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Comparative analysis of Streptococcus 
suis genomes identifies novel candidate 
virulence‑associated genes in North American 
isolates
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Abstract 

Streptococcus suis is a significant economic and welfare concern in the swine industry. Pan-genome analysis provides 
an in-silico approach for the discovery of genes involved in pathogenesis in bacterial pathogens. In this study, we 
performed pan-genome analysis of 208 S. suis isolates classified into the pathogenic, possibly opportunistic, and 
commensal pathotypes to identify novel candidate virulence-associated genes (VAGs) of S. suis. Using chi-square tests 
and LASSO regression models, three accessory pan-genes corresponding to S. suis strain P1/7 markers SSU_RS09525, 
SSU_RS09155, and SSU_RS03100 (>95% identity) were identified as having a significant association with the patho-
genic pathotype. The proposed novel SSU_RS09525 + /SSU_RS09155 + /SSU_RS03100 + genotype identified 96% of 
the pathogenic pathotype strains, suggesting a novel genotyping scheme for predicting the pathogenicity of S. suis 
isolates in North America. In addition, mobile genetic elements carrying antimicrobial resistance genes (ARGs) and 
VAGs were identified but did not appear to play a major role in the spread of ARGs and VAGs.
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Introduction
Streptococcus suis is a significant economic and welfare 
concern in the swine industry as pathogenic strains cause 
a range of clinical signs including meningitis, arthritis, 
endocarditis, and septicemia [1]. Commensal strains, 
however, naturally colonize the upper respiratory tract 
of pigs without causing clinical disease [2]. Characteriza-
tion techniques capable of identifying strains of clinical 
significance are important for the control of S. suis dis-
ease. Virulence-associated factors contributing to the 
virulence of S. suis strains (mainly for serotype 2) have 

been described but are not consistently present in clinical 
isolates [3, 4].

Increasing availability of next generation sequencing 
technologies and generation of large amounts of data led 
to the development of numerous programs and software 
tools for bacterial typing [5, 6]. Pan-genome analysis 
characterizes the diversity within a bacterial species as 
it describes core traits shared by all strains and unique/
accessory traits shared only by some strains [7]. S. suis 
possesses an open pan-genome in which the number of 
unique or accessory genes increases as more genomes are 
sequenced [8]. The open pan-genome contributes to high 
species diversity and is typically indicative of high rates 
of horizontal gene transfer by mobile genetic elements 
(MGEs) [7, 9]. Functional analyses of the S. suis pan-
genome revealed differences in the functional annotation 
of the core genome compared to the accessory genome 
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[8, 10], supporting the distinct roles of these two com-
ponents in explaining genomic diversity. Comparative 
genomics can also be used as a subtyping tool for S. suis. 
Serotype 1, 2, 7, and 9 strains were differentiated by com-
parative genome hybridization or bayesian analysis of 
population structure into multiple genomic groups, some 
of which correlated to virulence and traditional molecu-
lar subtypes [11, 12].

The ability to identify virulence determinants within 
the accessory genome has been demonstrated for vari-
ous bacterial pathogens such as Escherichia coli, Pseu-
domonas aeruginosa, and Streptococcus spp. [13–15]. 
Known and putative VAGs were over-represented in 
systemic isolates of S. suis compared to respiratory and 
non-clinical isolates [16]. A genome-wide association 
study was utilized to identify three novel genetic mark-
ers for differentiating S. suis isolates into invasive disease-
associated and non-disease-associated groups [17]. That 
pathotyping tool, which consisted of a multiplex-PCR 
assay, demonstrated performance metrics (e.g., sensitiv-
ity, specificity) similar to serotyping, multilocus sequence 
typing (MLST), VAG profiling, and minimum core 
genome sequence typing. Two recent publications on 
the comparative analysis of virulent and avirulent strains 
identified two different sets of novel virulence-associated 
genes, supporting previous claims of an abundance of 
uncharacterized virulence determinants in the accessory 
genome of pathogenic strains of S. suis [10, 18].

Mobile genetic elements facilitate intracellular and 
intercellular movement of genes and contribute to the 
evolution of pathogenic bacteria such as S. suis [19–21]. 
Proteins encoded by MGEs have various functions that 
can be described as core traits required for replication 
and advantageous/adaptive traits [e.g., antimicrobial 
resistance genes (ARGs), virulence-associated genes 
(VAGs)] [19, 22]. Previous studies demonstrated the 
transfer of conjugative ICESsu32457 to S. agalactiae, S. 
pneumoniae, and S. pyogenes, indicating the dissemina-
tion of resistance genes among closely related species [23, 
24]. An 89 kb PAI was first identified in the highly viru-
lent and zoonotic Chinese S. suis strain 05ZYH33, and 
it contains both resistance genes and putative VAGs [25, 
26]. A high degree of phenotypic antimicrobial resist-
ance was associated with the presence of plasmids in S. 
suis [27]. However, only a few resistance genes, such as 
the multiresistance gene cfr and the chloramphenicol 
resistance gene cmr, have been identified on S. suis plas-
mids [28, 29]. There is evidence that S. suis serves as an 
MGE reservoir for other streptococci, and there are many 
poorly characterized MGEs [21, 30].

Comparative genomics provides a powerful tool for the 
characterization and subtyping of S. suis. However, a con-
temporary comparative pan-genomic study targeting U.S. 

S. suis strains is unavailable. We performed compara-
tive genome analysis on a set of 208 S. suis isolates from 
North America (mainly the United States) to identify 
accessory genes corresponding to the pathogenic patho-
type that may thus serve as novel candidate virulence-
associated genes of S. suis. The identification of candidate 
VAGs may elucidate a novel VAG genotyping scheme for 
predicting the pathogenicity of S. suis isolates in North 
America. Further, we performed a preliminary analysis 
of the diversity of MGEs in S. suis isolates and their role 
in the dissemination of ARGs and VAGs among S. suis 
pathotypes.

Materials and methods
Sample selection and genome assembly
The study utilized all 208 S. suis isolates (referred to as 
the training set) recovered from pigs in North America 
(mainly the United States: U.S., n = 203; Canada, n = 4; 
Mexico, n = 1) and previously described by Estrada et al. 
[31]. These isolates were previously classified into patho-
types (pathogenic, possibly opportunistic, and commen-
sal) and characterized by serotyping, MLST, and VAG 
profiling. Pathogenic isolates (n = 139) were obtained 
from systemic tissues of diseased pigs in which S. suis was 
reported in the diagnostic report as the primary cause of 
disease. Possibly opportunistic isolates (n = 47) were pre-
dominantly obtained from lung tissues of pigs without 
signs of neurological or systemic disease, and commen-
sal isolates (n = 22) were obtained from laryngeal, ton-
sil, or nasal samples of healthy pigs. Genome assembly 
was performed on Illumina sequencing data of the 208 
S. suis isolates. Genome assemblies (contigs) were gen-
erated using the SKESA de-novo assembler (v2.4.0) [32] 
with default kmer settings. QUAST (v4.5) [33] was used 
to evaluate the genome assemblies and generate sum-
mary statistics (e.g. genome length, GC content, N50) for 
contigs ≥ 500 bp. Genome contamination and complete-
ness were evaluated utilizing the CheckM taxonomic-
specific (species) workflow [34]. Only contigs ≥ 500  bp 
were kept for annotation by Prokka (v1.14.6) [35] to pre-
dict coding sequences. The pan-genome was annotated 
using Roary (v3.13.0) [36] using a 90% BLASTp identity 
cut-off to define clusters of genes and allowing paralog 
clustering. Gene clusters present in 99% (≥ 206/208) 
of genomes were classified as core genes. Two different 
Roary analyses were performed. The first analysis utilized 
all 208 genomes while the second analysis utilized the 
161 genomes representing only the pathogenic and com-
mensal pathotypes.

Functional annotation
The Clusters of Orthologous Groups of proteins 
(COG) database (2014) [37] was utilized to predict 
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protein functions. For each gene cluster identified by 
Roary, a representative protein sequence was selected, 
and BLASTp searches against the COG database were 
performed. COG functional classes from searches 
meeting the thresholds (BLASTp, coverage ≥ 70%, 
identity ≥ 70%, and e-value ≤ 10–5) were plotted in R 
(v3.6.1) using Rstudio [38].

Statistical analysis
Associations between S. suis accessory genes and 
pathotype were investigated in R as follows. The data 
were filtered by removing genes detected in less than 
50% (≤ 69/139) of isolates within the pathogenic 
pathotype and detected in more than 50% (≥ 11/22) of 
isolates within the commensal pathotype. Remaining 
accessory genes were individually tested by chi-square 
using a 3 × 2 table comparing the three pathotypes 
and the status (presence/absence) of individual genes. 
Genes lacking a significant (p-value < 0.05) associa-
tion with pathotype were removed from the analysis. 
The remaining genes were analyzed using the LASSO 
(Least Absolute Shrinkage and Selection Operator) 
shrinkage regression model.

LASSO shrinkage regression model
A LASSO shrinkage regression model was used, as pre-
viously described by Estrada et al. [39], to determine the 
fewest number of accessory genes that may serve as pre-
dictors of pathogenicity; the pathogenic pathotype served 
as the indicator of pathogenicity. The LASSO analysis 
(100 iterations) was performed on each Roary data set, 
the first data set consisting of all 208 isolates, and the 
second consisting of a subset of 161 isolates (Figure  1). 
Genes identified in both LASSO analyses were selected 
as the ’best’ predictors of pathogenicity.

Identification of antimicrobial resistance genes
The presence of antimicrobial resistance genes (ARGs) 
was predicted in all 208 S. suis draft genomes (contigs) 
using the Comprehensive Antibiotic Resistance Data-
base (CARD) (v3.1.0) and the CARD BLAST command-
line program [40] (BLASTn, ≥ 90% identity and ≥ 60% 
coverage).

Identification of mobile genetic elements
Plasmids and other genetic elements (insertion 
sequences, ICE, IME, composite transposons, etc.) were 
identified in the S. suis draft genomes using the com-
mand-line PlasmidFinder [41] and MobileElementFinder 
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Figure 1  Illustration of the pan-genome approach for identifying candidate virulence-associated genes (VAGs). A The first data set 
analyzed consisted of all 208 isolates and B the second data set consisted of a subset of 161 isolates. Genes with a significant association 
(p-value < 0.05) with pathotype, and present in more than 50% (69/139) of isolates within the pathogenic pathotype and present in less than 50% 
(11/22) of isolates within the commensal pathotype, were analyzed using the LASSO shrinkage regression model. Genes identified in both LASSO 
analyses were selected as the ‘best’ predictors of pathotype.
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[42] programs (default parameters: ≥ 90% identity 
and ≥ 60% coverage). The PlasmidFinder database (07-
13-2020), which is a curated database of plasmid rep-
licons, was updated to include S. suis plasmid replicons 
(pNSUI060a: CP012912, pNSUI060b: CP012913, HN105 
unnamed plasmid1: CP029399, pSRD478: CP017089, 
pISU2812: CP017093, pISU2514: CP030021, pISU2614: 
CP031378, pYSJ17: CP032065) available from NCBI. 
Plasmid draft sequences were extracted from the 
genomes by mapping the trimmed reads to the respective 
plasmid reference. Potentially novel plasmids were iden-
tified utilizing viralVerify [43] and the Pfam-A database 
(v35.0). Phages were identified and annotated utilizing 
PHASTER [44] and the location (chromosome, plasmid) 
of identified phages was investigated using the viralVerify 
data. The MobileElementFinder database (06-09-2020) 
contains genetic elements from several public databases 
including RefSeq, Tn registry and ICEberg. The presence 
of the S. suis strain 05ZYH33 89 K candidate pathogenic-
ity island (PAI) was determined in-silico by screening for 
the CH1/CH2 (CP000407.1: 871,777–873,837 bp), CH3/
CH4 (CP000407.1: 921,759–922,474  bp) and CH5/CH6 
(CP000407.1: 961,264–962,239  bp) DNA sequences tar-
geted by the PCR primers described by Schmid et al. [45]. 
Screening of these sequences was performed using the 
SRST2 (Short Read Sequence Typing for Bacterial Path-
ogens) program (≥ 90% coverage and ≥ 90% sequence 
identity) [46]. The CH3 and CH4 sequence is a 716  bp 
fragment unique to the strain 05ZYH33 89  K PAI, thus 
isolates lacking this segment were considered negative 
for the PAI. PAI draft sequences were extracted from the 
genomes by mapping the trimmed reads to the S. suis 
strain 05ZYH33 89  K PAI [47]. The plasmid, ICE, IME, 
composite transposon, and 89  K PAI draft sequences 

were annotated using Prokka. Associations between the 
presence of MGEs and pathotype were tested by chi-
square in Rstudio.

Identification of MGE‑associated ARGs and VAGs
Comparative analysis to identify genetic elements carry-
ing ARGs and putative VAGs was performed by BLAST 
searching MGE draft sequences against custom data-
bases [BLASTn (dc-megablast), ≥ 80% identity and ≥ 60% 
coverage]. The CARD (v3.1.0) [40], CGE ResFinder (02-
19-2021) [48], and ARG-ANNOT ARG (v6) [49] data-
bases were combined into a custom ARG database. The 
VF (03-01-2021) [50], CGE VirulenceFinder (05-29-2020) 
[51], and S. suis VAG databases [39] were combined into 
a custom VAG database.

Results
Identification of core and accessory gene content
In the current study, the pan-genome (core and acces-
sory genes) of the training set of S. suis isolates was 
determined. The genome lengths ranged from 1.95 to 
2.45  Mb with an average coverage of 208 × across the 
assembly, an average GC content of 41.2%, less than 5% 
genome contamination, and over 94.0% genome com-
pleteness (Additional file  1). The number of predicted 
protein coding sequences ranged from 1854 to 2399, with 
an average of 2078, and an average of 3 and 39 rRNAs 
and tRNAs, respectively. A total of 8231 gene clusters 
were identified (Additional file  2). Of these, 1189 gene 
clusters were classified as core genes and were present 
in all or nearly all genomes (≥ 206/208). A decrease in 
the number of conserved or core genes was observed as 
more genomes were added to the analysis (Figure  2A) 
while an increase in the number of unique genes was 
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Figure 2  Summary statistics for the pan-genome analysis of 208 S. suis isolates. A Number of conserved genes, B unique genes, and C total 
number of genes plotted against the number of genomes included in the analysis.
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observed (Figure  2B). Furthermore, the total number of 
genes in the pan-genome continued to increase with each 
additional genome (Figure 2C), suggesting an open pan-
genome for S. suis and indicating a potential to discover 
novel genes with the sequencing of more S. suis strains. 
These genome lengths, CG content, and number of pre-
dicted protein sequences are consistent with the S. suis 
reference strains already in the GenBank/EMBL/DDBJ 
database.

Cluster of Orthologous Groups classification
The COG functional classes were predicted for 98.7% 
(8123/8231) of gene clusters identified in the pan-
genome of S. suis. The comparison of COG functional 
classes between core and accessory genes was performed 
only on the 995 classifications that met the criteria (cov-
erage ≥ 70%, percent identity ≥ 70%, and e-value ≤ 10–5) 
(Figure  3A, Additional file  3). Core genes were more 
likely to be classified into functional classes T (Signal 
transduction mechanisms), J (Translation, ribosomal 
structure and biogenesis), F (Nucleotide transport and 
metabolism), and O (Posttranslational modification, pro-
tein turnover, chaperones), in decreasing order. More 
accessory genes were classified into classes X (Mobilome: 
prophages, transposons) and V (Defense mechanisms), 
in decreasing order (Figure  3B). Major differences were 
lacking in the distribution of COG classes by pathotype 
(Figure 3C).

Candidate VAGs
Statistical analyses were performed to test for associa-
tions between accessory genes and the three pathotypes. 
Of the 7,042-accessory pan-genes identified for the train-
ing set (3 pathotypes), 231 pan-genes met the criteria 
(p-value < 0.05, < 50% commensal, > 50% pathogenic, 
Figure 1A) to be further analyzed by the LASSO model. 
Further analysis was performed on the commensal and 
pathogenic pathotypes (n = 161) (Additional file  4), 
excluding the possibly opportunistic pathotype as it may 
contain true pathogenic or commensal strains, and 223 
pan-genes were associated with the pathogenic patho-
type and further analyzed by the LASSO model (Fig-
ure 1B). Four genes corresponding to S. suis strain P1/7 
markers SSU_RS09525, SSU_RS09155, SSU_RS03100, 
and SSU_RS01590 (>95% identity) were identified in both 
LASSO analyses (Table 1) and were further investigated 
as novel predictors of pathotype. The SSU_RS09525 + /
SSU_RS09155 + /SSU_RS03100 + genotype was observed 
in 96.4% (134/139) and 13.6% (3/22) of the pathogenic 
and commensal pathotypes, respectively (Table 2). Geno-
types containing marker SSU_RS01590 identified fewer 
pathogenic isolates. Thus, only markers SSU_RS09525, 
SSU_RS09155, and SSU_RS03100 were selected as the 

‘best’ predictors of pathotype. The pathogenic and pos-
sibly opportunistic isolates possessing these markers 
belonged to serotype-ST combinations unique to these 
pathotypes (Additional files 5 and 6). The exceptions are 
the three commensal isolates possessing these markers 
which belonged to serotype 3 ST94, serotype 3 ST108, 
and serotype 8 ST87. To investigate if these three mark-
ers were present in Eurasian strains, we further tested 
the markers in eight well-characterized and highly cited 
Eurasian references. The markers were tested by BLASTn 
and identified in all eight reference strains with ≥ 96% 
identity and 100% coverage (Table 3).  

Identification of ARGs
The presence of ARGs was predicted in all S. suis draft 
assemblies of the training set (Additional file 7). Fifteen 
ARGs representing five drug classes (aminoglycoside, lin-
cosamide, macrolide, nucleoside, and tetracycline) were 
identified in at least one isolate (Figure  4A). The pre-
dominant ARGs were tet(O) (90.4%, 188/208) and erm(B) 
(69.7%, 145/208), which confer resistance to tetracycline 
and MLS (macrolide/lincosamide/streptogramin) anti-
biotics, respectively. Notably, ~77% of the commensal 
and possibly opportunistic pathotypes possessed mac-
rolide resistance genes and 14.9% of the possibly oppor-
tunistic pathotype possessed aminoglycoside resistance 
genes compared to 66.2% and 2.9% of the pathogenic 
pathotype, respectively (Figure 4B). Multidrug resistance 
(ARGs conferring resistance to ≥ 3 drug classes) was pre-
dicted in 11.0% (23/208) of isolates.

Identification of S. suis MGEs and MGE‑associated ARGs 
and VAGs
The presence of various MGE types was determined 
in-silico. Plasmid replicons were predicted in 58.2% 
(121/208) of S. suis genomes via the reference-based 
method (PlasmidFinder) (Figure 5A), and 15.7% (19/121) 
of these contained multiple (2–3) plasmid replicons. Ten 
different plasmids were predicted, and the predomi-
nant plasmid types were the S. suis plasmids pNSUI060a 
(54.3%, 113/208), pISU2614 (6.7%, 14/208), and pSSU1 
(AB019522) (6.7%, 14/208) (Additional file  7). There 
was no association (p-value > 0.05) between the pres-
ence of plasmids and pathotype; however, a majority 
(61.9%, 86/139) of the pathogenic pathotype contained at 
least one plasmid compared to a minority (40.9%, 9/22) 
of the commensal pathotype. Eighty isolates (patho-
genic, n = 47; possibly opportunistic, n = 21; commen-
sal, n = 12) lacking plasmids through the reference-based 
method possessed potentially novel plasmids (Additional 
file  7). Sequence analysis demonstrated multiple dif-
ferent plasmid sequences. Insertion sequences, ICEs, 
IMEs, and composite transposons were predicted in 
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98.1% (204/208), 2.4% (5/208), 1.9% (4/208), and 34.6% 
(72/208) of genomes, respectively. There was a significant 
association (p-value < 0.05) between the presence of pre-
dicted composite transposons and pathotype with 40.3% 
(56/139) of the pathogenic pathotype possessing at least 
one composite transposon compared to 9.1% (2/22) of 
the commensal pathotype. The S. suis strain 05ZYH33 

89 K PAI was determined by the CH3/CH4 internal PAI 
sequence, which was lacking in all isolates of the train-
ing set (Figure  5A). The CH1/CH2 (5′ flanking region) 
and CH5/CH6 (3′ flanking region) sequences were iden-
tified in 19.7% (41/208) and 37.5% (78/208) of isolates, 
respectively (see Additional file  8 for sequence align-
ments). Phages were identified in all but one genome, 
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Figure 3  Predicted Cluster of Orthologous Groups (COG) functional classes. COG functional classes were determined for the 995 pan-gene 
clusters that met the criteria (psiblast, coverage ≥ 70%, percent identity ≥ 70%, and e-value ≤ 10–5). A The total frequencies of pan-gene clusters 
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clusters present in the pathogenic, possibly opportunistic, and commensal pathotypes, respectively.
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however only 25.0% (52/208) of isolates possessed intact 
phages (Additional file  9). The intact phages of 12.5% 
(26/208) of isolates were predicted to be located in the 
bacterial chromosome, while the location was unclear for 
the remaining isolates. No intact phages appeared to be 
located on plasmids.

The ARGs and VAGs carried on the predicted 
MGEs were identified by a BLAST search of the MGE 
draft sequences to the custom ARG-VAG database 
(Additional file  7). In the training set, 5.8% (12/208) 
of the isolates contained the ARGs aminoglycoside 

6-adenylyltansferase (SSU05_0957) and tetracycline 
resistance protein (SSU05_0922) in the S. suis strain 
05ZYH33 89 K PAI (Figure 5B). Higher percentages of 
possibly opportunistic (12.8%, 6/47) and commensal 
(9.1%, 2/22) isolates carried ARGs compared to patho-
genic isolates (2.9%, 4/139). ARGs (erm(B), lnuC, and/
or tet(M)) were identified in plasmids, ICEs, and com-
posite transposons of 1.4% (3/208) of isolates and in 
IMEs of 1.9% (4/208) of isolates. None of the isolates 
possessing these ARG-associated MGEs were classified 
as the commensal pathotype.

Table 1  Shared candidate VAGs identified by two LASSO analyses of S. suis genomes 

* Group name is unique and determined by each ROARY analysis. Hence, group names are different for the same pan-gene cluster

Pan-gene group* in 
analysis of 208 genomes

Pan-gene group* in 
analysis of 161 genomes

S. suis strain reference
(non-redundant protein WP_ accession)

Size (AA) Annotation

Group_878 Group_693 SSU_RS09525 (P1/7) (WP_012027987.1) 137 RNA-binding protein

Group_766 Group_584 SSU_RS09155 (P1/7) (WP_012028544.1) 219 Hypothetical protein

Group_1486 Group_1385 SSU_RS03100 (P1/7) (WP_012775033.1) 104 Hypothetical protein

Group_790 Group_739 SSU_RS01590 (P1/7) (WP_012774960.1) 175 Membrane protein/ECF 
transporter S compo-
nent

Table 2  The four candidate VAGs and proposed genotype for the three pathotypes of S. suis identified by LASSO 

* Positive isolates in the pathotype divided by the number of isolates containing the candidate VAG(s)

Candidate VAG(s) No. containing the 
candidate VAG(s)

Pathogenic
(n = 139)

Possibly Opportunistic
(n = 47)

Commensal
(n = 22)

No. Proportion* No. Proportion* No. Proportion*

SSU_RS09525 189 138 0.730 42 0.222 9 0.048

SSU_RS09155 178 137 0.770 34 0.191 7 0.039

SSU_RS03100 172 134 0.779 34 0.198 4 0.023

SSU_RS01590 167 127 0.760 31 0.186 9 0.054

SSU_RS09525
SSU_RS09155
SSU_RS03100

168 134 0.798 31 0.185 3 0.018

Table 3  Presence of novel candidate VAGs in virulent Eurasian S. suis strains 

Strain Serotype ST % identity Source Origin Accession no. Refs.

SSU_RS09155 SSU_RS09525 SSU_RS03100

GZ1 2 1 96.1 98.8 100 Human China CP000837 [74]

SC84 2 7 96.1 98.8 100 Human China FM252031 [67]

P1/7 2 1 96.1 98.8 100 Diseased pig United Kingdom AM946016 [67]

S735 2 1 96.1 98.8 100 Diseased pig The Netherlands CP003736 [75]

ZY05719 2 7 96.1 98.8 100 Diseased pig China CP007497 [76]

SC19 2 7 96.1 98.8 99.7 Diseased pig China CP020863 [77]

05ZYH33 2 7 96.1 97.4 100 Human China CP000407 [25]

10 2 1 96.1 98.8 100 Healthy pig The Netherlands CP058742 [78, 79]
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Putative VAGs were identified on PAI-like sequences 
of 94.2% (196/208) of isolates (Figure  5C). These VAGs 
included the S. suis strain 05ZYH33 agglutinin recep-
tor (SSU05_0965) and type IV secretory system VirB4/
VirD4 components (SSU05_0969/SSU05_0973), which 
were present in ≥ 75% (≥ 157/208) of genomes (Addi-
tional file 7). Other PAI-associated VAGs present in the 
genomes were NisK/NisR (SSU05_0906/SSU05_0907), 
putative zeta toxin (SSU05_0936), and putative abor-
tive infection protein (SSU05_0966). These PAI-associ-
ated VAGs were identified in all three pathotypes with 
no major difference in distribution by pathotype. VAGs 
were identified in less than 5% (n < 10) of isolates with 
predicted plasmids, ICEs, IMEs, and transposons, and 
included S. suis orf207, revS, and traG. Multiple beneficial 
genes were determined from the MGE drafts (as deter-
mined by BLAST and prokka annotations) (Additional 
file  10). A putative zeta/pezT toxin (SSU05_0936) was 
predominantly identified in the pathogenic and possibly 
opportunistic pathotypes (70–72%). Many of the MGE 
drafts in our study contained genes encoding major car-
bohydrate transport systems (PTS transporters) (28%), a 
mobility protein (methyl-accepting chemotaxis protein) 
(72%), and metal resistance proteins (arsenic, calcium) 
(76–77%). The proposed novel VAGs SSU_RS09525, 
SSU_RS09155, and SSU_RS03100 were not associated 
with MGEs predicted in this study, as determined by 
BLAST. In summary, ARGs and VAGs were identified in 
multiple MGE types and PAI-like regions were the most 
diverse.

Discussion
In this study, comparative analysis of 208 previously 
characterized S. suis isolates [31] was performed to gain 
insights into the distribution and function of the S. suis 
core and accessory genes. Functional comparisons illus-
trated differences in COG classes with the potential 
enrichment of virulence-associated genes in the acces-
sory genome. Markers SSU_RS09525, SSU_RS09155, and 
SSU_RS03100 demonstrated strong associations with the 
pathogenic pathotype presenting novel candidate VAGs 
for identifying pathogenic S. suis strains in North Amer-
ica (predominantly the United States). We investigated 
the distribution of MGEs and determined that MGEs 
have the potential to spread resistance genes and putative 
VAGs.

Functional annotation of the pan-genome was per-
formed using the COG protein database to investigate 
differences in the abundance of classes between core and 
accessory genes. Genes involved in nucleotide transport, 
translation, post-translation modifications, and signal 
transduction mechanisms (COG F, J, O, and T) were 
over-represented among the core genes. These functions 
(represented by COG F, J, O, and T) can more broadly 
be described as cellular processing and signaling, infor-
mation storage, and metabolism and are responsible for 
basic cell function (“housekeeping”) [52, 53]. Accessory 
genes were more likely to be involved in defense mech-
anisms and the mobilome (COG X and V), which are 
functions associated with host- and environmental-inter-
actions, horizontal gene transfer, and niche-adaptation in 
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bacterial pathogens [53–55]. Thus, the distribution and 
function of the S. suis pan-genome support our hypoth-
esis that the accessory genome would be enriched for 
genes linked to pathogenicity.

Candidate novel VAGs in the S. suis accessory genome 
were selected using chi-square tests and LASSO regres-
sion models testing associations between accessory 
genes and pathotype. Three pan-genes corresponding to 
S. suis strain P1/7 genes SSU_RS09525, SSU_RS09155, 
and SSU_RS03100 were selected as the “best” indicators 
of pathogenicity for isolates in our study. In our previ-
ous study, we demonstrated that a genotype consisting of 
classical S. suis VAGs extracellular protein factor, muram-
idase-released protein, and suilysin (epf + /mrp + /sly +) 
only identified 14% of the pathogenic pathotype, while a 
novel proposed genotype of published VAGs ofs and srtF 
(ofs + /srtF +) was able to identify 95% [39]. Yet, viru-
lent strains lacking ofs and/or srtF have been reported 
in North America, indicating these VAGs may not be 
essential for virulence [3, 56]. The SSU_RS09525 + /
SSU_RS09155 + /SSU_RS03100 + genotype identified 
96% of the pathogenic pathotype and only 14% of the 
commensal pathotype. Traditionally, Eurasian and North 
American strains are genotypically and phenotypically 
different and may possess different virulence markers 
[1, 56]. However, the identification of the SSU_RS09525, 
SSU_RS09155, and SSU_RS03100 markers in all eight 
Eurasian strains (serotype 2 ST1 or ST7) tested suggests 
these markers can potentially be applied globally. The five 
serotype 2 ST1 pathogenic strains in the training set also 
possessed these three virulence markers. The application 
of these virulence markers to pathotype Eurasian strains 
needs to be verified using a large collection of isolates 
including non-serotype 2 and commensal strains.

Using a genomic approach, the predicted function 
of these candidate VAGs and their potential relevance 
to S. suis disease were investigated. SSU_RS09155 and 
SSU_RS03100 were annotated as hypothetical proteins 
and have been reported in virulent S. suis strains such as 
P1/7, SC84, and GZ1. Markers SSU_RS09155 and SSU_
RS03100 could not be further characterized by COG or 
by searching the NCBI protein databases, reinforcing 
that much of the S. suis genome is uncharacterized or 
poorly characterized. SSU_RS09525 was annotated as an 
RNA-binding protein (RBP), which is involved in post-
transcriptional regulation via regulation of translation 
initiation, stability, and transcript elongation  [57, 58]. 
RBPs are well-studied in E. coli and Salmonella enter-
ica serovar Typhimurium and were shown to affect viru-
lence gene expression [59, 60]. SSU_RS01590 encodes a 
putative energy-coupling factor transporter substrate-
binding protein (ECF transporter S component). ECF 
transporters are responsible for vitamin uptake and are 

essential for growth and survival, contributing to the vir-
ulence of various gram-positive bacterial pathogens [61, 
62]. The strong associations with the pathogenic patho-
type and potential virulence-related functions suggest 
that the proposed markers contribute to the pathogenic-
ity of S. suis. The possibility of another primary pathogen 
and the presence of opportunistic S. suis strains will con-
tinue to be a concern when studying S. suis-associated 
diseases. However, the pathotype classifications used in 
this study are what can be currently accomplished given 
the history of the farms and the diagnostic reports.

Fifteen ARGs with predicted resistance to aminogly-
coside, lincosamide, macrolide, nucleoside, and tetra-
cycline antibiotics were identified in the draft genomes 
of the training set. High predicted resistance to tetra-
cyclines (93%, predominantly tet(O)) and erythromycin 
(70%, erm(B)) was observed similar to previous reports 
of resistance genes in S. suis in North America, Asia, 
and Europe [63, 64]. Previous studies indicate a higher 
prevalence of antibiotic resistance among commensal 
strains, which may act as reservoirs for resistance genes 
[65, 66]. There was no major difference in the distribution 
of resistance genes by pathotype, but the commensal and 
possibly opportunistic pathotypes did tend to have more 
resistance genes. However, we are aware that genotypic 
resistance does not guarantee phenotypic resistance. 
Point mutations are also important resistance mediators 
and may be further investigated.

Horizontal gene transfer of MGEs is one mechanism 
by which S. suis acquires and spreads resistance genes 
and putative VAGs. Thus, a reference-based in-silico 
approach was used for a preliminary investigation of 
MGEs in the S. suis genomes and of genes carried on 
these elements. Resistance MGEs were identified in only 
6% of isolates, largely classified as pathogenic and pos-
sibly opportunistic (83%) and were predominantly pre-
sent in PAI-like regions. However, only a few isolates 
(3.4%, n = 7) had multiple resistance MGEs. ICE and 
IME are commonly found in Streptococcus genomes 
and play a major role in the dissemination of ARGs in S. 
suis [29, 67]. In our study, only the 69  kb S. suis ICES-
suZJ20091101-1-like ICEs (n = 3) and 1.7  kb Strepto-
coccus agalactiae MTnSag1-like IMEs (n = 4) carried 
resistance genes (erm(B), lnuC, and tet(O)). Less than 
2% of isolates possessed resistance plasmids although 
this may not be uncommon as there are limited reports 
of S. suis plasmids carrying ARGs [28, 29] and resistance 
plasmids are largely found in gram-negative bacteria [68]. 
Overall, this MGE mechanism of antimicrobial resistance 
represents 77%, 2%, and 5% of the predicted aminoglyco-
side, tetracycline, and lincosamide/macrolide resistance, 
respectively, regardless of pathotype. Our preliminary 
findings suggest MGEs continue to play a role, although 
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limited, in the spread of antimicrobial resistance in S. 
suis.

Putative VAGs were identified among the various MGE 
types, but mostly on PAI-like sequences, and the pre-
dominant VAGs encode agglutinin receptor and type IV 
secretion system components (T4SS). Agglutinin recep-
tors (adhesion proteins) and T4SS contribute to S. suis 
virulence (serotypes 9 and 2, respectively) by promoting 
anti-phagocytic activity and the release of proinflam-
matory cytokines [69, 70]. The agglutinin receptor was 
present in 86% of the commensal pathotype compared 
to 72% of the pathogenic pathotype while the T4SS 
components were widely distributed among the three 
pathotypes (86–96%). Our results indicated a lack of cor-
relation between the presence of MGE-associated VAGs 
and pathotype. The presence of VAGs in a majority of 
the commensal pathotype provides further evidence that 
commensal strains may act as gene reservoirs [66, 71]. 
Although the 89 K PAI (a S. suis MGE) was absent in all 
isolates in this study, the in silico detection of 89 K PAI 
sequences (CH1/CH2 and CH5/CH6) and the presence 
of PAI VAGs suggest some genetic similarity between 
North American isolates and the virulent S. suis strain 
05ZYH33 [45]. Together our preliminary findings agree 
with publications stating that MGEs carry a range of 
genes that contribute to the survival and adaptation of 
pathogenic bacteria to dynamic environments [22, 72]. 
Moreover, these results suggest MGE-mediated transfer 
of genes is possible in North American S. suis isolates.

Comparative genomic analysis of 208 S. suis isolates 
demonstrated a potential enrichment of virulence-asso-
ciated genes in the accessory genome and elucidated a 
novel VAG genotyping scheme (SSU_RS09525 + /SSU_
RS09155 + /SSU_RS03100 +) for identifying pathogenic 
S. suis strains in North America. We further described 
preliminary data on the diversity of MGEs in the train-
ing set and determined that MGEs have the potential to 
spread resistance genes and putative VAGs between S. 
suis strains. Further research is needed in vitro to evalu-
ate the contribution of the proposed VAGs to virulence.
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