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Abstract

Background: Parthenium argentatum (guayule) is an industrial crop that produces latex, which was

recently commercialized as a source of latex rubber safe for people with Type I latex allergy. The

complete plastid genome of P. argentatum was sequenced. The sequence provides important

information useful for genetic engineering strategies. Comparison to the sequences of plastid

genomes from three other members of the Asteraceae, Lactuca sativa, Guitozia abyssinica and

Helianthus annuus revealed details of the evolution of the four genomes. Chloroplast-specific DNA

barcodes were developed for identification of Parthenium species and lines.

Results: The complete plastid genome of P. argentatum is 152,803 bp. Based on the overall

comparison of individual protein coding genes with those in L. sativa, G. abyssinica and H. annuus, we

demonstrate that the P. argentatum chloroplast genome sequence is most closely related to that of

H. annuus. Similar to chloroplast genomes in G. abyssinica, L. sativa and H. annuus, the plastid genome

of P. argentatum has a large 23 kb inversion with a smaller 3.4 kb inversion, within the large

inversion. Using the matK and psbA-trnH spacer chloroplast DNA barcodes, three of the four

Parthenium species tested, P. tomentosum, P. hysterophorus and P. schottii, can be differentiated from

P. argentatum. In addition, we identified lines within P. argentatum.

Conclusion: The genome sequence of the P. argentatum chloroplast will enrich the sequence

resources of plastid genomes in commercial crops. The availability of the complete plastid genome

sequence may facilitate transformation efficiency by using the precise sequence of endogenous

flanking sequences and regulatory elements in chloroplast transformation vectors. The DNA

barcoding study forms the foundation for genetic identification of commercially significant lines of

P. argentatum that are important for producing latex.

Published: 17 November 2009

BMC Plant Biology 2009, 9:131 doi:10.1186/1471-2229-9-131

Received: 26 January 2009
Accepted: 17 November 2009

This article is available from: http://www.biomedcentral.com/1471-2229/9/131

© 2009 Kumar et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19917140
http://www.biomedcentral.com/1471-2229/9/131
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Plant Biology 2009, 9:131 http://www.biomedcentral.com/1471-2229/9/131

Page 2 of 12

(page number not for citation purposes)

Background
Parthenium argentatum Gray, commonly known as guay-
ule, is a shrub in the Asteraceae that is native to the south-
western United States and northern Mexico. Parthenium
argentatum produces high quality rubber in bark tissue,
which is under development for biomedical uses. The U.S.
Food and Drug Administration recently approved the first
medical device made from P. argentatum natural rubber.
Products made from P. argentatum latex are designed for
people who have Type I latex allergies, induced by natural
rubber proteins from Hevea brasiliensis. In addition to bio-
medical products, natural rubber is essential and irre-
placeable in many industrial and consumer applications,
and the price is rising under heavy demand, making natu-
ral rubber increasingly more precious. As an industrial
crop that grows in temperate climates, P. argentatum rep-
resents a viable alternative source of high quality natural
rubber.

One strategy for improving crops, such as the rubber-pro-
ducing P. argentatum, is through chloroplast engineering
[1-3]. Transformation of chloroplasts allows high-level
production of foreign proteins because of the high
number of chloroplasts per plant cell. As homologous
recombination is the means by which foreign DNA is
incorporated into the chloroplast genome, transforma-
tion is precise and predictable. Moreover, it has been
shown that up to four genes can be inserted at once [4],
enhancing the efficiency of metabolic engineering. From
production of edible vaccines to bioplastics, transplas-
tomic plants have been shown to provide a useful route to
manipulate crops for industrial purposes [5].

Importantly from the point of view of minimizing envi-
ronmental impact, expressing foreign proteins in the chlo-
roplast results in transgene containment [6,7]. It is
thought that in the vast majority of plant species, chloro-
plasts are not transmitted by pollen, and so in these spe-
cies, chloroplastidic transgenes would not be spread in
that manner. Although, it is becoming clear that each case
must be thoroughly verified [8,9]. In the case of P. argen-
tatum, transgene containment is important because it is
currently cultivated as an industrial crop in its native
region in the southwestern United States.

Construction of vectors for chloroplast transformation
requires some knowledge of the chloroplast genome
sequence to identify insertion sites. To date, just short of
one hundred plastid genomes from angiosperms have
been completely sequenced. The sequences are highly
conserved [10]. Interestingly however, the order of genes
in some groups, including the Asteraceae, Fabaceae and
Poaceae, may be reversed by large inversions [11-13]. In
the Asteraceae, the family of interest in this study, there is

a second small inversion (~3 kb) nested within the larger
inversion (~23 kb) [14]. The two inversions are always
found together, implying that they occurred close in evo-
lutionary time.

Chloroplast sequences are useful for identification of spe-
cies, using a particular sequence as a DNA tag or barcode
[15]. An ideal DNA barcode for general purposes would
1) have enough diversity to allow discrimination among
species, but not so much that would prevent grouping of
members of a species, 2) work in wide variety of taxa, and
3) provide the basis for reliable amplifications and
sequences [16]. In plants, unlike in animals, the mito-
chondrial genome evolves too slowly to provide useful
DNA barcode sequences. Although also possessing a rela-
tively slow rate of evolution, several chloroplast sequences
have been identified as fulfilling the criteria listed above
[17-19]. Depending on the desired level of discrimina-
tion, the consensus conclusion appears to be that the low
mutation rate in the chloroplast genome may require
more than one barcode locus to be probed [18,20,21].

At present, classical breeding is being used to improve P.
argentatum as a commercial source of natural rubber.
Breeding efforts would be enhanced by informative chlo-
roplast DNA barcodes. Because a very small amount of tis-
sue is required for barcode analysis, purity of breeding
lines can be determined at an early stage of seedling
growth. In addition, barcodes would allow breeders and
seed producers to discover seed lot contamination before
advancing breeding lines for latex production. Having the
ability to removing contaminating lines, especially when
they represent lower rubber lines, would improve the effi-
cacy of breeding efforts.

The focus of our research program is improvement of P.
argentatum to enhance its commercial viability. We have
chosen two approaches, biotechnology through chloro-
plast metabolic engineering and marker-assisted breed-
ing. The P. argentatum chloroplast genome sequence that
we report herein, supports our efforts in both approaches.
In this article, we report the complete sequence of the
chloroplast genome of P. argentatum and describe the
development of DNA barcodes. The complete sequence of
the P. argentatum chloroplast genome has enabled us to
construct chloroplast transformation vectors based on the
exact sequence of the large inverted regions, and to iden-
tify novel insertion sites in non-essential, non-coding
regions. Barcode analysis with the matK gene and psbA-
trnH spacer sequence allowed us to discriminate three of
four Parthenium species from each other and from P.
argentatum, and a subset of the P. argentatum lines from
each other. These barcodes will be used in our breeding
program.
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Results
Genome size and gene content, order and organization

The complete nucleotide sequence of the chloroplast
genome of Parthenium argentatum is represented in a circu-
lar map (Figure 1; Genbank Accession GU120098). It is
152,803 bp in size and includes a duplicated region of
inverted repeats (IR) of 24,424 bp. The IR are separated by
small single copy (SSC) and large single copy (LSC)
regions of 19,390 bp and 84,565 bp, respectively. The
total G+C content of the whole chloroplast genome is
37.6%. The gene content and arrangement were observed
to be similar to those in Lactuca sativa and Helianthus
annuus [22], and Guitozia abyssinica (NC_010601), includ-
ing one large (Inv1) and one small inversion (Inv2) in the
LSC region. There are 85 genes coding for proteins (Addi-
tional file 1), including six that are duplicated in the IR
regions. There are four rRNA genes that are also duplicated
in the IR regions. In total there are 43 tRNA genes, seven

of which are duplicated in the IR, one in the SSC, with the
remaining 28 scattered in the LSC region.

The size of the P. argentatum chloroplast sequence is larger
than those of the three other Asteraceae chloroplast
genomes (Table 1). It is close to the same size as the L.
sativa genome, and 1.04 kb and 1.7 kb larger than the G.
abyssinica and H. annuus genome, respectively, with the
length differences primarily found in the LSC and SSC
domains. The sequence differences between P. argentatum
and each of the other three chloroplast genomes are con-
centrated in the noncoding regions of Inv2, and the SSC
and LSC regions (Figure 2). The IR regions in P. argen-
tatum are shorter than those of the three other species by
210-610 bp (Table 1, Figure 2).

Based on sequence comparison of the chloroplast genome
of P. argentatum with H. annuus and L. sativa, two inver-

Representative map of the chloroplast genome of Parthenium argentatum (Genbank Accession GU120098)Figure 1
Representative map of the chloroplast genome of Parthenium argentatum (Genbank Accession GU120098). IR, 
inverted repeat; LSC, large single copy region; SSC, small single copy region; Inv1, inverted sequence 1; Inv2, inverted sequence 
2. Gene names and positions are listed in Additional file 1.
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sions of 22,890 bp and 3,364 bp were observed in P.
argentatum, similar to those described by Kim et al. [14]
and Timme et al. [22]. In P. argentatum, one end point of
the 23 kb inversion was located between the trnS-GCU
and trnG-UCC genes. The other end point is located
between the trnE-UUC and trnT-GGU genes. The second
3.4 kb inversion was observed within the 23 kb inversion,
which shares one end point just upstream of the trnE-
UUC gene with the large inversion. The other end point of

the 3.4 kb inversion is located between the trnC-GCA and
rpoB genes (Figure 1).

Variation in chloroplast coding sequences of Asteraceae 

family members

Variation between coding sequences of P. argentatum and
H. annuus, G. abyssinica or L. sativa was analyzed by com-
paring each individual gene (Additional file 1) as well as
the overall sequences (Figure 2). In general, P. argentatum

Chloroplast genomes of Parthenium argentatum, Helianthus annuus, Guizotia abyssinica and Lactuca sativa compared with mVISTAFigure 2
Chloroplast genomes of Parthenium argentatum, Helianthus annuus, Guizotia abyssinica and Lactuca sativa com-
pared with mVISTA. A cut-off of 70% identity was used for the plot and the Y-scale represents the percent identity ranging 
from 50 to 100%. Blue represents exons, green-blue represents untranslated regions, and pink represents conserved non-cod-
ing sequences (CNS). Horizontal black lines indicate the position of Inv1, Inv2, IRa and IRb; SSC is flanked by IRa and IRb; grey 
arrows the direction of transcription.
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coding sequences are more similar to those in G. abyssinica
(98.5% identical on average) and H. annuus (98.4%),
than in L. sativa (97.2%). The greater average identity in G.
abyssinica than in H. annuus is in large part due to dele-
tions in the two copies of the ycf2 loci in H. annuus, other-
wise, H. annuus is more similar overall than G. abyssinica.
Fourteen genes in H. annuus and G. abyssinica were 100%
identical to those in P. argentatum, compared to only four
genes in L. sativa (Additional file 1). The most-divergent
coding regions in the three genomes were ycf1, accD, clpP,
rps16, and ndhA (Figure 2).

DNA barcode analysis of Parthenium

To differentiate Parthenium taxa, a molecular approach
was used in which we analyzed four different chloroplast
DNA regions, which were shown to be useful DNA bar-
codes in past studies [16,18,23,24]. These regions were
the trnL-UAA intron, rpoC, matK and the non-coding
spacer region between the two genes psbA-trnH. Tests were
conducted on DNA of three Parthenium species (P. inca-
num, P. tomentosum, and P. schottii) and three cultivated
lines of P. argentatum (AZ2, AZ3 and Cal6) (data not
shown). The best differentiation of Parthenium species
and lines within P. argentatum was obtained with the psbA-
trnH spacer region barcode. There were 5 indel sites in 400
bp of DNA in the six lines tested. When 1000 bp of the
matK DNA barcode were analyzed, a total of 12 indel sites
were found. In 600 bp from the trnL-UAA intron region,
only one indel site was observed. Obtaining good
sequence from the rpoC spacer region was difficult, but in
500 bp, four indel sites were identified. Therefore, due to
the higher number of informative sites, the matK and
psbA-trnH DNA barcodes were used for further studies of
Parthenium taxa.

The matK DNA barcode

After re-evaluation of the 1000 bp sequence of matK, an
efficient barcode for Parthenium species was defined.
Using the Parth-matK-F and Parth-matK-R primers, matK
DNA sequences were examined in Parthenium species,
lines of P. argentatum and AZ101, a hybrid of P. argen-
tatum cv. 11591 × P. tomentosum. We sampled 601 nucle-
otides in the matK gene, which yielded fourteen

potentially informative, variable positions (2.3%), with
eight nucleotide substitutions (1.3%) and six length
mutations (indels) (1.0%). Although the psbA-trnH spacer
region in P. integrifolium DNA did amplify with the psbA-
trnH barcode primers, the matK locus did not amplify
with the matK-barcode primers. This matK barcode was
effective at differentiating P. schottii, P. hysterophorus, and
P. tomentosum from each other and from a group that
included P. incanum, P. argentatum lines and one hybrid
(Figure 3). This barcode did not differentiate P. incanum
from the seven P. argentatum lines and the hybrid (Table
2).

The psbA-trnH DNA barcode

The non-coding spacer region between psbA and trnH was
used to differentiate several Parthenium species, lines of P.
argentatum and a hybrid of two Parthenium species (Table
2). A 469 bp region was amplified via PCR using the psbA-
F and trnH-R primers. This region produced the best dif-
ferentiation (Figure 4). We sampled 456 nucleotides in
the psbA and trnH spacer, which yielded fourteen poten-
tially informative, variable positions (3.1%), with eleven
nucleotide substitutions (2.4%) and three length muta-
tions (0.7%). First of all, we found that there was 100%
consensus in the barcode sequence among samples tested
of line AZ1 (n = 21), AZ4 (n = 15), Cal6 (n = 17), AZ101
(n = 3), P. incanum (n = 6) and P. tomentosum (n = 5). On
the other hand, there was a second barcode sequence
within line AZ2 (minority barcode in 6.5% of total, n =
31), AZ3 (minority barcode 6.7%, n = 15), AZ5 (minority
barcode 20%, n = 15), AZ6 (minority barcode 15%, n =
20) and 11591 (50% alternative barcode, n = 20). The
minority or alternative barcodes differed from the corre-
sponding common barcode by one to three bases.

The psbA-trnH spacer barcode differentiated P. hysteropho-
rus, P. integrifolium and P. schottii from each other and
from all the other species and lines. The psbA-trnH spacer
barcode of P. argentatum cultivar 11591 and the two
breeding lines C156 and C86 was different from those of
the remaining P. argentatum lines, P. tomentosum and P.
incanum. The barcode of AZ101, which is a hybrid
between P. argentatum cultivar (cv.) 11591 and P. tomen-

Table 1: Size comparison of Parthenium argentatum chloroplast genomic regions with those in other members of Asteraceae.

Length (bp)

Plant species Total genome LSCa SSC IR

Helianthus annuus 151104 83530 18308 24633

Guizotia abyssinica 151762 83636 18228 24950

Lactuca sativa 152772 84105 18599 25034

Parthenium argentatum 152803 84335 19390 24424

aRegions in chloroplast genome; LSC, Large Single Copy; SSC, Small Single Copy; IR, Inverted Repeats.
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tosum, is similar to or identical to that of P. tomentosum.
Parthenium incanum's barcode clustered with two AZ2 vari-
ants and a plant of unknown parentage, indicating their
close relationship. Analysis with both the psbA-trnH
spacer and matK barcodes provided further differentiation
(Figure 5). The combined barcodes of AZ101 and P.
tomentosum are more similar to each other than to all
those of the P. argentatum lines together with P. incanum.
Drilling deeper, the barcodes of cv. 11591/C156/C86 are
different from those of P. incanum and all the remaining
P. argentatum lines.

Discussion
Comparative genome organization and structure

Asteraceae is one of the largest families of flowering plants
with approximately 1,500 genera and 23,000 species. Pro-
duction of secondary metabolites is a key feature of this
diverse family. For example, several genera within the
Asteraceae produce high molecular weight rubber in the
cytosol, including Lactuca sativa [25] and Taraxacum kok-
saghyz [26], and the species of interest to our studies,
Parthenium argentatum. To support efforts to improve the
levels of rubber production in this industrial crop, the
sequence of the chloroplast genome of P. argentatum was
determined. This information is useful for our efforts in
chloroplast engineering. The barcodes we present will be
used in breeding of commercially important lines in the
genus Parthenium.

Within the Asteraceae, the P. argentatum chloroplast
sequence represents the fourth complete sequence. This
sequence reveals that the chloroplast genomes of P. argen-
tatum, H. annuus, G. abyssinica and L. sativa are identical in
gene order and content (Figure 1; Figure 2). The four
genomes differ slightly in length, with the chloroplast
genome in P. argentatum somewhat longer than those in
L. sativa, G. abyssinica and H. annuus, respectively (Table
1). Two inversions in the chloroplast genome are shared
by two of the three subfamilies of the Asteraceae [14,22]
and are present in P. argentatum (Figure 1). In H. annuus,
the IR-located gene ycf2 has an internal deletion of 455 bp
that is not found in the three other genomes. The large
chloroplast gene ycf2 specifies an expressed protein [27],
whose function has not yet been determined, although
ycf2's homology to ATPases was noted by Wolfe [28]. Our
protein domain analysis [29] suggests similarity with con-
served domains of the ATPase AAA family that perform
chaperone-like functions involved in assembly or disas-
sembly of protein complexes. In some chloroplast
genomes, particularly in grasses, ycf2 is entirely absent
[30]. Despite that fact, knockout studies in Nicotiana taba-
cum demonstrated that ycf2 is essential for survival [31].
There must be sufficient coding sequence remaining in H.
annuus to provide any essential ycf2 function. Interest-
ingly, ycf2 is one of the eight fastest evolving genes in the
chloroplast genome (Additional file 1; [32]). Notably, this
rapid evolution has taken place in the framework of the
more slowly evolving IR region as a whole (Figure 2;
[33]). Another notable size difference in coding regions is
found in the SSC region. The SSC region of the chloroplast
genome of P. argentatum is 791 to 1162 bp longer than
that in the other species (Table 1). Within the SSC region,
the ycf1 gene has a 3'-deletion in H. annuus, G. abyssinica
and L. sativa (Figure 2). Similar to ycf2, ycf1 encodes a pro-
tein of unknown function that is also essential [31]. It
appears to be a multi-pass transmembrane protein, with
no clear association to known functional domains.

In a comparative study of individual genes of P. argen-
tatum, H. annuus, G. abyssinica and L. sativa, we identified
several sequences with high levels of differences along
their length, the most divergent including the already
mentioned ycf1, and clpP, rps16, accD, and ndhA (Addi-
tional file 1). Interestingly, three of these genes, ycf1, accD
and clpP, are essential plastid genes in some taxa, but not
others [31,34-37]. The presence of non-coding intronic
sequences in both ndhA and rps16 contributes to the diver-
gence in those two loci [38,39]. These divergent sequences
among the four Asteraceae chloroplast genomes identify
the fastest evolving regions containing coding sequences.

Metabolic engineering of plants by inserting transgenes in
the chloroplast would potentially be made more efficient
with knowledge of chloroplast sequences, based on the

Differentiation by matK barcode (Genbank Accession 1230803) in Parthenium speciesFigure 3
Differentiation by matK barcode (Genbank Accession 
1230803) in Parthenium species. UPGMA in Jukes-Cantor 
mode, with gamma correction, was used to construct the 
tree, with statistical support for tree branches evaluated by 
bootstrap analysis (1000 replicates), indicated above the 
node. Helianthus annuus is included as an outgroup.
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conclusions of one group that chloroplast transformation
efficiency was significantly enhanced when vectors were
constructed with 100% homologous sequences [40].
Other groups have shown that precise homology may not
be essential, as tobacco sequences [41] were sufficient to
allow recombination in tomato [42], potato [43], and
petunia [44]. The chloroplast genome sequence of P.
argentatum was used to design a 100% specific chloroplast
transformation vector (unpublished data), to maximize
the possibility of successful recombination. Improving
crop plants via chloroplast transformation is a viable strat-
egy [1,5] that will be pursued in this industrial crop.

DNA barcodes

Chloroplast genomic sequences were used to develop
DNA barcodes to discriminate at the species level and
below. The matK barcode contained sufficient informa-
tion to differentiate three Parthenium species (tomentosum,
hysterophorus and schottii) from each other and from P.
argentatum and P. incanum. However, the matK-barcode
did not differentiate P. incanum from P. argentatum or P.
agentatum lines from each other (Figure 3). The psbA-trnH
spacer barcode provided additional differentiation at the
species level and below (Figure 4, 5). Interestingly, when
the matK gene and the psbA-trnH spacer barcode informa-
tion was combined, P. tomentosum and cv. 11591 were dif-
ferentiated from the remaining P. argentatum lines and P.

incanum. Using the combined barcodes, we observed that
they were more similar in P. argentatum AZ1 to AZ6 and
Cal6 lines overall than they were in the P. argentatum cv.
11591, breeding lines C-156 and C86, and hybrid line
AZ101 (Figure 5). To understand the pattern of differenti-
ation, it would be useful to have precise information
about the pedigrees of all the lines. Unfortunately, in most
cases that is either lacking or incomplete. We know that
AZ4 and AZ5 were selected from the same seed lot [45]
and their combined barcodes are very similar (Figure 5).
We cannot trace the ancestors of AZ4, AZ5 and AZ6 to
understand the history of their relatedness to AZ1, AZ2,
AZ3 and Cal6. The barcodes of the two P. argentatum lines
AZ2 and AZ3 were not different, which is not surprising as
AZ2 and AZ3 were selections from the same 11591 seed
lot [45], however, it would be expected that their majority
barcodes would be more similar to 11591 than they are.
The psbA-trnH DNA barcode analysis demonstrated that
two plants of AZ2, #8 grown in a field at Higby and #16
grown in a field at the Maricopa Agriculture Center (MAC)
have a different psbA-trnH barcode than the common
DNA barcode sequence of AZ2 (Figure 4). These do not
appear to be pure AZ2 derivatives and may represent seed
contaminants. Several of the P. argentatum lines were
homogeneous according to the psbA-trnH spacer
sequence, including AZ1, AZ4, and Cal 6. Other lines were
less homogeneous, including AZ2, AZ3, AZ5, and AZ6,

Table 2: Population information for analyses of Parthenium species using DNA barcode sequences.

Number of plants tested

Parthenium species line/cultivar/hybrid Seed Harvest year Location mat K psbA-trnH

argentatum

AZ1 2005 MACb 5 21

AZ2 2005 MAC 5 15

AZ2 2006 Higby, AZ 5 16

AZ3 2006 Rush, AZ 5 15

AZ4 2004 MAC 5 15

AZ5 2006 Rush, AZ 5 15

AZ6 2005 MAC 5 20

Cal6 2007 Crit Farm 5 17

C156 2008 MAC 1 1

C86 2008 MAC 1 1

cv. 11591 1989, 2005, 2006 MAC, NALPGRUc 13 20

AZ101a 2002 USALARCd, NALPGRU 3 3

hysterophorous 2008 MAC 2 2

incanum 2007 USALARC, WRRC 6 6

integrifolium 2008 USALARC - 2

schotti 2007 WRRC 1 1

tomentosum 2007 USALARC, WRRCe 5 5

Unknown 2008 USALARC 1 1

ahybrid, P. argentatum 11591 × P. tomentosum
bMAC, Maricopa Agricultural Center Field, University of Arizona, Maricopa, AZ
cUSALARC, US Arid Land Agriculture Research Center Greenhouse, Maricopa, AZ
dNALPGRU, National Arid Land Plant Genetic Resources Unit, Parlier, CA
eWRRC, Western Regional Research Center Greenhouse, Albany, CA
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with a minority sequence present in 6 to 20% of the indi-
viduals tested. From our own observations in the field, P.
argentatum accessions are highly heterogeneous in growth
habit, suggesting that seed lots are composed of highly
mixed genetic populations. This would not be unexpected
for open-pollinated, self-incompatible, field-grown lines.
Our barcode data support the heterogeneity and provides
information that will be used immediately to differentiate
breeding populations.

Classical breeding efforts will be enhanced by using the
informative chloroplast DNA barcode we describe herein.
We assessed the genetic purity of a small population of P.
argentatum using the psbA-trnH barcode and were able to
show, as described above, which lines had undergone
homogenization and which had not (Figure 5). Knowl-
edge of the purity of lines and the presence of contaminat-

ing seeds, will further our breeding efforts of lines that are
being advanced for latex production.

Our barcode study was useful in providing support for the
maternal parent of the hybrid plant, AZ101. AZ101 is a
vigorous interspecific hybrid, low in rubber concentra-
tion, but high in biomass production [46]. The line is the
result of an open-pollinated cross between P. argentatum
cv. 11591 and P. tomentosum cv. stramonium [45]. AZ101
most likely inherited its chloroplast genome from P.
tomentosum, as AZ101 and P. tomentosum are not differen-
tiated by the combined barcode system (Figure 5).
Although we do no know the reason for the difference,
our results are not the same as those from the non-DNA
analyses by Ray and co-workers [47]. More extensive anal-
ysis of differences at the DNA level is necessary.

Differentiation by psbA-trnH spacer region barcode (Genbank Accession 1230807)Figure 4
Differentiation by psbA-trnH spacer region barcode (Genbank Accession 1230807). This barcode was analyzed in 
Parthenium species, P. incanum, P. tomentosum, P. schottii, P. integrifolium, hybrid AZ101 (P. argentatum × P. tomentosum) and P. 
argentatum lines AZ1, AZ2, AZ3, AZ4, AZ5, AZ6, Cal6, C156, C86 and cv. 11591. UPGMA in Jukes-Cantor mode was used to 
construct the tree, with statistical support for tree branches evaluated by bootstrap analysis (1000 replicates), indicated above 
the node. Minority barcodes are indicated by #'s after the name of the line. Helianthus annuus is included as an outgroup.
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99
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According to the literature, there are about a dozen species
of Parthenium growing on the North American continent.
However, P. argentatum is the only species with commer-
cially viable amounts of rubber. Other species such as P.
incanum and P. tomentosum produce primarily resinous
materials [48]. The substrate for rubber biosynthesis is
isopentenyl pyrophosphate (IPP) [49,50]. Chloroplasts
have been shown to contribute to the pool of IPP in plant
cells [e.g., [51]; unpublished data, Kumar and Whalen]. If
the levels of chloroplastic IPP production vary from line
to line, it may be possible to breed for enhancements in
substrate production by controlling the maternal parent.
This suggests that hybrids could be developed using a
maternal parent that produces more rubber like AZ2 com-
bined with a higher biomass from a line like AZ101, to
produce a superior plant. More experiments are necessary
to understand the role of the maternal parent in rubber
biosynthesis.

Our preliminary results on lack of PCR amplification
from mature pollen DNA of targets within the IR regions
(data not shown), suggest that chloroplasts are not
present in the mature pollen and thereby are likely to be
maternally inherited in P. argentatum. Use of plastid spe-
cific barcodes derived from the genome sequence, will

allow us to definitively track any paternal inheritance in
future experiments. With the recent finding of paternal
inheritance in a weedy Helianthus species [52], as well as
in species previously considered to lack paternal inherit-
ance in pollen, such as Arabidopsis thaliana [8,9], it is cru-
cial that extensive studies are performed, especially if a
strategy for transgene containment depends on not trans-
ferring transgenes in pollen.

Conclusion
The genome sequence of the P. argentatum chloroplast
will enrich the sequence resources of plastid genomes in
commercial crops. The availability of the complete plastid
genome sequence may facilitate improved transformation
efficiency by using the precise endogenous flanking
sequences and regulatory elements in chloroplast trans-
formation vectors. The DNA barcoding study forms the
foundation for genetic identification of commercially
important lines of P. argentatum that are producing natu-
ral rubber latex for biomedical applications.

Methods
Isolation of chloroplasts and DNA amplification, and 

sequencing

A mature, greenhouse-grown Parthenium argentatum line
AZ2 plant was placed in the dark for 2-days before har-
vesting young leaves. Chloroplasts were isolated from
leaves using a 30-52% sucrose-gradient according to both
Palmer [53] and Jansen et al. [54]. Genomic DNA from
chloroplasts was isolated using the GeneElute Plant
Genomic Miniprep kit (Sigma-Aldrich Co.). The resulting
DNA was amplified using the REPLI-g whole genome
amplification kit (Qiagen, Inc.). Amplified DNA was
digested with EcoRI and BstBI and examined by agarose
gel electrophoresis to confirm the clear banding pattern,
which indicated that the amplification product was chlo-
roplast and not nuclear DNA.

Genome sequencing, assembly and annotation

Parthenium argentatum chloroplast genome sequencing
was carried out using 454 Sequence Technology (Agen-
court Biosciences, Corp). Random sequences were assem-
bled into a draft genome sequence using Newbler as
described by Chaisson et al. [55]. The whole genome was
annotated using DOGMA (Dual Organellar GenoMe
Annotator; [56]) to identify coding sequence, rRNAs, and
tRNAs using the plastid/bacterial genetic code. To analyze
the similarity of the chloroplast genes in P. argentatum and
the other members of the Asteraceae, H. annuus
(NC_007977), L. sativa (NC_007578), and G. abyssnica
(NC_010601), the percent identity of nucleotide
sequences within the open reading frame was calculated
based on alignments made with ClustalW [57] and BLAST
2 SEQUENCES [58]. Inversions in the chloroplast
genome of P. argentatum were identified by comparing the

Barcode differentiation using the combined matK sequence and the spacer region of psbA-trnHFigure 5
Barcode differentiation using the combined matK 
sequence and the spacer region of psbA-trnH. Com-
bined barcodes were analyzed in Parthenium species, P. inca-
num, P. tomentosum, P. schottii, hybrid AZ101 (P. argentatum × 
P. tomentosum) and P. argentatum lines AZ1, AZ2, AZ3, AZ4, 
AZ5, AZ6, Cal6, C156, C86 and cv. 11591. UPGMA in Jukes-
Cantor mode was used to construct the tree, with statistical 
support for tree branches evaluated by bootstrap analysis 
(1000 replicates), indicated above the node. Helianthus 
annuus was used as an outgroup.
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sequence in the inversion region [11] with that in L. sativa,
H. annuus and Nicotiana tabacum (NC_001879). The end
points of the inversion were determined as described by
Timme et al. [22]. The mVISTA program in Shuffle-
LAGAN mode [59] was used to compare the DNA
sequences of the chloroplast genomes of the four species
of Asteraceae, using the sequence annotation information
of P. argentatum (Figure 2).

Identification of Parthenium species and lines

To differentiate various Parthenium species and lines, a
chloroplast DNA barcode system was developed. Four
regions of the Parthenium chloroplast genome were
explored, including the intron in trnL-UAA, the rpoC and
matK genes, and the non-coding spacer between psbA-
trnH. Plant genomic DNA was isolated from young plants
(3-4 weeks old) of available Parthenium species, cultivars,
and lines using DNeasy Plant Mini Kit (Qiagen, Inc.). PCR
was carried out with Phusion DNA Polymerase according
to manufacturer's instructions (New England Biolabs,
Inc.). The primers, TrnL-F, 5'-CGAGTTGGGGATAGAG-
GGACTTGAAC-3' and TrnL-R, 5'-GATATGGCGAAATAG-
GTAGACGCTACGGAC-3' were used to amplify trnL-UAA;
for rpoC, rpoC1-F, 5'-CATAGGAGTTGCTAAGAGTCAAAT-
TCGG-3' and rpoC2-R, 5'-CCTTTTCTAGATCTTGATTCA
CGTAGAAATTCCGC-3'; for matK, matK-F, 5'-GAATT-
TCAAATGGAGAATTCCAAAGC-3' and matK-end-R, 5'-
CGAGCTAAAGTTCTAGCACAAGAAAGTCG-3'; and for
psbA-trnH, psbA-F, 5'-GGAAGTTATGCATGAACGTAAT-
GCTC-3' and trnH-R, 5'-CGCGCATGGTGGATTCACAA
TC-3'. PCR products were sequenced in both directions.
Sequences were compared and any sequences with differ-
ences from the majority sequence were re-sequenced in
both directions. Barcode differentiations were visualized
using the UPMGA best tree method in Jukes-Cantor mode
and then bootstrapped with 1000 replicates according to
manufacturer's instructions in MacVector (MacVector,
Inc.). Helianthus annuus was included as an outgroup.

Based on preliminary analysis of selected taxa of Parthe-
nium, the central region of the matK gene was the best for
finding divergence in Parthenium species. DNA from P.
schottii, P. tomentosum, P. incanum, a cultivar of P. argen-
tatum cv. 11591, nine lines of P. argentatum (AZ1, AZ2,
AZ3, AZ4, AZ5, AZ6, C156, C58 and Cal6) and AZ101 (a
hybrid of P. argentatum cv 11591 × P. tomentosum) was
amplified via PCR with a 60°C annealing temp, using
primers Parth-matK-F, 5'-CAAGCTCATCTGGAAATCTT-
GGTTCAGGCTC-3' and Parth-matK-R, 5'-GCCAAC-
GATCCAACCAGAGGCATAATTGG-3'. The PCR products
were sequenced in both directions using the same prim-
ers. In addition, the non-coding spacer region between the
two genes psbA-trnH (500 bp) was used to further differ-
entiate the Parthenium taxa. DNA was amplified with the
PCR using primers psbA-F and trnH-R at an annealing

temperature of 58°C. PCR products were sequenced in
both directions with the following primers, psbAF1-seq,
5'-GCTGCTATTGAAGCTCCATC-3' and Rev1-seq-trnh
Gua, 5'-CCTTGATCCACTTGGCTACATCCG-3'.

Abbreviations
IR: inverted repeat; SSC: small single copy; LSC: large sin-
gle copy; bp: base pair; kb: kilobase pair; INV: inverted
region.
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