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Abstract

Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases of rice worldwide. The fungal pathogen is
notorious for its ability to overcome host resistance. To better understand its genetic variation in nature, we sequenced the
genomes of two field isolates, Y34 and P131. In comparison with the previously sequenced laboratory strain 70-15, both
field isolates had a similar genome size but slightly more genes. Sequences from the field isolates were used to improve
genome assembly and gene prediction of 70-15. Although the overall genome structure is similar, a number of gene
families that are likely involved in plant-fungal interactions are expanded in the field isolates. Genome-wide analysis on
asynonymous to synonymous nucleotide substitution rates revealed that many infection-related genes underwent
diversifying selection. The field isolates also have hundreds of isolate-specific genes and a number of isolate-specific gene
duplication events. Functional characterization of randomly selected isolate-specific genes revealed that they play diverse
roles, some of which affect virulence. Furthermore, each genome contains thousands of loci of transposon-like elements,
but less than 30% of them are conserved among different isolates, suggesting active transposition events in M. oryzae. A
total of approximately 200 genes were disrupted in these three strains by transposable elements. Interestingly, transposon-
like elements tend to be associated with isolate-specific or duplicated sequences. Overall, our results indicate that gain or
loss of unique genes, DNA duplication, gene family expansion, and frequent translocation of transposon-like elements are
important factors in genome variation of the rice blast fungus.
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Introduction

Rice blast caused by the heterothallic ascomycete Magnaporthe

oryzae (also known as Pyricularia oryzae) is one of the most destructive

diseases of rice, which is a staple for over half of the world’s

population. This pathogen also infects wheat and other small

grains, and poses major threats to global food security [1,2]. In the

past two decades, rice blast has been developed as a model system

to study fungal-plant interactions. M. oryzae was the first plant

pathogenic fungus to have its genome sequenced and made

available to the public [3].

In most parts of the world, rice blast is controlled mainly with

resistant cultivars. However, M. oryzae is notorious for its ability to

overcome resistance based on race-specific R genes [4–6]. New

cultivars often lose their resistance within a few years of

introduction. Genetic variations in populations of the pathogen

have been well-documented in many parts of the world [7,8]. M.

oryzae isolates are also known to lose virulence and female fertility

during laboratory manipulations [1] and large chunks of genomic

DNA can be lost spontaneously during cultivation on artificial

media, such as the deletion of over a 40 kb region containing the

BUF1 locus [9]. The laboratory strain 70-15 of M. oryzae was

generated by backcrossing a progeny from a cross between a rice

isolate and a weeping love grass (Eragrostis curvula) isolate with the

rice isolate Guy11 from French Guyana [10,11]. It has been used

in many laboratories and was selected for genome sequencing [3].

Although most of the 70-15 genome should be from the rice

pathogen after backcrossing with Guy11 several times, some

weeping love grass pathogen sequences are likely retained. In

comparison with Guy11, 70-15 is reduced in female fertility,

conidiation, and virulence [12].

To determine the extent of genetic variation among isolates of

M. oryzae, we sequenced two field isolates Y34 and P131. Y34 was

isolated from Japonica rice in 1982 in Yunnan province, China,

where both Indica and Japonica rice cultivars are cultivated

[13,14]. Due to rich genetic diversity in rice cultivars and centuries
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of rice cultivation, highly diverse rice blast pathogen populations

exist in Yunnan [15], and hence Y34 was chosen as a

representative from this region for sequencing. The other field

isolate, P131, originated from Japan where Japonica rice cultivars

are dominant [16,17]. The isolates P131, Y34, and 70-15 differ in

some cultural characteristics (Figure S1). These three isolates also

carry different avirulence genes and vary in aggressiveness toward

different rice cultivars (Table S1). In comparison with 70-15, both

Y34 and P131 have slightly larger genomes. The two Asian field

isolates share a higher degree of similarity and contain over 200

genes that are absent in 70-15. Many pathogenesis-related genes

showed evidence of exposure to diversifying selection when

comparing either field isolate (P131 or Y34) to the laboratory

strain (70-15). Functional characterization of randomly selected

genes specific to the field isolates revealed that they play diverse

roles, some of which affect virulence and others important for

conidiation and vegetative growth. Furthermore, thousands of loci

with transposon-like elements were identified in each genome.

Many of them tend to be associated with the distribution of unique

sequences and translocation of duplicated genes.

Results

Genome sequencing and assembly
The genomes of P131 and Y34 were sequenced with the Sanger

(2-fold) and 454 sequencing technologies (18-fold). The combined

sequence reads for P131 and Y34 were 793.94 Mb and

843.92 Mb, representing about 20- and 21-fold genome sequence

coverage, respectively (Table 1). The 454 sequence reads were

assembled into contigs and placed into scaffolds by the Newbler

assembler with paired-end information from the Sanger reads.

The assembled P131 genome consisted of 1,823 scaffolds with a

combined length of 37.95 Mb. The N50 and maximum lengths of

P131 scaffolds were 65 kb and 459 kb, respectively (Table 1). The

Y34 genome was assembled into 1,198 scaffolds with a combined

length of 38.87 Mb. The N50 and maximum length of Y34

scaffolds were 106 kb and 708 kb, respectively (Table 1). Over

95% of the sequence reads were assembled into scaffolds .5 kb in

both isolates. Approximately 33% and 51% of P131 and Y34

sequences, respectively, were assembled into scaffolds longer than

100 kb. In addition, the mitochondrial genomes of P131 and Y34

were also assembled (Table 1). While P131 has an almost identical

mitochondrial genome with 70-15, Y34 lacks two short fragments

with a combined length shorter than 350 bp (Figure S2).

Because repetitive sequences comprise approximately 10% of

the genome of the laboratory strain 70-15 (version 6), repetitive

sequences in the new assemblies were masked out with the

RepeatMasker program for comparative analyses. The resulting

ATCG bases after masking were 37.6 Mb, 38.2 Mb, and

37.5 Mb, respectively, for P131, Y34, and 70-15 (Table 1),

indicating that the core genomes of these three isolates were not

significantly different in size. However, because repetitive

sequences and singletons smaller than 2 kb were not included in

this analysis, it remains possible that the complete genomes of

these three isolates vary in abundance of repetitive sequences and

actually have greater size differences.

Scaffolds of P131 and Y34 were aligned with the assembled

genome of 70-15 (Figure 1). Overall, most of the 70-15 genome

(96%) is also conserved in two field isolates. Only 0.45 Mb of

sequence in 70-15 are absent from the two field isolates. In

contrast, P131 and Y34 have 1.69 Mb and 2.56 Mb isolate-

specific sequences, respectively. In general, isolate-specific se-

quences were dispersed throughout the genomes. For individual

chromosomes, there are regions enriched for isolate-specific

sequences (Figure 1). Blocks of such sequences can be found at

both ends of chromosome IV and at single ends of chromosomes I,

II, III, V, and VI. In M. oryzae, genetic variation and avirulence

genes are known to be enriched near the telomeres [18,19].

Comparative analysis of the genomes of these three M. oryzae

isolates revealed that genes responsible for variations in virulence

and adaptation to the environment may be concentrated at the

chromosomal ends.

To locate and verify isolate-specific sequences in the field

isolates, we used clamped homogenous electric fields (CHEF) gel

electrophoresis to separate the chromosomes. Chromosome size

polymorphisms were observed among these three isolates

Table 1. Sequencing and genome analysis statistics for the
genomes from three Magnaporthe oryzae isolates.

Features P131 Y34 70-15

Reads from Sanger sequencing (Mb) 79.66 79.47 -

Reads from GS FLX sequencing (Mb) 314.4 406.7 -

Reads from GS FLX Titanium sequencing (Mb) 399.88 357.75 -

Total reads (Mb) 793.94 843.92 -

Coverage (fold) 20 21 -

Raw reads repeats content (%) 10.34 10.83 -

Scaffolds 1823 1198 -

Average scaffolds length (kb) 20.8 32.4 -

N50 scaffold length (kb) 12.3 11.6 -

Maximum scaffold length(kb) 459 708 -

Assembly size (Mb)a 37.95 38.87 41.70

Assembly size with A/C/T/G only (Mb) 37.549 38.242 37.499

G+C composition (%) 51.48 51.33 51.64

Coding region of assembly (%) 45.28 44.89 45.04

Number of predicted genes 12722 12869 12440

Average gene length (amino acids) 444.8 443.9 451.6

Average G+C composition of genes (%) 57.62 57.59 57.70

Mitochondrion (kb) 34.87 34.52 34.87

doi:10.1371/journal.pgen.1002869.t001

Author Summary

Magnaporthe oryzae is the causal agent of rice blast that is
mainly controlled with resistance cultivars. However,
genetic variations in the pathogen often lead to overcom-
ing R gene-mediated resistance in rice cultivars. In this
study we sequenced two field isolates from China and
Japan. In comparison with the laboratory strain that was
previously sequenced, the field isolates have a similar
genome size and overall genome structure. However, they
have slightly more genes and contain a number of
expanded gene families that are likely involved in plant-
fungal interactions. Each of the isolates has specific genes,
some of which affect virulence and some others are
important for asexual development. The three strains differ
noticeably in the distribution of transposon-like elements.
Many of the transposable elements tend to be associated
with isolate-specific or duplicated sequences. This study
revealed genetic factors involved in genome variation of
the rice blast fungus.

Genome Sequences of Two Rice Blast Field Isolates
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(Figure 2A). Whereas chromosome VII (the smallest chromosome)

in 70-15 was estimated to be 4.3 Mb, the smallest chromosomes in

Y34 and P131 were approximately 1.8 Mb and 2.5 Mb, respec-

tively. When one P131-specific sequence, P131_scaffold00006_11,

which was not mapped on the chromosome alignment was used as

the probe, an aggregate band of chromosomes larger than 6.0 Mb

was detected in P131 but not in Y34 nor in 70-15 (Figure 2B). When

a similar blot was probed with an Y34-specific sequence,

Y34_scaffold00824_1665, only the smallest chromosome of Y34

was hybridized (Figure 2B). These findings confirm that the field

isolates contain isolate-specific DNA.

Improvement of the 70-15 assembly
Because the assembly of P131 or Y34 relied on the alignment

with the 70-15 genome, it was not possible to accurately map P131

and Y34 sequences that were absent from the 70-15 genome

assembly. However, the P131 and Y34 sequences could be used to

fill the sequence gaps ($50 bp) in the 70-15 assembly. We

identified the end sequences of the contigs or scaffolds flanking

these gaps. After filtering out simple repeats, these sequences were

used to search against the assembled P131 and Y34 sequences. If

both upstream and downstream flanking sequences of one gap

were mapped on the same contig in either P131 or Y34, the in-

between sequences were used to fill the gaps of 70-15. A total of 55

gaps were filled with sequences from P131 or Y34 (Table 2).

Among them, 35 gaps had the sequences present in both P131 and

Y34 (Table 2). The total gap sequence filled in the 70-15 genome

was 25.3 kb. We randomly selected 18 of these filled gaps of the

70-15 genome for verification. All of them were confirmed in 70-

15 by PCR (Figure S3).

Gene pool analysis and improvement of gene prediction
in 70-15
The number of predicted genes in the masked genomes of P131,

Y34, and 70-15 was 12,714, 12,862, and 12,440 (Table 1),

respectively. The average length of predicted proteins was over

400 amino acids. Y34 apparently has the largest genome size and

gene content, which may contribute to its adaptation to the

Figure 1. Genome organization and gene distribution in P131,
Y34, and 70-15. The peripheral circle represents seven chromosomes
(numbered I–VII) of 70-15 with their sizes marked in Mb. The second
circle of color bands shows the distribution of predicted genes
categorized by gene ontology along the chromosomes: red, DNA
metabolism; blue, cellular component organization; yellow, carbohy-
drate metabolism; orange, amino acid and lipid metabolism; violet,
transcription; black, signal transduction; green, transport. The third
circle of color lines shows the distribution of repetitive DNA elements
(percentages of repetitive sequences in 100-kb window) in 70-15 (red),
Y34 (blue), and P131 (green). The fourth to ninth circles show the
percentage of isolate-specific sequences from pair-wise comparisons in
50-kb windows: 4th, 70-15 sequences absent in P131; 5th, 70-15
sequences absent in Y34; 6th, P131 sequences absent in 70-15; 7th, P131
sequences absent in Y34; 8th, Y34 sequences absent in 70-15; 9th, Y34
sequences absent in P131. Genes unique to 70-15, P131, and Y34 are
displayed on the tenth to twelfth circles, respectively, with the same
color code as the second circle.
doi:10.1371/journal.pgen.1002869.g001

Figure 2. Electrokaryotypes of P131, Y34, and 70-15 and
Southern blot analyses. (A) Chromosomes of P131, Y34, and 70-15
were separated by CHEF electrophoresis. Molecular weights of the
markers (chromosomes of Hansenula wingei and Schizosaccharomyces
pombe) are labeled on the sides (in Mb). (B) Southern blots of CHEF gels
hybridized with the P131- and Y34-unique sequences as the probes.
When hybridized with P131_scaffold00006_11, the largest chromosome
band was detected only in P131 (left panel). When probed with
Y34_scaffold00824_1665, only the smallest chromosome of Y34 was
detected (right panel).
doi:10.1371/journal.pgen.1002869.g002

Table 2. Gaps in the genome of isolate 70-15 filled with
sequences from the field isolates P131 and/or Y34.

70-15 chromosome P131 Y34 P131+Y34

I 1 1 6

II - 3 11

III 2 3 4

IV - 3 8

V - - 1

VI - 1 -

VII 1 - 1

unknown 4 1 4

Total 8 12 35

doi:10.1371/journal.pgen.1002869.t002

Genome Sequences of Two Rice Blast Field Isolates
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environment or to rice cultivars grown in Yunnan province,

China. To identify the gene pool of these three strains, the

predicted amino acid sequences of the total gene set from each

isolate were used to search against the nucleotide sequences of

other two isolates by TBLASTN. The large majority of M. oryzae

genes (12,375 from P131, 12,431 from Y34, and 12,214 genes

from 70-15) share sequence homology in pair-wise comparisons.

Among these genes constituting the ‘core’ gene set of the M. oryzae

genome (Figure 3A), 11.3% had no orthologous sequences in other

organisms. Moreover, approximately 10.1% of these M. oryzae-

specific genes were predicted to encode secreted proteins.

To improve gene annotation in 70-15, we identified the genes

that were common to all three isolates and had similar sizes

(difference less than 1%) between Y34 and P131 but were 50

amino acids or 20% longer or shorter in 70-15. A total of 340

genes meeting these criteria were then manually annotated.

Among them, 135 genes in 70-15 had incorrect intron annota-

tions. The number of genes with inaccurate start or stop codon

predictions was 259 or 15, respectively (Table S2).

The number of genes shared only by the two field isolates (198

from P131 and 220 from Y34) was approximately twice that of

those shared by either P131 or Y34 with 70-15 (Figure 3A),

implying that the two Asian field isolates share a higher degree of

similarity and with about 200 genes that are absent in 70-15. For

isolate-specific genes, we found that 51, 136, and 71 genes were

unique to P131, Y34, and 70-15, respectively (Figure 3A). All the

genes randomly selected for verification were confirmed by PCR

to be either shared by two isolates or unique to one specific isolate

(Figure S4). As found in 70-15, isolates P131 and Y34 also had

various copies of DNA helicase Q genes and LTR elements

towards the chromosomal ends [3].

For the genes common in Y34 and P131 but absent in the

automated annotation of 70-15, we used their amino acid

sequences to search the 70-15 scaffolds. The resulting homologous

sequences of 70-15 were then used to search against M. oryzae

ESTs deposited in GenBank. A total of 81 candidate genes were

identified in the 70-15 genome and ESTs (Table S3). Seventy-six

of them encoded hypothetical proteins with no known homologs in

GenBank. Some of theseM. oryzae specific genes may be important

for the virulence or fitness of the pathogen because all three

isolates have these genes. The other five genes had orthologous

sequences of unknown functions in Sordariomycetes but were

absent in lower fungi, such as Zygomycetes and Saccharomyce-

tales.

To further analyze genetic relatedness of these three isolates, the

10,074 clusters containing one protein from one isolate were

selected and the resulting individual protein sequences from each

isolate were combined for distance analysis with PHYLIP. As

shown in Figure 3B, the two field isolates have a closer relationship

to each other than with the laboratory strain 70-15.

Isolate-specific genes
Based on analyses of gene content, 51, 136, and 71 genes,

respectively, were unique to P131, Y34, and 70-15. Overall, 13%

of these isolate-specific genes encoded secreted proteins and 46%

of them had no significant homolog in GenBank (Table S4). RT-

PCR analyses were performed with 10 and 14 randomly selected

P131- and Y34-specific genes, respectively. All the selected genes

were confirmed to be expressed in mycelia (Figure S5). While most

of the isolate-specific genes were dispersed through the genome,

some were located within clusters (Figure 1; Table S4). For

example, scaffolds 00875 and 01112 of Y34 contained five and

eight of the Y34-specific genes, respectively. In P131, there were

three isolate-specific genes each on scaffolds P131_scaffold01777

and P131_scaffold01784. Moreover, many of the isolate-specific

genes with known chromosomal positions in P131 and Y34 were

located near the chromosomal ends (within 500 kb), which is

consistent with the distribution tendency of isolate-specific

sequences (Figure 1).

To determine the biological function of these isolate-specific

genes, nine Y34-specific genes and three P131-specific genes were

selected for functional characterization. For majority of them, the

resulting gene deletion mutants had no obvious changes in colony

growth, conidiation, or virulence (Figure S6). Their functions in

plant infection may be redundant or too minor to be detected

under laboratory conditions. However, deletion of one P131

unique gene, P131_scaffold00208-2, resulted in a reduction in

virulence in infection assays with seedlings of a susceptible rice

cultivar (Figure 4A). Deletion of another P131 unique gene,

P131_scaffold01777-7, resulted in approximately 10% growth

reduction on oatmeal tomato agar plates (Figure 4B). Proteins

Figure 3. Gene pool analysis. (A) Numbers of the genes that are
unique to each isolate, specific to two isolates, and common to all three
isolates. Predicted genes of P131, Y34, and 70-15 are represented with
circles colored in green, blue, and red, respectively. (B) Distance analysis
with concatenated amino acid sequences of orthologous proteins that
are conserved in P131, Y34, and 70-15. The tree was constructed with
the NEIGHBOR program using the distance matrix calculated by
PROTDIST from PHYLIP.
doi:10.1371/journal.pgen.1002869.g003

Genome Sequences of Two Rice Blast Field Isolates
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encoded by these two P131-unique genes were predicted to be

localized in the nucleus. Homologous sequences of these two genes

were not found in other sequenced fungal species. Moreover,

deletion of one Y34 unique gene, Y34_scaffold00875-3, resulted in

approximately 36% reduction in conidiation (Figure 4C). Inter-

estingly, deletion of one Y34-unique gene encoding a putative G

protein-coupled receptor (GPCR)-like integral membrane protein

with six transmembrane domains resulted in changes in pathoge-

nicity on a rice cultivar carrying the Pi-7 R gene, suggesting that

this Y34-unique gene might be the potential AVR Pi-7 gene (data

not shown).

Among the genes shared by both field isolates P131 and Y34 but

absent in 70-15, 19% had signal peptides for secretion and 12%

had transmembrane domains (Figure 3; Table S5). About 70% of

these genes had no functional annotation. Strain 70-15 may have

lost these genes during the initial genetic cross or after generations

of cultivation in the laboratory. For example, a gene encoding a

CFEM-containing GPCR-like protein [20] and the avirulence

gene AVR Pi-a [21] were present in the field isolates P131 and Y34

but not found in 70-15.

Duplicated genomic sequences
Duplication is one of the major mechanisms for evolutionary

innovation. The total duplicated genomic DNA fragments (longer

than 500 bp and greater than 90% identity) were 289 kb, 385 kb,

and 825 kb in P131, Y34, and 70-15, respectively. A total of 16,

20, and 155 predicted genes in P131, Y34, and 70-15, respectively,

were located in these duplicated sequences (Table S6).

Although duplicated DNA sequences were detected genome-

wide in all three isolates, in general chromosomes II, IV, V, and

VII had more duplicated DNA sequences than other chromo-

somes (Figure 5A). For individual chromosomes, the end regions

tend to contain more duplicated DNA sequences than the central

region. Comparative analysis indicated that P131, Y34, and 70-15

all contained isolate-specific duplicated regions (Figure 5A).

However, the laboratory strain 70-15 had significantly more

duplicated genes, including the AVR gene PWL2 [22] (Table S6).

Other duplicated genes with known functions include LPS

glycosyltransferases, MFS transporters, sugar transporters, and

carboxypeptidases. Both intra- and inter-chromosomal duplica-

tions were observed, but more inter-chromosomal duplications

were apparent, and only a small portion of duplication events were

conserved in all three isolates (Figure 5A).

Gene families
To identify gene families, the entire set of the predicted

proteins from all three isolates were clustered with the

OrthoMCL program. A total of 38,016 proteins were grouped

into 14,189 clusters with each cluster representing a group of

putative orthologs. Among these clusters, 195 gene families were

identified with more than one member in at least one isolate

(Figure 5B), suggesting that 1.37% of the M. oryzae genes may

have been evolved by gene family expansion. Among 45 clustered

loci duplicated equally in each isolate, 38, 6, and 1 gene loci were

duplicated between two, three or four times, respectively, per

isolate (Table S7). These gene families might have existed before

the divergence of the three isolates. The majority of these gene

families were predicted to be involved in synthesis and transport

of nutrition and secondary metabolites, suggesting that they may

be related to plant infection (Table S7). There were 87 clustered

loci duplicated at different frequencies in three isolates (Table S8).

Most of these gene families (61 out of 87) contained duplicated

genes in only one isolate, and 17 gene families contained gene

loci duplicated at least three times in one or more isolates (Table

S8), suggesting that they have been expanded or contracted in

different strains, possibly during environmental adaptations. For

example, one putative calcium P-type ATPase gene was

duplicated three times in P131 and Y34, and twice in 70-15.

Members of this gene family have been demonstrated to be

required for disease development and induction of host resistance

[23,24].

For loci duplicated in two isolates but absent in the third one,

there were eight in P131 and Y34, five in P131 and 70-15, and

twelve in Y34 and 70-15 (Figure 5B; Table S9). Most of these

expanded gene families had unknown functions. To confirm the

duplication events that were unique to the two field isolates,

three genes were selected by Southern blot analysis. All of them

were confirmed to be specifically duplicated in P131 and Y34

but not in 70-15 (Figure S7). There were seven, thirteen, and

eighteen gene families specifically expanded in P131, Y34, and

70-15, respectively (Figure 5B; Table S10). Most of these isolate-

specific gene families contained two or three duplicated

members that had unknown functions or no known homologs

in GenBank.

Figure 4. Functional analyses of isolate-specific genes. (A)
Deletion of the P131-unique gene P131_scaffold00208-2 resulted in
reduced virulence. Rice seedlings were sprayed with conidia of the wild-
type strain P131 and P131_scaffold00208-2 deletion mutant KOP208-2.
Representative leaves were photographed 7 days after inoculation (dai).
(B) Deletion of the P131-unique gene P131_scaffold01777-7 resulted in
reduced colony growth. OTA plate cultures of P131 and the
P131_scaffold01777-7 deletion mutant KOP1777-5 were photographed
after incubation for 5 days. (C) Deletion of the Y34-unique gene
Y34_scaffold00875-3 resulted in reduced conidiation. Conidiation was
measured after incubation for 4 days.
doi:10.1371/journal.pgen.1002869.g004

Figure 5. Genomic DNA duplication and gene family expan-
sions. (A) Distribution of duplicated genomic sequences on chromo-
somes of P131, Y34, and 70-15. The green, blue, and red lines represent
duplicated sequences in P131, Y34, and 70-15, respectively. Intra- and
inter-chromosomal duplications are marked with lines in the center. (B)
Venn diagram showing expanded gene families in P131 (green), Y34
(blue), and 70-15 (red). The numbers in the circles represent different
sets of gene families that are isolate-specific, shared by any two isolates,
and common to all three isolates, respectively.
doi:10.1371/journal.pgen.1002869.g005
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Asynonymous to synonymous nucleotide substitution
rate (Ka/Ks) analysis
To analyze asynonymous and synonymous nucleotide substitu-

tions, we first identified and removed orthologous genes with large

deletions or insertions in any of the isolates from the list of

common genes. In total, 9,184 highly conserved orthologs were

used to identify nucleotide substitution events. Among them, 7,569

genes had neither synonymous nor asynonymous nucleotide

substitution in pair-wise comparisons, indicating that most of the

genes were well-conserved among different isolates. Only 428

genes had nucleotide substitutions between P131 and Y34, and

1,651 genes had nucleotide substitutions between 70-15 and P131

or Y34, further indicating that the field isolates had closer

relationship with each other than with the laboratory strain. Genes

with substitutions in the 70-15 versus P131/Y34 comparison could

be categorized into four groups: 414 genes only with synonymous

nucleotide substitutions, 697 genes only with asynonymous

nucleotide substitutions, 124 genes with Ka/Ks,1, and 6 genes

with Ka/Ks.1.

Overall, similar numbers of genes identical between Y34 and

P131 but with nucleotide variations in 70-15 were thought to have

undergone diversifying versus purifying selections. However,

several functional categories of genes, such as those involved in

cellular responses to stimuli and organophosphate metabolisms,

had more members exhibiting diversifying selection in the two

field isolates (Table S11). Several of the genes underwent

diversifying selection in the 70-15 versus P131/Y34 comparison

(Table S12), including ATG4, HEX1, MCK1, MoSNF1, PTH2, and

RGS1, which are known virulence factors in M. oryzae [25–30].

Three of them encode putative CFEM-domain receptors that may

be involved in recognizing different environmental and plant

signals (Table S12).

Repetitive sequences and transposable elements
Repetitive sequences were masked by Newbler for assembling

454 sequence data of P131 and Y34. To compare repetitive

sequences of these two isolates, we assembled the Sanger reads of

P131 and Y34 (approximately 2-fold genome coverage) and found

that 10.8%, 10.3%, and 10.6% of the 70-15, P131, and Y34

genomes, respectively, were repetitive sequences, indicating that

the abundance of repetitive sequences is similar among these three

isolates. Transposable elements (TE) and their insertion sites

(flanking sequences) were identified by RepeatMasker. Although

the exact copy numbers vary, both field isolates contained all

classes of transposable elements identified in 70-15 (Table 3). In

general, 70-15 has more members of the LINE, Maggy, and

Table 3. Repetitive and transposable elements identified in isolates P131, Y34, and 70-15.

70-15 Y34 P131 70-15/P131a 70-15/Y34 P131/Y34

DNA transposon:

Pot2/Pot4 277 405 341 109 131 135

Occan 77 93 65 44 61 35

Pot3 68 85 79 29 25 27

LTR retrotransposon:

Maggy 267 60 64 20 23 20

MGLR3 81 74 50 30 35 27

Pyret 232 471 425 160 188 128

RETRO5 329 103 86 21 21 37

RETRO6 107 108 85 47 40 42

RETRO7 119 103 102 51 42 47

Grasshopper 13 42 34 14 10 16

LINE:

MGL 187 141 127 58 53 52

SINE:

Mg-SINE/Mg-MINE/Ch-SINE 176 195 179 64 58 57

New repetitive elements:

cluster1 (JQ929664)b 25 54 52 33 32 31

cluster2 (JQ929665) 36 23 24 22 21 16

cluster3 (JQ929666) 78 86 78 58 60 45

cluster4 (JQ929667) 17 34 27 7 13 8

cluster5 (JQ929668) 47 58 63 47 43 47

cluster6 (JQ929669) 5 25 13 4 4 8

cluster7 (JQ929670) 22 43 30 14 17 15

cluster8 (JQ929671) 118 101 116 98 88 79

cluster9 (JQ929672) 16 18 15 14 15 12

aThe number of conserved repetitive and transposable elements in the 70-15 and P131 comparison.
bGenBank accession number of new repetitive elements. The copy number of repetitive and transposable elements was calculated by RepeatMasker. LTR, long terminal
repeat; LINE, long interspersed repeat element; SINE, short interspersed repeat element. Novel repetitive elements were identified by RepeatScout.
doi:10.1371/journal.pgen.1002869.t003
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RETRO5 LTR retrotransposons. The Pot2/Pot4 DNA transpo-

sons and the Pyret and Grasshopper LTR retrotransposons were

more abundant in P131 and Y34. In addition, nine new clusters of

repetitive sequences were identified by analysis with RepeatScout

(Table 3). However, none of them was unique to the field isolates.

While clusters 1, 4, 5, 6, and 7 were much more abundant in the

field isolates, 70-15 had more copies of the cluster 2 repetitive

elements (Table 3).

In comparison with 70-15, the two field isolates were more

similar in the distribution pattern of repetitive sequences (Figure 1

and 6A). While chromosomal ends tend to have more repetitive

sequences, all three isolates had much reduced numbers of TEs in

Figure 6. Transposable elements (TEs). (A) Distribution of TEs on seven chromosomes. The y-axis represents the density probability of TEs along
the chromosome. (B) Venn diagram showing the number of TEs with conserved genomic positions in 70-15, Y34, and P131. (C) The percentage of
each TE element inserted into gene coding regions of TE-disrupted genes. Red, 70-15; blue, Y34; green, P131.
doi:10.1371/journal.pgen.1002869.g006
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the gene-rich regions of chromosomes III, V, and VI (Figure 6A).

For the TEs that could be assembled into the genome sequences,

approximately 27% of them had the same locations in all three

isolates by comparison of their flanking sequences (Figure 6B). Y34

had more TEs with unique chromosomal positions (1,061) than

P131 (830) or 70-15 (976). In addition to the 603 locations of TEs

conserved among the three strains, Y34 and P131 also shared 281

TEs with the same chromosomal locations, which was fewer than

the 377 between 70-15 and Y34 or the 341 between 70-15 and

P131 (Figure 6B). While over two-thirds of the members of some

TEs, including Occan, had conserved genomic locations, TEs such

as Retro5 and Maggy differed significantly in their chromosomal

positions between Y34 and 70-15. Similar results were obtained

with the P131 and 70-15 comparison (Table 3). A total of 41.1%

and 46.0% of TEs in 70-15 and P131, respectively, had conserved

genomic locations. The Pot3, Maggy, Retro5, and Retro7

elements had the highest variation in chromosomal positions

between 70-15 and P131.

We also analyzed the impact of TEs on the genome evolution by

comparing two-fold coverage Sanger data of P131 and Y34 with

the 70-15 assembly. A total of 35, 38, and 116 genes were

disrupted by the insertion of TEs in P131, Y34, and 70-15,

respectively (Table S13, S14, S15). Over 50% of the gene

disruption events were caused by TEs belonging to MGL, Mg-

SINE, or Pot2/Pot4. Strain 70-15 had a number of genes

disrupted by cluster 7, cluster 9, Occan, and RETRO5 elements,

which were not observed in P131 or Y34 (Figure 6C). Some of

these genes may have been disrupted by transposition events

occurring during generations of cultivation under laboratory

conditions, and these genes may play roles in plant infection or

survival in the field isolates but were not required for the

laboratory isolate. In comparison with 70-15, the field isolates

P131 and Y34 had more genes disrupted by SINE (Figure 6C),

which may indicate that these SINE elements were more active in

these two field isolates.

Among all the genes disrupted by TEs in three isolates, only

approximately one third of them have known functions based on

their orthologs in GenBank, and most of them are involved in

protein metabolism, transportation, transcription, or lipid metab-

olism. The majority of the TE-disrupted genes encode hypothet-

ical proteins with unknown functions. Interestingly, 23.8% of them

contained putative signal peptide sequences, which is significantly

higher than the average percentage of predicted extracellular

proteins in the genomes of these three strains (Table S13, S14,

S15). Some of them may function as effectors involved in fungal-

plant interactions, such as AVR Pi-ta1 in 70-15 (Table S13). In

addition, 14.7%, 14.2% and 15.8% of the TE-disrupted genes in

70-15, P131, and Y34, respectively, encoded proteins with

putative nuclear localization sequences.

Intriguingly, the regions containing isolate-specific sequences or

duplicated genes families were often near areas with high

frequency of TEs (Figure S8). In 70-15, several TEs were found

within 1.0 kb from 23 duplicated genes families, including the

avirulence gene PWL2 (Table S16) although many of these

duplicated sequences were not closely linked or located on

different chromosomes. Taken together, it is likely that the

transposition events of TEs might be related to translocation of

duplicated DNA fragments and presence of isolate-unique

sequences in these three strains.

Discussion

In a number of eukaryotic organisms, comparative analysis of

multiple genomes of the same species has been used to improve

assembly and annotation and to identify genome variations [31–

34]. The rice blast fungus is well-known for its natural genetic

variation [1,2]. In this study, we sequenced two field isolates of M.
oryzae from Asia. Genome analysis indicated that these two field

isolates are more closely related to each other than to 70-15, which

is a laboratory strain derived from three backcrosses of rice

pathogen Guy11 with a progeny of a cross involving a weeping

love grass pathogen, and maintained for many years under

laboratory conditions. The overall genome content and compo-

sition are similar among these three isolates, but the genomes of

P131 and Y34 with only A/C/T/G and no N’s were slightly

larger than that of 70-15.

Although the 70-15 genome has been updated several times, it

still has many gaps (www.broadinstitute.org/annotation/genome/

magnaporthe_grisea). In this study, a total of 55 gaps of the 70-15

genome (version 6) were filled in with sequences from P131 and

Y34, and the results were validated by PCR analyses of 70-15.

This number of putative filled gaps with sequences from two

isolates may seem low, but because of the short read length, the

threshold set may have been too stringent. For 35 gaps, they were

filled with consensus sequences found in both field isolates. For the

gaps with sequences only available in either Y34 or P131, the

filling sequence for 70-15 was less certain, but of high probability

because the overall nucleotide sequence identity between 70-15

with P131 or Y34 was over 98%. Besides improving the genome

assembly, the sequences of P131 and Y34 were used to improve

the annotation of 70-15. We identified 81 genes that were not

predicted in the automated annotation of the 70-15 genome

sequence, and none of them were related to the sequence gaps. In

addition, we identified potential annotation errors in 340 predicted

genes of 70-15. Most of them were related to the problems with

the prediction of the boundaries of introns and start or stop

codons.

Our study revealed that each M. oryzae isolate had some unique

genomic DNA sequences. Because genome sequences of P131 and

Y34 were aligned with that of 70-15, it was impossible to locate

most of the sequences unique to Y34 and P131 onto specific

chromosomes or chromosomal regions. However, sequences

unique to 70-15 were distributed over all seven chromosomes.

Because 70-15 was derived from three backcrosses of rice

pathogen Guy11 with a progeny of a cross involving a weeping

love grass pathogen, we expected that a small portion of its

genome was from the weeping love grass pathogen. The isolates

Y34, P131, and 70-15 had 136, 51, and 71 unique genes,

respectively. Therefore, less than 1% of the predicted genes were

unique to each isolate and these genes play diverse roles, some of

which might possibly contribute to the specificity of individual

isolates. Some of the isolate-specific genes were clustered,

suggesting that isolate-specific DNA fragments might be gained

or lost during evolution. The P131-specific gene P131_scaf-

fold00208-2 encoded a hypothetical protein without known

homologs in other fungi. Deletion of this gene resulted in reduced

virulence toward rice plants. Because it might be involved in plant

infection, P131_scaffold00208-2 may play an isolate-specific role in

suppressing or overcoming plant defense responses. These results

suggest that some of the field isolate-specific genes may play

important roles in plant infection.

In all three M. oryzae isolates, most of the duplicated genes are

functionally unknown. Duplicated sequences are distributed all

over seven chromosomes and appear to be enriched in the

telomeric regions. For the duplicated genes with known functions,

many of them are predicted to be involved in primary and

secondary metabolism and interactions with the host (such as

cutinases and Avr proteins), which is consistent with earlier
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observations with 70-15 [3]. Interestingly, several gene families

involved in synthesis and transport of nutrients and secondary

metabolites were expanded with different frequencies in these

three isolates. Some of these duplicated genes may contribute to

the adaption of M. oryzae to different environmental conditions.

Among the genes that had undergone diversifying selection in Y34

and P131 in comparison with 70-15, a number of them are known to

be important for virulence, suggesting that such genes may have been

under strong selection pressure in their natural field environments.

There were six genes under positive selection in the two field isolates

compared to 70-15. Two of them encoded two hypothetical proteins,

a serine/threonine protein kinase, an acyltransferase, a putative

catalytic domain of diacylglycerol kinase, and an aspartic-type

endopeptidase. Three of them are located on chromosome I. In

contrast, there were no genes showing positive selection in the

comparison between the field isolates.

Because sexual reproduction has not been observed in the field,

it is possible that translocations of the repetitive sequences may be

one of the major sources for genome variation and rapid adaption

to different host and environmental conditions. Consistent with

this hypothesis, over 10% of the genome sequences were found to

be repetitive sequences. In addition to TEs that have been

identified in previous studies [3], nine new clusters of repetitive

sequences were identified in all three M. oryzae strains in this study.

Most of these TEs have different copy numbers in different

isolates. Strikingly, among thousands of TE loci, less than 30% of

them were conserved among these isolates, suggesting active

transposition of these TEs in M. oryzae. Moreover, approximately

200 genes were totally disrupted by TEs in these three strains, and

approximately 40% of them encoded extracellular or nuclear

proteins, suggesting that transpositions of TEs may contribute to

variations in host-microbe interactions and transcriptional regu-

lation. Interestingly, TEs tended to be found near isolate-specific

sequences and duplicated DNA fragments. It is possible that

translocation of TEs is important for gain or loss of isolate-specific

sequences and gene duplication events.

Overall, our results indicate that gain or loss of unique genes,

duplications, gene family expansions, and translocations of TEs

can be important factors for genome variation in the rice blast

fungus. Among these factors, translocation of TEs may be the most

important one because of its association with gene duplication and

isolate-specific sequences. There are reports on comparative

genomic analyses of plant pathogenic oomycetes and fungi, such

as Phytophthora and Fusarium species [35,36]. However, to our

knowledge, this study is the first on comparative analysis of the

field and laboratory strains of a plant pathogenic fungus, and this

can give insights into the genome variations of the fungus under

different environments.

Materials and Methods

Sequencing and genome assembly
For Sanger sequencing, genomic libraries with insertion size of

1.5 kb to 3.5 kb were constructed and sequenced at the Beijing

Genomic Institute (BGI, Beijing, China). These two isolates were

also sequenced with the GS-FLX and GS-FLX Titanium 454

platforms [37] at BGI that generated reads with an average length

of 240- and 380-bp, respectively. Reads from Sanger and 454

sequencing were placed into scaffolds using the Newbler assembler

(version 1.1.02.15, Roche).

The M. oryzae 70-15 genome sequence version 6 was down-

loaded from the Broad Institute (www.broad.mit.edu/annotation/

genome/magnaporthe_grisea). The repetitive sequences in the

assembled genomes of laboratory strain 70-15 and the field isolates

P131 and Y34 were masked with RepeatMasker (Smit, AFA,

Hubley, R & Green, P. RepeatMasker Open-3.0 at http://

repeatmasker.org). Masked genome sequences of the three M.

oryzae isolates were compared with the MUMMER package [38]

to construct chromosome sequences for P131 and Y34 based on

70-15 data. Genomic sequences with nucleotide identity over 92%

were considered to be conserved among different isolates.

Gene prediction and annotation
De novo gene prediction of the P131 and Y34 genome sequences

was performed with FGENESH [39], which was trained with 79

gene models of M. oryzae (kindly provided by Prof. Zhen Su at

China Agricultural University). The tRNA genes were identified

by tRNAscan [40]. Gene functions were predicted by comparison

with the NCBI NR protein database (http://www.ncbi.nlm.nih.

gov/) and the Pfam database [41]. InterPro [42] was used for gene

ontology annotations. Membrane and sub-cellular localization

were predicted by TMHMM 2.0 [43], SignalP3.0 [44], and WoLF

PSORT [45].

Gene pool and distance analyses
Nucleotide sequences of the predicted genes of P131, Y34, or 70-15

were compared separately with genomic sequences of the other two

isolates with TBLASTN [46]. Homologous genes with sequence

identities of 100%, 80–100%, and 50–80% were defined as identical,

similar, and divergent, respectively, while those below 50% were

considered non-homologous. Sequences of genes unique to the field

isolates were also queried against the unassembled reads of 70-15.

Orthologous proteins were clustered with OrthoMCL [47]. Only the

clusters containing one protein from each isolate were selected for

distance analysis. Individual protein sequences from three isolates

were concatenated and aligned with T-Coffee [48], and a distance

matrix was calculated with PROTDIST from the PHYLIP package

[49]. Finally, a neighbor-joining tree was constructed with NEIGH-

BOR from the PHYLIP package.

Ka/Ks analysis
The coding sequences of orthologous genes conserved in all

three isolates were aligned with ClustalW [50] to detect large

deletions (.12-bp), frame shifts, and null mutations. Orthologous

genes without large deletions, frame shifts, or null mutations in the

open read frame were analyzed for Ks and Ka with the YN00

program in the PAML package [51].

Analysis of repetitive sequences and transposable
elements
The Sanger reads of P131 and Y34 were assembled with RePS

[52] and analyzed for transposable elements with RepeatMasker.

New repetitive elements were identified by RepeatScout [53]. For

each transposable element (TE) identified in P131 or Y34, its

flanking sequences of 30 to 100 bp were extracted and used to

search against the 70-15 genome with Standalone BLASTN (e-

value,1025). Each TE and its corresponding region in 70-15

genome were aligned with BLAST2seq to assess whether it was

conserved. To search for genes disrupted by TEs, unique flanking

sequences of TEs in P131 or Y34 were used to search against 70-

15 genes (e-value,10220). The search results were removed if

more than one hit was found. Similar analyses were performed

with P131 and Y34.

Culture conditions and plant infection assays
The wild-type and mutant strains of 70-15, P131, and Y34 were

cultured at 25uC on oatmeal tomato agar (OTA) plates and
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conidiation assessed [17]. Mycelia collected from two-day-old

cultures in complete media (CM) shaken at 150 rpm were used for

extraction of fungal DNA and protoplasts. Media were supple-

mented with 250 mg/ml hygromycin B (Roche, USA) or 400 mg/

ml neomycin (Amresco, USA) to select hygromycin-resistant or

neomycin-resistant transformants. Four-week-old seedlings of

monogenic rice cultivars (Table S1) and eight-day-old seedlings

of barley cultivar ‘E8’ were inoculated as previously described

[17,54]. Lesion development was examined 5–7 days after

inoculation.

CHEF electrophoresis
Chromosome-size DNA were prepared with protoplasts isolated

from vegetative hyphae as previously described [55,56], and

separated on 0.65% Megabase agarose (Bio-Rad, USA) gels with a

Bio-Rad DR III system with switching intervals of 60 min for 48 h,

55 min for 72 h, 45 min for 72 h, and 35 min for 72 h at 1.5 V/cm.

Chromosomal DNA of Schizosaccharomyces pombe and Hansenula Wingei

(Bio-Rad, USA) were used as the molecular weight markers.

Generation of the gene replacement constructs and
mutants
To generate the P131_scaffold00208-2 gene replacement vector

pKOPS208-2, its 0.97 kb upstream and 0.82 kb downstream

fragments were amplified with primer pairs P131_scaffold00208-

2KO_LBf plus P131_scaffold00208-2KO_LBr, and P131_scaf-

fold00208-2KO_RBf plus P131_scaffold00208-2KO_RBr, re-

spectively. The resulting PCR products were cloned into the

KpnI-HindIII and EcoRI-SpeI sites of pKOV21 [56,57]. After

linearization with NotI, pKOPS208-2 was introduced into

protoplasts of P131. Hygromycin resistant transformants were

isolated and assayed for neomycin-resistance. The resulting

transformants were screened by primer pairs P1/P11 and P2/

P12. The putative deletion mutants were identified and confirmed

by Southern blot analysis. The same approach was used to

generate gene replacement constructs and mutants for isolate-

specific genes: P131_scaffold00297-2, P131_scaffold00493-1,

Y34_scaffold00875-1, Y34_scaffold00875-3, Y34_scaffold00857-6,
Y34_scaffold01193-2, Y34_scaffold00005-1, Y34_scaffold01048-2,

Y34_scaffold00105-1, Y34_scaffold00105-2, and Y34_scaffold00855-
11. The primer pairs used for generating the gene replacement

constructs and for mutant screening are listed in Table S17.

Accession number
The genome sequence data of Y34 and P131 were deposited in

the NCBI Genome Database (www.ncbi.nlm.nih.gov/genome)

under the accession numbers AHZS00000000 and

AHZT00000000, respectively. The nucleotide sequence data of

repetitive sequences and transposable elements are available in the

NCBI GenBank database under the following accession numbers:

M77661 for Grasshopper, AB024423 for Maggy, AF018033 for

MGL, AJ851229 for Mg-MINE, AF314096 for MGRL3,

MGU35313 for Mg-SINE, AB074754 for Occan, AF314096 for

Pot2, AF333034 for Pot3, AB062507 for Pyret, NC_009594 for

Pot4, RETRO5, RETRO6, RETRO7, and Ch-SINE, JQ929664

for Cluster 1, JQ929665 for Cluster 2, JQ929666 for Cluster 3,

JQ929667 for Cluster 4, JQ929668 for Cluster 5, JQ929669 for

Cluster 6, JQ929670 for Cluster 7, JQ929671 for Cluster 8, and

JQ929672 for Cluster 9.

Supporting Information

Figure S1 Comparison of the isolates P131, Y34, and 70-15 on

asexual development and plant infection. (A) Colonies of P131,

Y34, and 70-15 on OTA plates photographed at 120 hours after

inoculation (hpi). (B) Vegetative mycelia of P131, Y34, and 70-15

shaken in liquid CM, photographed at 48 hpi. (C) Seedlings of the

susceptible rice cultivar ‘LTH’ sprayed with conidia of P131, Y34,

and 70-15, respectively, photographed 7 days after inoculation

(dai).

(TIF)

Figure S2 The whole mitochondrial genomes of P131 or Y34

were compared with that of 70-15. The differences in nucleotide

acid substitution or deletion among the three isolates are shown.

The mitochondrial genome of Y34 lacks two fragments with a

combined length shorter than 350 bp.

(TIF)

Figure S3 PCR validation of the gaps in the assembly of 70-15

filled with genome sequences of P131 and Y34. The genomic

DNA of 70-15 was used for PCR amplifications with the primer

pairs listed in Table S17.

(TIF)

Figure S4 PCR validation of the selected genes unique to single

isolates P131 (A), Y34 (B), or 70-15 (C), and specific to two isolates

P131 and Y34 (D), P131 and 70-15 (E), or P131 and Y34 (F). The

genomic DNA of isolates P131, Y34, and 70-15 were used for

PCR amplification with the primer pairs shown in Table S17.

(TIF)

Figure S5 RT-PCR validation of the isolate-specific genes

unique to P131 or Y34. Primers listed in Table S17 were used

to amplify sequences unique to P131 or Y34 with cDNA

synthesized from RNA isolated from vegetative hyphae.

(TIF)

Figure S6 Functional analyses of 12 field isolate-specific genes. (A)

Colonies of the wild-type strain Y34 and the null mutants of

Y34-unique genes KOY875-1 (Y34_scaffold00875-1), KOY875-3

(Y34_scaffold00875-3), KOY857-6 (Y34_scaffold00857-6), KOY1193-

2 (Y34_scaffold01193-2), KOY5-1 (Y34_scaffold00005-1), KOY1048-2

(Y34_scaffold01048-2), KOY105-1 (Y34_scaffold00105-1), KOY105-2

(Y34_scaffold00105-2), KOY855-11 (Y34_scaffold00855-11), and the

wild-type strain P131 and the null mutants of P131-unique genes

KOP208-2 (P131_scaffold00208-2) and KOP1784-1-2-3 (P131_scaf-

fold01784-1-2-3). Representative photographs were taken on OTA

plates 5 dai. (B) Barley seedlings sprayed with conidia of the wild-type

strains P131 and Y34, and with null mutants of all 12 genes

photographed 5 dai.

(TIF)

Figure S7 Verification of genes duplicated specifically to the

field isolates. Genomic DNA of P131, Y34, and 70-15 were

digested by two restriction enzymes. Amplified fragments of the

gene P131_scaffold01531-1, P131_scaffold01428-1, and Y34_scaf-

fold00846-5 were used as probes. M, l-HindIII ladder.

(TIF)

Figure S8 Co-distribution of the TEs with the duplicated genes

families and isolate-specific sequences in the genomes of P131, Y34,

and 70-15. The peripheral circle represents seven chromosomes

(numbered I–VII) of 70-15 with their sizes marked inMb. The 2nd to

4th circles represent duplicated genes families along seven chromo-

somes. The 5th to 7th circles represent the distribution of the TEs in

the genomes of three isolates. The 8th to 13th circles represent the

percentage of isolate-specific sequences from pair-wise comparisons

in 50-kb windows same as the 3rd to 8th circles shown in Figure 1.

Red, 70-15; blue, Y34; green, P131.

(TIF)
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Table S1 Pathotypes of P131, Y34, and 70-15 based on their

infectivity towards different monogenic rice cultivars generated by
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