2.
(3) Network performance: The network service rate mtoken

can be derived by 1/(Tarbit + Ttransmit). As an example, the
service rate m1 for the connection P1 and P2 is derived by
1/(2(12+ 30)ns) = 12× 106 tokens/s. We multiply by 2
because a connection consists of two channels, the ‘request’
and the ‘response’ channel. The total network response time
is derived by substituting individual service rates in (1).
Similarly, when a packet contains a single flit (or 3 words),
the performance of hard and soft networks are derived, as
depicted in Fig. 8a. Fig. 8b depicts the network response
time when a packet contains 20 flits (or 60 words). As a
result, the hardwired NoC is significantly better in latency
and throughput than the soft NoC.

The service rate in the previous section is conservatively
derived, by considering the sequentially operated
computation IPs. Typically, the multi-hop latencies and the
arbitration latencies can be hidden, since multiple logical
channels are pipelined in the shared physical links. As
described earlier, we consider the worst case latency model
for the analysis to roughly compare hard and soft interconnects.

6 Implementation and experimental results

In the previous sections, functional performance is presented.
In this section, to evaluate functional cost and configuration
overheads, we conduct three experiments based on

Fig. 7 An example of the delay model of CSN

Fig. 8 NoC performance for MJPEG task graph in Fig. 5

23(H)CSN denotes a soft (hardwired) CSN with 2 × 3 2D-mesh topology

8 IET Comput. Digit. Tech., pp. 1–10

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cdt.2011.0169

www.ietdl.org

hardware implementation. First, we present area cost of the
soft and hard functional interconnects. Second,
configuration performance and cost overheads are derived
from the implementation. Third, we conduct the simulation
to verify the analytical latency model of CSNs.

(1) Area cost: To measure the area cost, the networks are
synthesised in FPGAs for soft networks and in ASICs for
hardwired networks, as shown in Tables 1 and 2. To obtain
the area and the frequency of the hardwired interconnects,
we used generic ASIC design flows (netlist synthesis, floor-
planning, instantiation of power grids, place standard cells,
route wires between standard cells, and design rule checks)
and obtain the graphic database Format (GDS) to be
integrated in FPGA implementation. We conducted ASIC
placement and routing, using TSMC standard cell 130 nm
library and Cadence first encounter to layout the hard
interconnects. For soft networks, we used Xilinx ISE tool to
synthesise, place and route in Virtex-II Pro device with
90 nm CMOS technology. As a result, the clock frequency
of hardwired networks is 4.7× higher than soft networks.
Though we experiment with different technologies, the
implementation results clearly indicate that the clock
frequencies of hardwired networks are significantly better
than soft networks. This means that the hardwired networks
provide much higher bandwidth. The area overhead of
hardwired networks is also significantly smaller, compared
to soft networks. As an example, the area of the 12-port
HBAR is 0.29 mm2. Considering the large area
(≃ 397 mm2 for our targeted xc2vp30 device, estimated die
size in [29], the area overhead of the hardwired network is
small. For comparison, the soft full crossbar SBAR with the
same design occupies more than 30% of the available logic

slices in the targeted xc2vp30 device. This means that the
soft network occupies significant logic resources.
(2) Configuration performance and cost: Soft networks by
nature entail configuration overheads in terms of
configuration time, configuration memory and bitstream. To
analyse the configuration overhead of the soft networks, we
derive a lower bound configuration time based on the utilised
area. The configuration time is determined by the required
number of frames. The required number of frames varies
with placement and routing policies. However, the ‘lower
bound’ of the configuration time (or the number of frames)
can be derived from utilised logic slices. Assuming that the
utilised logic slices are maximally packed into each frame,
the lower bound of the number of frames can be derived as

⌈
number of utilised slices

number of slices per CLB× number of CLBs per column
⌉

× (number of frames per column)

The ceiling operator is used because of to the fact that the CLB
column is the basic coherent unit for the configuration. As an
example, the 5-port SBAR occupies 852 slices. There are
four slices per CLB, 80 CLBs per column, and 22 frames

per column. This means that ‘at least’ ⌈
852

4× 80
⌉22 ¼ 66

frames are required. Since a single frame requires

(16.5ms = (206words× 32 bits/8- bit interface× 50MHz))

the configuration time is derived by 66 × 16.5 ¼ 1089 ms. The
required bitstream size is derived by (number of
frames) × (number of bits per frame). A single frame in
Virtex-II Pro contains 6592 bits (206 words and each word
is 32 bits wide [3]). Therefore the required bitstream size is
at least 435 072 bits (¼66 frames × 6592 bits). Fig. 9
depicts the lower bound of bitstream sizes required by the
SBAR. As depicted in Fig. 9, the soft interconnects have
significant configuration overheads in terms of the bitstream
size and the configuration time. Moreover, these
configuration overheads quadratically increases as the
number of ports (linearly) increases. It is important to note
that these overheads do not occur when these networks are
‘hard’. By hardwiring networks, the reconfigurable resources
can be fully utilised for the intra-IP functionality.
Consequently, the on-chip resources are better utilised from

Table 2 Hardware implementation of NoCs

Type Size Area, slices Clock freq., MHz

Soft (90 nm CMOS FPGA Virtex-II Pro)

SCSN 2 × 3 mesh 3450 120

3 × 4 mesh 9802 120

Hard (130 nm CMOS ASIC)

Area, mm2

HCSN 2 × 3 mesh 0.51 500

3 × 4 mesh 1.21 500

Fig. 9 Lower bound of bitstream size and configuration time overheads of SBAR

IET Comput. Digit. Tech., pp. 1–10 9

doi: 10.1049/iet-cdt.2011.0169 & The Institution of Engineering and Technology 2012

www.ietdl.org

the functional perspective and configuration perspective, when
the inter-IP networks are hard.
(3) NoC simulation: To verify the latency analysis in Section
5.1, we experiment with cycle-accurate SystemC simulation
for the Æthereal NoC [28] and compare it with our latency
model. Table 3 shows an average of connection latencies
for the MJPEG task graph (in Fig. 5). The average of
connection latency in our analysis is represented by AN.
The minimum/average/maximum simulated connection
latencies are obtained from the design flow [28].
‘Max_Sim’ denotes the maximum experienced latency in
the simulation. As shown in Table 3, our analysis provides
the same trend as the simulation. Second, we compared
hard and soft NoCs in the simulation. Table 3 also shows
an average of connection latencies of hard and soft
networks, by changing the clock frequency in the
simulation. As a result, on average 4.2× of the latency is
reduced in the hardwired network.

7 Conclusions

This article conducted a comparative analysis of hard and soft
interconnects in FPGAs. We showed that routing wires in the
reconfigurable fabric become increasingly critical resources,
as the chip density increases. To compare the performance
of hard and soft interconnects, the Jackson’s queuing model
has been utilised. Our simulation result showed that
hardwired NoC provides significantly better network
latency than the soft NoC. Hardwired NoC is promising for
future FPGAs. To fill the gap between soft interconnects
and hardwired NoCs, we also proposed to use crossbars
as built-in network components. Consequently, our analysis
and implementation results suggest that the hardwired
interconnects significantly improve the functional
performance, area cost, configuration time and configuration
cost, compared to soft interconnects at an acceptable cost.

8 References

1 Kuon, I., Rose, J.: ‘Measuring the gap between FPGAs and ASICs’,
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2007, 26, (2),
pp. 203–215

2 DeHon, A.: ‘Reconfigurable architectures for general-purpose
computing’. PhD thesis, Massachusetts Institute of Technology,
September 1996

3 Xilinx, Inc., http://www.xilinx.com/
4 Goossens, K., Bennebroek, M., Hur, J.Y., Wahlah, M.A.: ‘Hardwired

networks on chip in FPGAs to unify functional and configuration
interconnects’. IEEE Int. Symp. Networks-on-Chip (NOCS’08), April
2008, pp. 45–54

5 Gindin, R., Cidon, I., Keidar, I.: ‘NoC-based FPGA: architecture and
routing’. IEEE Int. Symp. Networks-on-Chip (NOCS’07), May 2007,
pp. 253–264

6 Hecht, R., Kubisch, S., Herrholtz, A., Timmermann, D.: ‘Dynamic
reconfiguration with hardwired networks-on-chip on future FPGAs’.
Int. Conf. Field Programmable Logic and Applications (FPL’05),
August 2005, pp. 527–530

7 Goossens, K., Dielissen, J., Rădulescu, A.: ‘The Æthereal network on
chip: concepts, architectures, and implementations’, IEEE Des. Test
Comput., 2005, 22, (5), pp. 414–421

8 Jackson, J.: ‘Networks of waiting lines’, Oper. Res., 1957, 5, (4),
pp. 518–521

9 Hur, J.Y., Goossens, K.G.W., Mhamdi, L.: ‘Performance analysis of soft
and hard single-hop and multi-hop circuit-switched interconnects for
FPGAs’. IFIP/IEEE Int. Conf. Very Large Scale Integration (VLSI-
SOC’08), October 2008, pp. 224–229

10 Kim, J., Park, D., Nicopoulos, C., Vijaykrishnan, N., Das, C.R.:
‘Modeling and implementation of an output-queuing router for
networks-on-chips’. Symp. Architecture for Networking and
Communications Systems (ANCS’05), October 2005, pp. 173–182

11 Elmiligi, H., El-Kharashi, M.W., Gebali, F.: ‘Modeling and
implementation of an output-queuing router for networks-on-chips’.
Int. Conf. Embedded Software and Systems (ICESS’07), May 2007,
pp. 241–248

12 Hur, J.Y., Stefanov, T., Wong, S., Vassiliadis, S.: ‘Customizing
reconfigurable on-chip crossbar scheduler’. IEEE Int. Conf.
Application-specific Systems, Architectures and Processors
(ASAP’07), July 2007, pp. 210–215

13 Landman, B.S., Russo, R.L.: ‘On a pin versus block relationship for
partitions of logic graphs’, IEEE Trans. Comput., 1971, C-20, (12),
pp. 1469–1479

14 Steiner, N., Athanas, P.: ‘An alternate wire database for Xilinx FPGAs’.
Proc. Field-Programmable Custom Computing Machines (FCCM’04),
April 2004, pp. 336–337

15 Steiner, N.: ‘A standalone wire database for routing and tracing in Xilinx
Virtex, Virtex-E, and Virtex-II FPGAs’. Master thesis, Virginia
Polytechnic Institute and State University, August 2002

16 Virtex-II Pro Handbook, Xilinx, Inc., 2002, http://www.xilinx.com

17 Raaijmakers, S., Wong, S.: ‘Run-time partial reconfiguration for
removal, placement and routing on the Virtex-II-Pro’. Int. Conf. Field
Programmable Logic and Applications (FPL’07), August 2007,
pp. 679–683

18 Passas, G., Katevenis, M., Pnevmatikatos, D.: ‘A 128 × 128 × 20Gb/S
crossbar, interconnecting 128 tiles in a single hop, and occupying less
than 5% of their area’. ACM/IEEE Int. Symp. Networks-on-Chip
(NOCS’10), May 2010

19 Nikolov, H., Stefanov, T., Deprettere, E.: ‘Systematic and automated
multi-processor system design, programming, and implementation’,
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2008, 27, (3),
pp. 542–555

20 AMBA AXI 3 Protocol Specification, ARM Ltd. http://www.arm.com/

21 Open Core Protocol (OCP) Specification http://www.ocpip.org/

22 Panades, I.M., Greiner, A.: ‘Bi-synchronous FIFO for synchronous
circuit communication well suited for network-on-chip in GALS
architectures’. IEEE Int. Symp. Networks-on-Chip (NOCS’07), May
2007, pp. 83–94

23 Harris, A.J., Mathewson, B.J., Wrigley, C.E. (US ‘Bus deadlock
avoidance’. US Patent 7,219,178, ARM Ltd., 2007

24 Coenen, M., Murali, S., Rădulescu, A., Goossens, K., De Micheli, G.:
‘A buffer-sizing algorithm for networks on chip using TDMA
and credit-based end-to-end flow control’. Int. Conf. HW/SW
codesign and System Synthesis (CODES-ISSS’06), October 2006,
pp. 130–135

25 Frost, V.S., Melamed, B.: ‘Traffic modeling for telecommunications
network’, IEEE Commun. Mag., 1994, 32, (5), pp. 70–81

26 Baldwin, R.O., David, N.J., Midkiff, S.F., Kobza, J.E.: ‘Queueing
network analysis: concepts, terminology, and methods’, J. Syst.
Softw., 2003, 66, (2), pp. 99–117

27 Hansson, A., Goossens, K.: ‘Trade-offs in the configuration of a network
on chip for multiple use-cases’. IEEE Int. Symp. Networks-on-Chip
(NOCS’07), pp. 233–242

28 Goossens, K., Dielissen, J., Gangwal, O.P., Pestana, S.G., Rădulescu,
A., Rijpkema, E.: ‘A design flow for application-specific networks on
chip with guaranteed performance to accelerate SOC design and
verification’. Int. Conf. Design, Automation and Test in Europe
(DATE’05), March 2005, pp. 1182–1187

29 Public repository for Frequently Asked Questions (FAQs) for designers
of systems using FPGAs, http://www.fpga-faq.org

Table 3 Connection latencies of 2 × 3 2D-mesh NoCs

Type Hard/soft Min/Avg/Max Latency, ns

HCSN hard AN 90.9

Min_Sim 81.7

Avg_Sim 93.7

Max_Sim 109.2

CSN soft Avg_Sim 399.9

10 IET Comput. Digit. Tech., pp. 1–10

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cdt.2011.0169

www.ietdl.org

http://www.xilinx.com/
http://www.xilinx.com
http://www.arm.com/
http://www.ocpip.org/
http://www.fpga-faq.org

	1 Introduction
	2 Related work
	3 HBAR in FPGAs
	4 Performance analysis of HBAR
	5 Performance analysis of CSN
	6 Implementation and experimental results
	7 Conclusions
	8 References

