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ABSTRACT: 

Vegetation includes a significant class of terrestrial ecosystem. Information on tree species categorization is important for 
environmentalists, foresters, agriculturist, urban managers, landscape architects and biodiversity conservationist. The traditional 
methods of measuring and identifying tree species (i.e., through field-based survey) are time taking, laborious and costly. Remote 
sensing data provides an opportunity to identify and classify vegetation species over a large spatial extent. Hyperspectral remote 
sensing can detect the sublet spectral details among species classes and thus make it possible to differentiate vegetation species based 
on these subtle variations.  This research examines the thermal infrared (2.5 to 14.0 µm) hyperspectral emissivity spectra (comprised 
of 3456 spectral bands) for the classification of thirteen different plant species. The use of thermal infrared hyperspectral emissivity 
spectra for the identification of vegetation species is very rare. Three different machine learning methods including support vector 
machine (SVM), artificial neural network (ANN) and convolutional neural network (CNN) are used to classify thirteen vegetation 
species and their performance is assessed based on their overall accuracy. The accuracy obtained by CNN, ANN and SVM is 99%, 
94% and 91%, respectively. Each classifier was also tested for the advantage associated with increase in training samples or object 
segmentation size. Increase in the training samples improved the performance of SVM. In a nutshell, all comparative machine learning 
methods provide very high classification accuracy and CNN outperformed the comparative methods. This study concludes that thermal 
infrared hyperspectral emissivity data has the potential to discern vegetation species using state of the art machine learning and deep 
learning methods.  

1. INTRODUCTION

1.1 Background 

Identifying tree species through statistical classification is an 
essential step to manage, store, and guard forestry resources. 
Thorough and precise forestry maps are vital for the prevention 
and sensing of fire, water scarcity and a variety of other forest 
disorders triggered by change of climate. Satellite images 
comprise pixels showing different ground objects with 
identifiable brightness values, letting the statistical classification 
of objects like vegetation and shrubs, due to their spectral signs. 
Classification of forestry has extended from more general 
classifications (like classifying deciduous and coniferous trees) 
to more deeper classifications (like species within a tree type). 
Usually, the capability to distinguish species is inadequate, 
because of low spectral differences, which aids in distinguishing 
the minor spectral variations among species. [1]. 

Imagery type is a key feature in classification because the 
spectral and spatial resolutions can affect the classification 
accuracy. Three to around eight image stacks of multispectral 
bands are usually utilized for distinguishing land covers or forest 
cover (broadleaf, conifer) classification. Hyperspectral stack of 
data comprises many (usually around 64 to 256) successive 
thinner bands, giving more details that permits the classification 
of small spectral differences among forest covers. Even with 
more quantity of information present in hyperspectral imagery, 
discerning the identical genus species might be tough, often 
reducing the classification accuracy. Still, Clark et al. observes 
that the use of hyperspectral data essentially performs better than 
the use of multispectral data.  
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Many high-level features in raw data are captured by the 
Convolutional Neural Networks (CNN) right away. This study 
provides machine learning approach for identifying certain 
vegetation species using hyperspectral data in the thermal 
infrared band. Utilizing the modern AI based methods like CNN 
to statistically classify vegetation has improved the overall 
accuracy. Statistical classification is being used in numerous 
applications that includes a choice mechanism to allocate 
observations to a set of ground cover types. [3] The data-
intensive hyperspectral stack of images enhances the 
classification accuracy by giving better spectral resolution to 
distinguish the land cover types spanning one band in a 
multispectral dataset. Hence, the hyperspectral imagery is 
widely employed for discerning the tree species [4].  

1.2 Significance of Vegetation Classification in a Forest 

Familiarity with the vegetation state of a forest cover is 
significant for both management of protected parts (Nagendra et 
al., 2013) and approximating the worth of forestry (Ashutosh, 
2012). Centralized monitoring necessitates multidimensional 
approach and accuracy in extracting forest statistics. The forest 
ecosystem cover information is a basic and significant 
constituent (Shen, Sakai, Hoshino, 2010). (Jadczyk, 2009) 
studies the areas threatened by human intrusions in Karkonosze 
Mountains, Poland. A section of the Karkonosze National Park 
forms part of the valuable Karkonosze Mountains ecosystem. 
Industrial expansion surrounded the mountains around 30 years 
ago, due to which drought, pollution, and acid rains occurred and 
the ecosystem of the area was damaged. The lack of foresight 
leading to the unplanned decisions caused the ecosystem’s 
disturbance (Raj, 2014). Therefore, exhaustive vegetation 
information extraction is important for the management of 
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national parks as well as forests. Before the damage occurred, 
the low-resolution Landsat satellite images were only available 
(Bochenek, Ciołkosz, & Iracka, 1997; Jarocińska et al., 2014). 
The advent of hyperspectral sensing using, for example, the 
Airborne Prism Experiment (APEX), an in-depth vegetation 
study can be conducted (Jarocińska et al., 2016; Peerbhay, 
Mutanga, & Ismail,2013, Masaitis & Mozgeris, 2013; 
Thenkabail, Lyon, & Huete, 2012).  
 

2. MATERIALS AND METHODS 

2.1 Leaf sampling 

The data were used in this research study in Enschede, 
Netherlands, between July and September 2010. Leaves were 
mixed to a total of thirteen plant species (Table 1), eleven of 
which were local and two were tropical (Asplenium nidus and 
Spathiphyllum, local nursery The species was identified by an 
expert taxonomist. In order to sample the positional variation, 
the leaves were collected from the lower, middle and upper part 
of the tree, both on the sun and the shaded side. to the laboratory 
within 5 minutes, and placed in moist cotton to avoid 
desiccation. Spectral measurements were recorded as soon as 
possible. 
 

 
Table 1. Thirteen Plant Species Common Name, Code, And 

the Number of Leaves Per Species Measured Using A 

Laboratory Spectroradiometer (2.5 Μm-14 Μm). 
 
2.2 Leaf spectral measurement 

The Directional Hemispherical Reflectance (DHR) spectrum is 
a spectrometer of Bruker VERTEX 70 FTIR (Fourier transform 
infrared, Bruker Optics GmbH, Ettlingen, Germany). The 
spectrometer was continuously purged with water vapor and 
carbon dioxide using nitrogen (N2) gas. The measured leaves 

were collected from at least 10 different plants, with high 
reflectance (about 0.96). The DHR spectra of the plant were 
measured between 2.5 and 14 μm, with a spectral resolution of 4 
cm. Leaf sample was placed on a black surface to absorb 
transmitted radiation through the leaf and to minimize 
transparency in the 3.5 and 5.7 μm range, as suggested by Gerber 
et al. 2011. Each leaf spectrum was derived from the averaging 
of 1000 scans. The spectral region was 6-8 μm was excluded 
from the analysis because the spectra were noisy in the region. 
The applicability of. The Kirchhoff's law is based on a black 
surface. 
 
2.3.1 Support Vector Machine (SVM)  

Support vector machine (SVM) is a supervised classifier, it has 
been proposed by Vapnik. This classifier has been introduced to 
solve two-class pattern recognition problems using the Structural 
Risk Minimization principle. Given a training set in a vector 
space, this method finds. The best decision hyper-plane that 
separates a set of positive examples from a set of negative 
examples with maximum margin. 
A. Optimal hyper-plane in the linear separable case 
Considering the training data (𝑥𝑖 , 𝑦𝑖), for all 1 ≤  𝑖 ≤  𝑛, 𝑦𝑖 ∈{−1, 1}, 𝑥𝑖 ∈ ℝ𝑑. The points 𝑥 which belongs to the hyperplane 
satisfy (𝑤 ⋅  𝑥)  +  𝑏 =  0, where 𝑤 is normal to the hyperplane, 𝑏‖𝑤‖ is the perpendicular distance from the hyperplane to the 

origin, and ‖𝑤‖ is the Euclidean norm of 𝑤 (Fig.1). Define the 
decision function[42]. 

 
Figure 1: A Linear SVM Two-Dimensional Space 𝑓(𝑥) ∶=  sign ((𝑤 ⋅  𝑥) +  𝑏). (3) 

For the linearly separable case, the support vector algorithm 
simply looks for the separating hyperplane with largest margin. 
This can be formulated as follows: Suppose that all the training 
data satisfy the following constraint. 𝑤. 𝑥𝑖 + 𝑏 ≥ +1         for  𝑦𝑖 = 1;                                       (1)                           𝑤. 𝑥𝑖 + 𝑏 ≤ +1        for  𝑦𝑖 = −1.                                    (2)                           

These can be combined into one set of inequalities: 𝑦(𝑤. 𝑥𝑖 + 𝑏) ≥ +1                                                                   (3)                           
The optimal hyperplane is the hyperplane that maximizes the 
margin between the samples and the separating hyper-plane 
which is equal to 2/||w||. 
Lagrange multipliers; in this case, the decision function is 
defined by: 𝑓(𝑥) = sign( ∑ 𝑎𝑖𝑦𝑖(𝑥, 𝑥𝑖) + 𝑏 𝑛𝑖=1 )                                   (4)                           
by satisfying This problem can be solved by the use of their 
conditions: 𝑎𝑖[𝑦𝑖 (𝑤. 𝑥𝑖 + 𝑏) − 1] = 0       ∀ 𝑖 = 1 … 𝑛, 𝑎𝑖 ≠ 0.                (5)    
                                                        
B. Optimal hyper-plane in the nonlinear separable case 
To handle nonlinearly separable classes, a nonlinear 
transformation ϕ is used to map the original data points into a 
higher dimensional space, in which the data points are linearly 
separable, called re-description space Figure 2. 
 

# Species Name Common Name Code Sample 
size 

1 Acer 
platanoides 

Norway maple AP 35 

2 Asplenium 
nidus 

Hawai'I birdnest 
fern 

AN 35 

3 Cornus sericea Redosier 
dogwood 

CS 35 

4 Fallopia 
japonica 

Japanese 
knotweed 

FJ 35 

5 Ginkgo biloba Maidenhair tree GB 35 

6 Hedera helix English ivy HH 35 

7 Ilex opaca Ilex IL 35 

8 Liquidambar 
styraciflua 

Sweetgum LS 35 

9 Platanus 
orientalis 

Oriental 
planetree 

PO 35 

10 Prunus 
laurocerasus 

Cherry laurel PL 35 

11 Rhododendron 
caucasicum 

Rhododendron  RH 35 

12 Spathiphyllum 
cochlearispath
um 

Peace Lily SP 35 

13 Tilia 
platyphyllos 

Largeleaf linden TP
  

35 
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Figure 2: Linear Discrimination in Re-Description Space 

In this case, the equation of the separator hyperplane is ℎ(𝑥) = 𝑤 𝜑(𝑥)  +  𝑏 and the decision function is defined by: 𝑓(𝑥) = sign(∑ 𝑎𝑖𝑦𝑖〈𝜑(𝐱) 𝜑(𝐱𝑖)〉 + 𝑏),𝑛𝑖=1                             (6)                                                                       

The determination of 〈𝜑(𝐱𝑖) 𝜑(𝐱𝑗)〉 is computationally 

expensive and sometimes impossible to calculate. To solve this 
problem, several kernel functions have been used, which we can 
cite as 

• Linear kernel: 𝐾 (𝑥, 𝑥𝑖)  =  𝑥𝑡  ∗  𝑥𝑖 .                                               (9)                                                                                                                     
• Polynomial kernel: for degree 𝑑 polynomials, the 

polynomial kernel is: 
            𝐾 (𝑥, 𝑥𝑖)  =  (𝑥𝑡  ∗  𝑥𝑖 +  𝑏)𝑑 ,    𝑏 > 0.                     (10)                                                                                               

• Radial Basis Function kernel (RBF): 𝐾 (𝑥, 𝑥𝑖) = exp (|𝑥− 𝑥𝑖|22𝜎2 ) ,   𝜎 ≠ 0.                                            (11)                                                                          

 
SVMs have shown a good performance for classifying high 
dimensional data when a limited number of training samples are 
available. Thus, they have been used for the classification of 
hyperspectral images. Indeed, many classification approaches 
have been proposed. In authors developed spectral-spatial 
classification techniques capable to consider spatial 
dependences between pixels. It is illustrated with two different 
classifiers: multinomial logistic advanced spectral-spatial 
classification techniques. In the first step, a probabilistic SVM 
pixel-wise classification of the hyperspectral image has been 
applied. In the second step, spatial contextual information has 
been used for refining the classification results obtained in the 
first step. This is achieved by means of the MRF regularization. 
Experimental results prove that the proposed techniques yield 
good classification accuracies. In authors developed a new 
spatio-spectral classification method[1]. The parameter C 
specifies the allowable classification of non-separable training 
data, allowing training rigidity to be remote sensing. The gamma 
parameter is a kernel display parameter that specifies the 
smoothing of the extra plane shape that divides the class. 
 
 
2.3.2 Artificial Neural Network 

Artificial Neural Networks (ANN) is a nonlinear model 
that is similar to a human neural system. Each ANN is a 
series of nodes and weighted connections between them 
(Carvajal et al., 2006). One of the privileges or ANN 
method in comparison with comparison Traditional 
statistical methods The training and recalling are 
dependent on the linear relationship between data patterns 
and independent input data (Jayas and Paliwal et al., 2006, 
Civco and Waug, 1994). However, the reasons for the 
success of the ANN in the classification Can be 
Summarize as: there is no need for pre-assumption in data 
distribution, it allows the user to use initial knowledge 
about classes and possible limits . the method allows the 
management of the spatial data from Multiple sources and 
can achieve their classification wheat. Results equally 

(Carvajal et al., 2006). are assigned Out of 826 detected 
pixels in the previous stage, 124 were used as training data 
and the rest were left for algorithm evaluation. He 
classification algorithm was run once for each of the three 
species (barley, alfalfa, and wheat). At the end, the output 
images were composed in an RGB image. 
. 
2.3.3 Convolutional Neural Network (CNN) 

Deep learning is a very effective method for learning optimum 
features from large amount of training datasets automatically. 
Trend towards deep learning in computer vision applications is 
increasing tremendously because modern deep learning methods 
are more accurate than humans in classifying images. 
Furthermore, the use of Graphical Processing Units (GPUs) have 
decreased the training time of deep learning methods. Large 
databases of labelled data and pre-trained networks are now 
publicly available.  
   

 

 

 

Figure 4: Convolutional neural networks model. 

Three crucial characteristics make the convolutional neural 
networks different from other neural networks. Generally, these 
three characteristics are all aiming at dimensionality reduction to 
reduce calculation time. The first characteristic is sparse 
connectivity, which means that there are only local connections 
between neurons of adjacent layers. In other words, the inputs of 
hidden units in layer m are from a subset of units in layer m-1, 
units that have spatially contiguous receptive fields. The sparse 
connectivity can be illustrated in figure 5. However, in the 
traditional neural network structure, every neuron in layer n 
connects with all the neurons in layer m-1. Therefore, by sparse 
connectivity, parameters for neurons in layer m decrease a lot. 
The theory for supporting sparse connectivity is that local pixels 
have strong correlations while long-distance pixels have weak 
correlations.   

 
Figure 5: Sparse Connectivity 

The second characteristic is shared weights. In neural networks, 
neurons in layer m-1 are the variables or inputs to neurons in 
layer m. And neurons in layer m can be seen as outputs. Every 
input has a weight to determine the output. As show in figure 6, 
each neuron in layer n shares the same weights and bias. All 
neurons in the same layer form a feature map. It reduces the 
number of parameters for the network. 

Figure 3:Traditional image recognition methods model 
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Figure 6: Shared weights Colour identifies the weight 

The last characteristic is pooling, which is a form of down 
sampling. Pooling means aggregate features in a rectangle 
neighborhood into one feature, as show in figure 7. The figure 
on the left in figure 11 is a feature map, pooling reduces the 
dimension and avoids overfitting. 
 

 
 

Figure 7: Pooling 

Krizhevsky et al. achieved excellent recognition rates on Large 
Scale Visual Recognition Challenge dataset using standard 
backpropagation for training a deep CNN. 
 

3. RESULT AND DISCUSSION 

3.1 Support Vector Machine Line Kernel Classifier (SVM-

Line Kernel): 

One of the main results of Statistical Learning Theory is that the 
error probability of a classifier is upper bounded by a quantity 
depending not only on the error rate achieved on the training set, 
but also on an intrinsic property of the classifier, which is a 
measure of the “richness” of the set of decision functions it can 
implement (Roliand Fumera, 2000) . In the two-class case, a 
support vector classifier attempts to locate a hyper plane that 
maximizes the distance from the members of each class to the 
optimal hyper plane figure 5. Assume that the training data with 
k number of samples is represented by where X is an n-
dimensional vector and Y ∈ {-1, +1} is the class label. These 
training patterns are said to be linearly separable if a vector w 
(which determines the orientation of a discriminating plane) and 
a scalar b (determines offset of the discriminating plane from 
origin) can be defined so that inequalities (12) and (13) are 
satisfied. 
W.Xi+b≥+1         for Yi=1                                                    (12)                                                                                                       
W.Xi+b≥+1        for Yi=-1                                                     (13)                                                                                                             
Y(W.Xi+b)≥+1                                                                     (14)                                                                                                                                            
 
The aim is to find a hyper plane which divides the data so that 
that all the points with the same label lie on the same side of the 
hyper plane. This amounts to finding w and b so that This results 
in a quadratic optimization problem which is solved by a 
standard numerical optimization package. The minimization 
procedure uses Lagrange multipliers and Quadratic 
Programming (QP) optimization methods. If λi, i = 1,….,k are 
the non-negative Lagrange multipliers associated with constraint 
(7), The training vectors x are solely used in inner products 
which can be replaced by a kernel function K (x, y) that obeys 
Mercer’s condition. This is equivalent to mapping the feature 
vectors into a high-dimensional feature space before using a 
hyper plane classifier there. The use of kernels makes it possible 

to map the data implicitly into a feature space and to train a linear 
machine in such a space, potentially side-stepping the 
computational problems inherent in evaluating the feature map 
(Cristianni and Shawe-Taylor, 2000). In this research, three 
kinds of kernels are studied. These kernels are mathematically 
defined as below (Chang and Lin, 2003). 

           
Figure 8: SVM classification with a hyper plane that  

maximizes the separating margin between the two classes 

(indicated by data points marked by "x"s and "O"s). 

Support vectors are elements of the training set that lie on 

the boundary hyper planes of t. 

It is possible to rescale w and b so that  
y(w.x + b) ≥1                                                                           (15)                           
and minimizing 1 w under these constraints. This concept can  
be extended to the case when the classes are not linearly 
separable, i.e. when (3) has no solution. A slack variable, I ξ i 
=1,……, k can be introduced such that can be written as while 
the objective function is supplemented to keep the constraint 
violation as small as possible: 
 
3.1.1 Kernel selection 

Three kernels were studied and the results summarized in Table 
1. The Polynomial kernel (Equation 10) of degree 3 (d=3) and 
cost (C=1000) showed the best accuracy on test data. C refers to 
the cost or error penalty. A high value of error penalty will force 
the SVM training to avoid classification errors. A large value of 
C will result in a larger search space for the QP optimizer. 
However, some experiments fail to converge for C > 1000. In 
the kernels under study, a value of C=1000 was optimum. For 
the RBF kernel (Equation 11) gamma (radius) was set to 1. This 
gives the area of influence the particular support vector has over 
the data space. The RBF  
kernel was experimented with different values of nu. Nu-SVC is 
the same as C-SVC except that the range of nu is always between 
[0, 1] while C is from zero to infinity. Nu is related to the ratio 
of support vectors and the ratio of the training error. Three SVM 
models have been used for further study: The degree 3 
polynomial kernel, RBF kernel with nu=0.01 and the linear 
kernel (Equation 11); the cost for all the kernels set to 1000. 
Table 2 shows that the linear kernel highest accuracy of 91% 
while RBF (nu=0.1)  is 87% and poly kernel is 84%. 
 
3.2 Evaluation of signatures 

Confusion matrices: The confusion matrices for the four 
classifiers with User Accuracy and Producer Accuracy are as 
shown in Tables 3-6. These matrices help evaluate the classifiers 
based on their performance on a class-by-class basis. For 
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example, they show the number of AP species misclassified as 
LS, AN etc, and also give the count of other classes misclassified 
as AP. This leads us to find the Users and Producers Accuracy. 
Users accuracy calculates correctly classed from the trace 
variable over the row total and provides and indication of errors 
of case omission. Producers accuracy is the calculation of 
correctly classed from the trace value over the column total. 
(Congalton,1991). Producers’ accuracy gives an indication of 
the accuracy of what the model was able to itself predict, 
whereas User accuracy relates how well the training data was 

discerned. A look at these matrices suggests that AP and LS 
have confusing signatures and so do ilex and LN. Clearly, the 
CNN outperformed the SVM classifier in terms of testing 
accuracy. 
 
3.3 Discussion 

In comparing the overall correctacies of the CNN and SVM 
classifier, CNN was determined to have a static-significant 
advantage over SVM when the pixel-based reflectance samples 
used, without the segmentation size. The most misclassified 
class for both classifiers was Fallopia japonica, with class 
correctacies all above 70%. The Fallopia japonica class was 
misclassified as multiple different species and had fewest 
number of training samples and consistently low class 
correctacies. Acer platanoides were properly recognized most 
consistently. A noticeable trait of both classifiers was the highest 
overall correctacies despite abundant misclassifications found 
during visual inspection. Duro et al. Experienced similar issues 
with their classification, highlighting that limited test samples 
can result in incorrect classification accuracies in the same way, 
Congalton explains that a large quantity of zeroes within the 
confusion matrix could mean that the test sample size is 
inadequate or classification very successful. Considering the 
number of zeroes on the confusion matrix for the small classes, 
it is quite possible that insufficient test samples are responsible 
for some species of high classification correctacies. For this 
research, the stratified sampling method utilizes single species to 
ensure that the correct sample identification; However, this 
prevented test samples are being selected near standing 
boundaries, in mixed forest areas or inaccessible areas. As a 
result, the test samples did not represent all the areas of the study 
site, and thus, the accuracy assessment failed to reflect those 
performance in classifier. In some cases, an individual species 
was misclassified as one or two other classes, as shown by the 
Acer platanoides class generally being incorrectly classified as 
bay or Douglas fir. 
 
As a matter of fact, it's a common tree type (conifers and 
broadleaf). Some of the broadleaf tree classes were 
misclassified. The fact that Douglas has been misclassified as to 
whether there are any misclassifications. Leckie et al. 
highlighting Shadowing may well explain the misclassification 
of Douglas fir as coast live throughout the upper portions of the 
mosaic. Also, it can be used to create a new window. Although 
a normalization was a normalization, the normalization was 
unlikely. Because of the results of all classes This may have 
caused spectral overlap. 
 
The effect of pixel-based training samples played a significant 
role in SVM and CNN classifications. The difference between 
object and pixel-based training samples can be seen as an 
increase in sample size. Although the actual number of samples 
are both the sample types for the same, pixel-based reflectance 
samples provide additional spectral reflectance values to 
classifiers trained. 
 

The current literature generally acknowledges the support of the 
machine classifier for its ability to work well with limited 
training samples. SVM only uses the subset of training samples 
that uses the location of SVM hyperplane. SVM classifier. In the 
same way, Zhang and Xie found SVM and CNN both trained 
with a sensitive size and a high spatial and spectral variable. This 
study may be complexity and heterogeneity of forest and 
insufficient object-based samples. Considering the effect of 
training samples on SVM hyperplanes, eliminating object-based 
samples (based on the mean values of the pixel) may not be able 
to capture high spectral variations within thirteen tree species in 
a highly heterogeneous forest as compared to a less complex 
forest with less classes or less spectral overlap species. 
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 Ap An  Cs  Fj Gb Hh Il Ls Po Pl Rh Sp Tp Total UA 

Ap 32 0 0 0 0 0 0 0 0 1 0 0 0 33 96 
An 0 30 0 2 2 0 0 1 0 0 0 0 0 35 85 
Cs 0 0 28 0 0 0 0 0 1 0 0 1 0 30 93 
Fj 0 0 0 30 0 0 4 0 0 0 1 0 0 35 85 
Gb 0 0 0 1 29 0 0 0 0 0 2 0 0 32 90 
Hh 0 0 0 0 0 32 0 1 0 2 0 0 0 35 91 
Il 0 0 0 0 2 0 30 0 0 0 0 0 0 32 93 
Ls 1 0 0 0 0 0 0 32 0 0 0 0 0 33 96 
Po 0 0 1 0 0 0 0 0 29 0 1 2 0 32 90 
Pl 1 1 0 0 0 0 0 0 0 33 0 0 0 35 94 
Rh 0 0 0 0 0 0 1 0 0 0 31 1 0 33 93 
Sp 0 0 0 0 0 1 0 0 0 0 0 32 0 33 96 
Tp 0 0 0 0 0 0 0 2 0 0 4 1 28 35 80 
Total 34 31 29 33 33 33 35 34 30 38 39 37 28 433  
PA 94 96 96 90 87 96 85 94 96 86 79 86 100 OA=91% 

Table 2: Confusion Matrix of Support Vector Machine Used Line Kernel Classifier (SVM-Line Kernel) 

 Ap An  Cs  Fj Gb Hh Il Ls Po Pl Rh Sp Tp Total  UA 

Ap 31 0 1 0 0 1 0 0 0 2 0 0 0 35 88 
An 1 27 0 0 0 0 1 1 0 0 1 0 0 31 87 
Cs 0 0 28 0 0 0 1 0 2 0 1 0 0 32 87 
Fj 1 0 1 26 2 2 0 0 2 1 0 0 0 35 74 
Gb 0 0 0 1 20 0 0 0 0 0 0 2 0 23 86 
Hh 0 1 0 0 0 26 0 0 0 1 0 0 0 28 92 
Il 0 0 0 0 0 0 31 0 0 0 0 0 0 31 100 
Ls 0 0 0 0 0 0 0 30 1 0 1 1 0 33 90 
Po 1 0 0 1 2 0 0 0 29 0 0 1 0 34 85 
Pl 0 0 1 0 0 0 0 0 0 28 0 0 0 29 96 
Rh 0 0 0 1 0 1 0 0 0 0 31 0 0 33 93 
Sp 0 4 0 0 1 0 0 4 0 2 0 12 0 23 52 
Tp 0 0 2 0 0 0 0 0 0 0 1 0 31 33 93 
Total 34 32 33 29 25 30 33 35 34 34 35 16 31 399  
PA 91 84 84 89 80 86 93 88 85 82 88 75 31 OA=87% 

Table 2: Confusion Matrix of Support Vector Machine Used Redial Base Function Classifier (SVM-RBF Kernel) 

 Ap An  Cs  Fj Gb Hh Il Ls Po Pl Rh Sp Tp Total UA 

Ap 35 0 0 0 0 0 0 0 0 0 0 0 0 35 100 
An 0 29 0 2 0 0 0 2 0 2 0 0 0 35 82 
Cs 0 0 30 0 1 0 0 0 2 0 0 1 0 34 88 
Fj 0 0 0 25 0 0 1 0 4 2 2 0 0 34 73 
Gb 0 0 0 0 28 1 0 1 0 1 0 1 0 32 87 
Hh 0 0 1 0 0 27 0 0 0 0 4 0 0 32 84 
Il 0 0 0 0 0 0 21 0 0 4 0 2 0 27 77 
Ls 0 0 1 0 0 0 0 30 0 0 2 1 0 34 88 
Po 1 1 0 0 1 0 0 0 27 2 0 1 0 33 81 
Pl 0 0 0 1 0 1 2 0 0 26 0 2 0 32 81 
Rh 0 0 0 2 0 1 1 0 1 0 30 0 0 35 85 
Sp 0 0 0 0 2 0 1 0 0 1 0 31 0 35 88 
Tp 0 0 0 4 0 2 0 0 2 2 0 0 24 34 70 
Total 36 30 32 34 32 32 26 33 36 38 38 39 24 432  
PA 97 96 93 73 87 84 80 90 75 68 78 79 100 OA=84% 

Table 3: Confusion Matrix of Support Vector Machine used Poly Kernel Classifier (SVM-Poly kernel) 
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 Ap An  Cs  Fj Gb Hh Il Ls Po Pl Rh Sp Tp Total UA 

Ap 10 0 0 0 0 0 0 0 0 0 0 0 0 10 100 
An 0 12 1 0 0 0 0 0 0 0 0 0 0 13 92 

Cs 0 0 4 0 0 0 0 0 0 0 0 0 0 4 100 
Fj 0 0 0 3 0 0 1 0 0 0 2 0 0 4 75 
Gb 0 0 0 0 2 0 0 0 0 0 0 0 0 2 100 
Hh 0 0 

 
0 0 6 0 0 0 0 4 0 0 6 100 

Il 0 0 0 0 0 0 2 0 0 0 0 0 0 2 100 
Ls 0 0 1 0 0 0 0 9 0 0 2 0 0 10 90 
Po 0 0 0 0 0 0 0 0 8 0 0 0 0 8 100 
Pl 0 0 0 0 0 0 0 0 0 5 0 0 0 5 100 
Rh 0 0 0 0 0 0 0 0 1 0 6 0 0 6 100 
Sp 0 0 0 0 2 0 0 0 0 0 0 15 0 17 88 
Tp 0 0 0 0 0 0 0 0 0 0 0 0 6 6 100 
Total 10 12 5 3 2 6 3 9 9 5 6 15 8 93  
PA 100 100 80 100 100 100 66 100 88 100 100 100 75 OA=94% 

Table 4:Confusion Matrix of Artificial Neural Network 

 

 

 
Figure 9: CNN Training Accuracy plot 

 Ap An  Cs  Fj Gb Hh Il Ls Po Pl Rh Sp Tp Total UA 

Ap 33 0 0 0 0 1 0 0 0 0 0 0 0 33 97 
An 0 35 0 0 0 0 0 0 0 0 0 0 0 35 100 
Cs 0 0 34 0 0 0 0 0 0 0 0 0 0 34 100 
Fj 0 0 0 32 0 0 1 0 0 0 0 0 0 33 96 
Gb 0 0 0 0 34 0 0 0 0 0 0 0 0 34 100 
Hh 0 0 1 0 0 33 0 0 0 0 0 0 0 34 97 
Il 1 0 0 0 0 0 30 0 0 0 0 0 0 31 96 
Ls 0 0 0 1 0 0 0 34 0 0 0 0 0 35 97 
Po 0 0 0 0 0 0 0 0 30 0 0 0 0 30 100 
Pl 0 0 0 0 0 0 0 0 0 29 0 0 0 29 100 
Rh 1 0 0 0 0 0 0 0 0 0 34 0 0 35 97 
Sp 0 0 0 0 0 0 0 0 0 0 0 29 0 29 100 
Tp 0 0 0 0 0 0 0 0 0 0 0 0 34 34 100 
Total 35 35 35 33 34 34 31 34 30 29 34 29 34 426  
PA 94 100 97 96 100 97 96 100 100 100 100 100 100 OA=99% 

Table 5: Convolutional Neural Network Classifier (CNN) 
 

4. CONCLUSION 

This study compares the classification accuracy of convolution 
neural network artificial neural network and support vector 
machine on thirteen forest-vegetation specie. SVM classifier is 
experimented with linear, RBF and polynomial kernels. CNN 
has higher overall accuracy as compared to the three SVM types.  

And artificial neural network. We can conclude this things CNN 
is better then conventional morphological methods for feature 
extraction in plant species. 
The data taken from Bruker VERTEX 70 FTIR spectrometer 
(Bruker Optics GmbH, Ettlingen, Germany) was used to acquire 
the Directional Hemispherical Reflectance (DHR) spectrum of 
each leaf. Experimental results indicate that CNN based 
approach is significantly effective with an overall accuracy of 
about 99%. Upon increasing the training data, the classification 
accuracy of both SVM and CNN improves. However, the size of 
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objects in the object-based classification has no significant 
impact on both classifiers’ performance. 
Due to the statistically significant classification of thirteen 
vegetation species, further depth in the study would give more 
insights. The deep learning classification and pre-processing 
methods will be further explored to enhance the classification 
performance. 
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