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Abstract

Background: The trypanosomatids Leishmania major, Trypanosoma brucei and Trypanosoma cruzi cause
some of the most debilitating diseases of humankind: cutaneous leishmaniasis, African sleeping sickness,
and Chagas disease. These protozoa possess complex life cycles that involve development in mammalian
and insect hosts, and a tightly coordinated cell cycle ensures propagation of the highly polarized cells.
However, the ways in which the parasites respond to their environment and coordinate intracellular
processes are poorly understood. As a part of an effort to understand parasite signaling functions, we

report the results of a genome-wide analysis of protein kinases (PKs) of these three trypanosomatids.

Results: Bioinformatic searches of the trypanosomatid genomes for eukaryotic PKs (ePKs) and atypical
PKs (aPKs) revealed a total of 176 PKs in T. brucei, 190 in T. cruzi and 199 in L. major, most of which are
orthologous across the three species. This is approximately 30% of the number in the human host and
double that of the malaria parasite, Plasmodium falciparum. The representation of various groups of ePKs
differs significantly as compared to humans: trypanosomatids lack receptor-linked tyrosine and tyrosine
kinase-like kinases, although they do possess dual-specificity kinases. A relative expansion of the CMGC,
STE and NEK groups has occurred. A large number of unique ePKs show no strong affinity to any known
group. The trypanosomatids possess few ePKs with predicted transmembrane domains, suggesting that
receptor ePKs are rare. Accessory Pfam domains, which are frequently present in human ePKs, are

uncommon in trypanosomatid ePKs.

Conclusion: Trypanosomatids possess a large set of PKs, comprising approximately 2% of each genome,
suggesting a key role for phosphorylation in parasite biology. Whilst it was possible to place most of the
trypanosomatid ePKs into the seven established groups using bioinformatic analyses, it has not been
possible to ascribe function based solely on sequence similarity. Hence the connection of stimuli to protein
phosphorylation networks remains enigmatic. The presence of numerous PKs with significant sequence
similarity to known drug targets, as well as a large number of unusual kinases that might represent novel

targets, strongly argue for functional analysis of these molecules.
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Background

Trypanosomatid pathogens of humans include Trypano-
soma brucei, Trypanosoma cruzi and Leishmania major, caus-
ative agents of African sleeping sickness, Chagas disease,
and cutaneous leishmaniasis respectively [1]. Trypanosoma
brucei lives extracellularly in the human host, primarily in
the bloodstream and cerebrospinal fluid. African sleeping
sickness, which is estimated to afflict 300,000-500,000
people per year in sub-Saharan Africa, with a disease bur-
den of 1.6 million disability adjusted life years (DALYs),
is invariably fatal unless treated [2]. Trypanosoma cruzi,
which is found in Latin America, results in a disease bur-
den of 650,000 DALYs. This parasite can invade most
types of nucleated cells. About 30% of infected individu-
als progress to a chronic phase that culminates in heart
disease and mega syndrome [3]. Of those infected it is
estimated the 50,000 will die each year. Leishmania para-
sites result in a disease burden of 2.3 million DALYs, with
greater than 80,000 deaths/year and cause a variety of dis-
eases depending on the infecting species. The most dan-
gerous manifestation is the visceral disease known as kala
azar, caused by L. donovani. Kala azar is re-emerging in
India in a particularly aggressive form that is resistant to
standard treatment [4]. No vaccine has been approved for
any of these diseases and many of the drugs in use are
highly toxic and prone to the development of drug resist-
ance. There is therefore an urgent need to identify new
drug targets and the recent completion of the genome
sequence of the three model trypanosomatids, T. brucei, T.
cruzi and L. major, can be exploited in this regard [5-7].

During development the parasites pass through different
environments. Each species is carried by a different insect
vector, in which the parasite undergoes specific develop-
mental changes that allow it to infect the human host. For
example, Leishmania parasites move from the sandfly mid-
gut up to the mouthparts, then into the human host
where they invade macrophages and live within a
phagolysosome. In each environment, the parasites
respond with significant changes in their metabolic and
protein profile. The signal transduction pathways mediat-
ing these changes remain unknown. Only a few receptor-
like proteins have been identified, primarily receptor ade-
nylate cyclases with an extracellular putative ligand bind-
ing domain and an intracellular catalytic domain [8,9].
Intermediate steps of signal transduction in the parasites
have not been defined, although genomic analysis shows
that they possess numerous molecules predicted to bind
second messengers, as well as protein kinases and phos-
phatases [5]. The culmination of the signaling pathways is
unlikely to be at the level of transcription, since most
genes are transcribed in polycistronic units with little evi-
dence for regulation [7,10,11]. Many changes in protein
phosphorylation during the parasite developmental
cycles have been documented [12-14]. The parasites also
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possess an integrated cell cycle that coordinates the inher-
itance of the single mitochondrion, flagellum, and
nucleus [15,16].

Protein kinases (PKs) are key mediators of signal trans-
duction, transmitting environmental cues and coordinat-
ing intracellular processes. Eukaryotic protein kinases
(ePKs) are categorized by the amino acid sequence of their
catalytic domains. Broadly, ePKs fall into two super-
families: protein serine/threonine kinases and protein
tyrosine kinases. The former are ubiquitous in eukaryotes.
The latter are present in all metazoa for which the genome
sequence is available, but relatively few examples have
been found in unicellular eukaryotes [17,18]. However,
protein tyrosine phosphorylation has been well docu-
mented in trypanosomatids [13,14,19,20]. Mammalian
receptor protein kinases are generally tyrosine kinases
[21], while all known plant receptor kinases are serine/
threonine kinases [22,23]. Receptor kinases are activated
by ligands, facilitating intercellular communication
within multicellular organisms. Parasites that live in mul-
ticellular hosts could conceivably use similar mechanisms
to respond to host or parasite ligands, although such reac-
tions have not been defined at the molecular level.

Six major groups of ePKs have been defined on the basis
of sequence similarity of the catalytic domains: AGC,
CAMK, CMGC, TK, TKL, STE [24]. ePKs that do not fall
into these groups are categorized as "Other". Within each
group (including "Other"), multiple families have been
defined. Interestingly, the substrate preferences break into
groups along the same lines: for example AGC and CAMK
kinases tend to phosphorylate motifs containing basic res-
idues, CMGC kinases often are proline-directed, while
CK1 and CK2 kinases phosphorylate motifs with acidic
residues [24]. Additional features that correlate with
group assignments include responses to other mediators
such as ligands (receptor TK), calcium (CAMK), and cer-
tain second messengers (AGC). Relatively few protein
kinases have been studied in detail with respect to expres-
sion and function in each of the trypanosomatids (see
Additional file 1).

Atypical PKs (aPKs) are not closely related to ePKs at the
sequence level, lacking the 11 subdomains that define
ePKs. They include a variety of molecules that have been
shown to have protein kinase catalytic activity in specific
systems. Among the aPKs, the most well-characterized are
the PIKK kinases, which have catalytic domains resem-
bling those of lipid kinases in sequence [25]. Interestingly,
the RIO and alpha groups show remnants of many of the
ePK subdomain motifs [26,27]. The other atypical kinases
require further study for definitive analysis of their
activity.
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An analysis of partial genomic sequence suggested that
trypanosomatids might differ considerably from the host
in signaling mechanisms, lacking typical signaling recep-
tors with the exception of adenylate cyclases, as well as
SH2 domains and transcription factors [28]. These specu-
lations have been borne out by the completed genomic
sequences of the three trypanosomatids known as the Tri-
Tryps: T. brucei |6], T. cruzi |5], and L. major [7], as briefly
discussed in the T. cruzi genome paper [5]. In this report,
we present a detailed examination of the TriTryp kinome.

Results and discussion

The TriTryp kinome

To identify all protein kinase genes in the three trypano-
somatid genomes, we searched GeneDB [29] for all genes
bearing Pfam protein kinase domains, as well as by BLAST
using representatives of all major protein kinase gene fam-
ilies, including aPKs. All ePKs were examined for the pres-
ence of the 11 characterized subdomains, and specifically
for the presence of the key lysine in subdomain 2 and
aspartic acids in subdomains 6 and 7. The genomic anal-
ysis revealed 179, 156, and 171 ePKs and 17, 20, 19 aPKs
in L. major, T. brucei and T. cruzi respectively. These num-
bers suggest that phosphorylation is an important mecha-
nism for cellular regulation in all three trypanosomatids
and are considerably larger than that described for
another intracellular parasite that transits diverse environ-
ments; Plasmodium falciparum. P. falciparum possesses 65
ePKs and 20 ePK-related sequences, designated FIKK [30-
32]. The latter have not yet been shown to have protein
kinase activity [30]. The activation of many ePKs requires
phosphorylation in the activation loop between sub-
domains 7 and 8. These kinases are typically marked by an
RD motif within subdomain 6 [33]. In T. brucei, 130 of the
156 ePKs are RD kinases, further supporting the concept
that phosphorylation networks are complex and impor-
tant in these organisms.

We examined the relationship of the trypanosomatid
ePKs to the groups and families of kinase domains of
human, worm, fly, and yeast using the available datasets
[34]. Most ePKs had a highly significant BLAST score
against at least one member of the 4-kinome dataset. For
example, 58% of the T. cruzi ePKs had an E-value of at
least 1049, and 77% had a score of at least 10-39 against a
member of this dataset (Figure 1). Based on BLAST E-val-
ues, as well as phylogenetic inference (see below), assign-
ments to ePK groups and families were made (Table 1,
Additional file 1). We generated phylogenetic trees of the
kinase domains of the entire T. brucei ePK kinome, seed-
ing the tree with human and yeast PKs to facilitate classi-
fication (Figure 2 shows the MRBAYES tree). The trees
were generally consistent with the BLAST assignments
(the few that did not match are marked by an asterisk in
the tree). Of note are several unique kinases that are on

http://www.biomedcentral.com/1471-2164/6/127

10\49 I
\ 0
10-\70 ‘ ° o
o a
fope—8
2 :
o )
= 10% | o o &
g 8 S )
W g | -
p 8 [} o
e g 9 8 8
0% 8 § g g8 8 B g
o i g °
10% ‘ g 8
Q
100 8 -
O 4 b Q ¥ by 2 P ]
Q X 2
< % O g uz" g g (7] §
(] =2 z
Figure |

Similarity of T. cruzi ePKs to those in the 4-kinome
dataset. Full-length proteins were tested by BLAST analysis
against the database of catalytic domains of all human, Saccha-
romyces cerevisiae, Drosophila melanogaster, and Caenorhabditis
elegans protein kinases. The best E-value is graphed for each
kinase, which are clustered according to their classification
group. Non-cat: protein kinases predicted to be non-catalytic
due to lack of subdomain | or catalytic residues. Different
colors were used to facilitate viewing of closely spaced spots.

long branches originating near the center of the tree, indi-
cating their high divergence from other ePKs.

In general, the TriTryp kinomes are closely related. COGS
are clusters of orthologous genes, as revealed by analysis
of mutual BLASTP hits across the genomes. The majority
(68%) of the ePK genes reside in COGS that contain
members from each of the three species (Additional file
1). Conversely, only a small number of genes appear to be
unique to a species (20 in L. major, 11 in T. cruzi, and 3 in
T. brucei, Additional file 1). As with other genes in these
organisms, members of these COGs are generally syntenic
among the three species, furthering the concept that the
molecules are orthologous. Figure 3 compares the repre-
sentation in the major groups and families of human pro-
tein kinases with those of L. major and Table 1 shows the
representation of groups and families among the TriTryps,
with further details including systematic gene names pro-
vided in Additional file 1.

Protein tyrosine kinases

A key difference between host and parasite kinomes is the
complete lack of ePKs that map to the tyrosine kinase (TK)
and tyrosine kinase-like (TKL) groups in the trypano-
somatids. Representatives of the former in humans
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Table I: Groups and families of ePKs in the TriTryps
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Group Family T. brucei  T. cruzi® L. major Group Family T. brucei  T. cruzi L. major
AGC (na)b 6 7 6 Other AUR 3 3 3
NDR 2 | | CAMKK 4 4 4
PKA 3 3 3 CK2 2 2 2
RSK | | | NAK 0 | |
Total 12 12 11 NEK 20 22 22
CAMK (na) 7 7 9 PEK 3 2 3
CAMKL 7 6 7 PLK 2 2 |
total 14 13 16 TLK 2 | |
CKI CKl 4 7 6 ULK | | |
TTBK | | | VPS | | 0
Total 5 8 7 WEE | 2 2
CMGC (na) | | | total 39 42 40
CDK I 10 I STE (na) 7 8 10
CLK 4 5 4 STE7 2 2 2
DYRK 7 7 8 STEII 14 18 21
GSK 2 2 2 STE20 2 3 |
CDKL (MAPK-like)e 2 | 2 total 25 31 34
MAPKd 10 I 12 Unique 19 23 26
RCK (MAPK-like)< 3 3 3 TOTAL ePK 156 171 179
SRPK 2 2
total 42 42 45 Non-catalytic 13 16 16

aMultiple copies of TcCRK7 were counted as one gene. The number of tandem repeated CK| genes in T. cruzi is not clear. One putative T. cruzi
PEK gene is truncated by the contig end for both alleles, and is assigned on the basis of orthology in the non-catalytic sequence.

bna, not assigned to a family.

¢ CDKL and RCK families are related to MAPKs and CDKs [57] but are classified separately in the human kinome [21].
4 One MAPK-like sequence in T. brucei and two in T. cruzi and L. major lack the typical regulatory motifs (see Table S1). One MAPK-like COG, which
fell below the E-value criterion, was designated as MAPK on the basis of regulatory motifs.

include receptor protein kinases such as the insulin recep-
tor and cytosolic kinases such as src. The latter group con-
tains ePKs such as RAF1 and TGFBR2. We also found no
evidence of the receptor guanylyl cyclase (RGC) group of
proteins, which are structurally related to protein kinases.
These groups of ePKs are also absent in malaria parasites,
which further lack the STE group of kinases. Interestingly,
it has been reported recently that the genome of the uni-
cellular protist Entamoeba histolytica encodes TKs with SH2
domains, TKLs, and a large family of putative receptor ser-
ine-threonine ePKs [18]. As E. histolytica also possesses
genes encoding putative 7 transmembrane receptors and
heterotrimeric G proteins, which the trypanosomatids
lack [5], the mechanisms regulating cell signaling appear
to be very different among the parasitic protozoa.

As noted above, phosphorylation on tyrosine is well doc-
umented in trypanosomatids. We propose that this activ-

ity is likely to be due to the action of atypical tyrosine
kinases such as Weel and dual-specificity kinases that can
phosphorylate serine, threonine, and tyrosine. Multiple
members of the dual specificity kinase families (DYRKs,
CLKs, and STE7) are present in the trypanosomatid
genomes. Although Weel is functionally a tyrosine
kinase, it most closely resembles serine/threonine kinases
such as Chkl and cAMP-dependent kinases in structure
and primary amino acid sequence [35]. In yeast and
higher eukaryotes Weel phosphorylates a conserved tyro-
sine residue in the ATP binding pocket of CDK1 (cdc2),
inactivating the protein kinase. This mechanism is likely
to be conserved in the three trypanosomatids, since there
are two Weel family members in L. major and T. cruzi and
onein T. brucei. In addition, CRK3, the putative functional
CDK1 homologue in trypanosomatids [36-38], contains a
conserved tyrosine residue in the same subdomain as the
human CDKI1 regulatory tyrosine [39,40]. In T. brucei, 18
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Figure 2

Unrooted tree of T. brucei protein kinases. The catalytic domains of predicted functional ePKs were analyzed using
MRBAYES. Bootstrap values greater than 0.95 are indicated by a dot at the node, and selected lower values are shown. No
members clustered with TK or TKL kinases from human or yeast (not shown on the tree). T. brucei sequences are identified by
systematic gene IDs. Selected human (Hs), S. cerevisiae (Sc) and D. melanogaster (Dm) were included to provide landmarks and
these are shown in red font. Asterisks mark sequences for which the MRBAYES tree conflicted with the BLAST analysis at the

group level. Kinases classified as unique through BLAST are marked with "U".
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Comparison of L. major and human ePK classification.

other CMGC members also have this tyrosine within sub-
domain 1 (Additional file 2), reiterating the potential for
widespread regulation of protein kinase activity via tyro-
sine phosphorylation. The potential conservation in regu-
latory mechanisms for CDK activity between yeast,
mammals and trypanosomatids may not extend to all
protozoa, as the putative P. falciparum Weel lacks a key
active site residue suggesting it may not be active [31] and
dual-specificity ePKs appear to be absent. In addition, no
tyrosine phosphorylation has been demonstrated to date
in that species. The existence of other unusual protein
tyrosine kinases in trypanosomatids is an intriguing pos-
sibility given the large number of protein kinases in the
trypanosomatid kinomes that cannot be easily placed into
typical ePK groups or families (see below).

Serine-threonine protein kinases

Poorly represented groups: CAMK and AGC

The CAMK and AGC groups are relatively poorly repre-
sented within trypanosomatid genomes as compared to
humans. The CAMK group (which includes the Ca*2/cal-
modulin regulated kinases and AMP-dependent kinase,
AMPK) is small in trypanosomatids with only 13 CAMKs
predicted to be active in T. cruzi, 14 in T. brucei, and 16 in
L. major. In contrast, the human genome encodes 74
CAMK:s. A phylogenetic tree of the trypanosomatid CAMK
and CAMK-like unique kinase domains is shown in Figure
4. Also included are along with representatives of each
family of CAMKs from human, two yeast CAMKs and a
plasmodial calcium dependent CAMK. Of the 19 trypano-
somatid CAMK genes identified, 13 have representatives
in each species as determined by COG analysis, and sup-
ported by phylogenetic trees. An additional CAMK-like
kinase, marked as unique due to its low E-value in BLAST
analysis, was also conserved, as was a COG in which two
of the three orthologues were predicted to be inactive. The
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tree shown in Figure 4 also shows a characteristic com-
mon to all trees in which groups of ePKs from the trypano-
somatids were compared: the trypanosomatid ePKs
falling within COGS formed a tight cluster with high con-
fidence, and were more distantly related to ePKs from
humans or yeast.

BLAST analysis against the 4-kinome dataset indicated
that about half of the trypanosomatid CAMKs belong to
the CAMKL subfamily, the remainder were not assigned to
a specific family. The phylogenetic trees generally agreed
with these predictions, and supported the further classifi-
cation of two sets of trypanosomatid genes as members of
the AMPK subfamily. In other organisms, AMPKs are reg-
ulated by AMP and hence are involved in metabolic sens-
ing [41]. In addition, two sets of the predicted CAMK
kinases contain EF hand sequences, which may provide
for sensitivity to Ca+*2? (marked in Figure 4). This juxtapo-
sition of a protein kinase domain with EF hand motifs is
characteristic of CDPKs, a group of calcium dependent
protein kinases that are prominent in plants [42] and in P.
falciparum [30,31,43], but which are absent in humans
and yeast. However, the phylogenetic inference does not
support the clustering of these trypanosomatid CAMKs
with the plasmodial calcium dependent kinase CDPKI.
These trypanosomatid genes are likely therefore to encode
a novel class of EF-hand containing ePKs.

The AGC group includes ePKs structurally related to pro-
tein kinases that respond to second messengers: protein
kinase A (responsive to cAMP), protein kinase G (respon-
sive to cGMP), and protein kinase C (responsive to diacyl
glycerol). Normalized to kinome size, trypanosomatids
have approximately half as many AGC kinases as humans.
The parasite genomes encode 3 AGC kinases that are
related to PKA. However, T. brucei PKA appears to be acti-
vated by cGMP rather than cAMP [44]. Also within the
AGC group are the NDR kinases. BLAST analysis and phy-
logenetic tree inference indicates that T. brucei possesses
two NDR family kinases. One of these is conserved and
syntenic among the trypanosomatids, while the other,
PK50 (Tb10.70.2260), is specific to T. brucei. This mole-
cule is a functional homologue of Schizosaccharomyces
pombe Orb6 [45] and interacts with MOB1 to form an
active kinase complex that has a potential role in cytoki-
nesis, but not mitosis [46]. Whether the conserved NDR
kinases also interact with MOB1 is not yet known. The
remainder of the AGC kinases could not be assigned to a
specific family by sequence alone, except for one RSK-like
sequence. Phylogenetic inference of the T. brucei
sequences carried out as detailed in Methods supports
these general conclusions and provided no indication of
trypanosomatid-specific clusters (data not shown).
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Over-represented groups: CMGC and STE

The CMGC group and the STE group are relatively well
represented within these trypanosomatid genomes as
compared to humans. Examples of CMGC kinases include
ePKs such as cyclin-dependent kinases (CDKs), MAP
kinases (MAPKs), and dual specificity CLK and DYRK
kinases. Trypanosomatids have a large number of these
kinases (e.g., 45 in L. major as compared to 61 in
humans). All of the CMGC families identified in humans
are also represented in trypanosomatids, as indicated by
BLAST analysis and phylogenetic inference. The CDK fam-
ily is relatively large in trypanosomatids with 11 members
in T. brucei and L. major and 10 in T. cruzi. This complexity
may reflect the problem of dividing a highly polarized cell
with an elaborate cytoskeleton and a single
mitochondrion, along with an integral link between cell
cycle control and life cycle differentiation. Despite the
existence of a large number of CDK family members
(named CRK for cdc2-related kinase), only 2 have been
shown to be essential for cell cycle progression in trypano-
somatids. CRK3 in complex with the CYC6 mitotic cyclin
is essential for G2/M phase progression and is the func-
tional homologue of CDK1 [36-38,47]. CRK3 in complex
with CYC2 is essential for G1 progression [48,49]. A
PHO80-like cyclin and a B-type cyclin control the cell
cycle of the procyclic form of Trypanosoma brucei [50],
while TbCRK1 is also an essential gene required for G1
phase progression [38,47,51,52]. However, the roles of
CRKs in the cell cycle is complex, with functional differ-
ences between bloodstream and procyclic form T. brucei
as revealed by RNAi knockdown studies [37,38,47,48].
CRK?7 has the highest level of sequence identity to CDK7
of mammals. CDK?7, in complex with cyclin H and MAT1,
is a CDK-activating kinase (CAK) that phosphorylates the
T-residue of CDKSs (e.g., T160 of human CDK1). No cyclin
H or MAT1 orthologues can be identified in trypanosoma-
tids based on sequence, so it remains to be determined if
CRK?7 is a functional cyclin-dependent kinase or indeed if
it has CAK activity. However, many CRKs, including
CRK1, 2,3, 6,7, 8,9 and 12, have a conserved T-loop res-
idue, suggesting that the CRKs might be activated in vivo
by a CAK activity [53].

Interestingly, T. cruzi possesses a large number of genes
encoding CRK7 isoforms (counted only as one unique
gene in our analyses). These are dispersed near the telom-
eres of many chromosomes, being adjacent to a retro-
transposon hotspot protein gene. Of the 27 sequences
identified, most contain all of the catalytic residues,
although a few are truncated. The biological significance
of this gene amplification is not known, however expan-
sion of gene families within subtelomeric regions of
trypanosomatid chromosomes is a feature of these
genomes in general.

http://www.biomedcentral.com/1471-2164/6/127

Two families of CMGC kinases phosphorylate serine/
arginine rich motifs in serine-arginine rich SR proteins,
which function in RNA processing and splicing in many
higher organisms: SRPKs [54] and the dual specificity
CLKs [55]. Two SRPKs [54] and four or five CLKs are
encoded within each trypanosomatid genome. Given the
major role of RNA processing and turnover in modulating
gene expression in trypanosomatids, these families of
CMGC kinases may be of key interest in studying parasite
gene regulation. Two GSKs, which are drug targets in dia-
betes and neurological diseases [56], are also present.

A large number of MAPK-related genes are also present in
trypanosomatids, possibly reflecting a role of 3-compo-
nent MAP kinase cascades in coordinating responses to
environmental cues (Table 1). Among these genes are
those which are most closely related in sequence to the
MAPK family, and those which are most closely related to
the CDKL and RCK families. These latter families possess
the residues characteristic for the regulation of MAPKs and
hence are considered to be part of a MAPK superfamily by
some authors [57], even though they are more similar in
sequence to CDKs. Among the identified MAPK-like pre-
dicted proteins, two sets lack the predicted regulatory
motifs (LmjF13.0780 and its T. cruzi orthologue;
LmjF03.210 and its T. brucei and T. cruzi orthologues,
Table S1) and hence must be regulated in a distinct man-
ner. Thus the total complement of protein kinases likely
to be regulated as MAPKs numbers 14 in T. brucei, 13 in T.
cruzi, and 15 in L. major.

The parasites clearly find themselves in environments that
vary substantially in temperature, pH, nutrients, and
stresses during their developmental cycle. An elaborate
phosphorylation signaling system to respond to those
changes may be a key strategy of this group of organisms.
Many MAPKs, and those kinases likely to regulate them
(see below), appear to be involved in developmentally
regulated processes in trypanosomatids. Nine MAPKs
have been cloned and analyzed from L. mexicana
(LmxMPK1-9) and their mRNAs abundances are develop-
mentally regulated [58,59]. LmxMPK1 is essential for
amastigote, but not promastigote proliferation [59], while
LmxMPK9 is involved in regulating flagellar length, a
stage-regulated function in Leishmania [60]. Three MAPKs
have been analyzed in T. brucei. KFR1, an ERK-like MAPK,
has been proposed to be involved in the proliferation of
bloodstream form trypanosomes and is the first trypano-
somatid ePK reported to be regulated by a specific
extracellular molecule, interferon y [61,62]. TDMAPK2,
also ERK-like, is not essential for proliferation of the
bloodstream form trypanosome, but is important for suc-
cessful differentiation [63]. Mutants lacking TbMAPK2
have delayed kinetics of differentiation from the blood-
stream form to the procyclic form; the resulting procyclic
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forms undergo cell cycle arrest. TDECK1, which has char-
acteristics of both MAPKs and CDKs, and was named T.
brucei ERK-like, CDK-like protein kinase [64], falls into
the CDKL family by phylogenetic analysis (this study).
This kinase appears to be essential in all life cycle stages
analyzed [64]. TDECK1 has an unusual C-terminal exten-
sion and overexpression of TbECK1 lacking the C-termi-
nal extension in procyclic trypanosomes leads to a
significant reduction in growth, suggesting an important
role in cell cycle control. The C-terminal extension
appears to act as a cis-acting negative regulator of protein
kinase. The roles of many trypanosomatid MAPKs remain
to be explored.

MAPKSs are activated by phosphorylation within the acti-
vation loop, typically both on a tyrosine and a threonine.
This phosphorylation is mediated by MAP kinase kinases
(MAP2Ks), which are members of the STE7 family, one of
the three major families of STE group kinases that are gen-
erally described as upstream regulators of MAP kinase cas-
cades. Although only two STE7 genes were assigned
through BLAST analysis, phylogenetic inference revealed
that five sets of orthologues cluster with good confidence
into the STE7 family (Figure 5), suggesting that they may
function as MAP2Ks in this organism. A previously identi-
fied Leishmania mexicana MAP2K, LmxPK4, has a potential
role in parasite differentiation [65], while another
LmxMKK, is involved in the maintenance of flagellar
length [66]. STE11 family ePKs often function as MAP3Ks
and are especially numerous in the trypanosomatids. Sev-
eral of the STE11 kinases formed trypanosomatid-specific
clusters in our phylogenetic analyses. Another cluster was
found to be ubiquitous amongst the trypanosomatid,
yeast and human kinomes. LmMRK1 (LmjF32.0120) is an
essential STE11 family kinase [67]. In contrast to STE11,
the STE20 family kinases, many of which function as
MAP4Ks, are relatively rare in trypanosomatids. Another
arm of the MAPK activation pathways is mediated by
RAF1, a TKL kinase. The TKL group of protein kinases is
absent in trypanosomatids. It is clear that sequence data
alone cannot accurately predict specific three-component
signaling pathways in the trypanosomatids - detailed bio-
chemical analyses will be required. Nonetheless, taken
together, these findings provide interesting insight into
trypanosomatid-specific aspects of MAP kinase cascades.
The STE group of kinases is relatively expanded in
trypanosomatids, with 34 members in L. major. In con-
trast, it is either absent or highly abbreviated in the
malaria parasite [30,31], once again highlighting the dif-
ferences amongst protozoan lineages.

Other serine/threonine kinases

The NEK family of ePKs shows a significant expansion
within trypanosomatids, having 20-22 members (com-
pared to the 15 representatives in the human genome).

http://www.biomedcentral.com/1471-2164/6/127

The NEK kinases have been relatively little studied in
model systems, but several appear to be involved in cell
cycle [68] and cytoskeletal functions [69,70]. Some of the
NEK kinases appear to function in cascades, with human
NEK9 phosphorylating and activating NEK6 and NEK7
[71]. Indeed, all of the T. brucei NEK kinases possess the
RD motif in subdomain 6, which is an indicator that
phosphorylation in the activation loop is likely to be
required for maximal activity. As with most of the human
NEK kinases, the catalytic domain is situated at or near the
N-terminus of the T. brucei NEK kinases. Phylogenetic
analysis of the 20 T. brucei NEK kinases shows that the
parasite kinases do not form tight clusters with the NEK
kinases represented in the 4-kinome database nor with the
NEK kinases of the protozoan P. falciparum (Figure 6),
although in two of three phylogenetic methods imple-
mented (MRBAYES and PHYML Likelihood), one of the T.
brucei NEK kinases (Tb06.2N9.460) did cluster with a
plasmodial kinase (MALG6P1.56). In contrast, several clus-
ters of NEK kinases across yeast and metazoa were identi-
fied: e.g., SCKIN3, DmNEK2 and HsNEK2 form a highly
supported clade, as do HsNEK10 and CePQN25. Of par-
ticular interest to us was the identification of a trypano-
somatid-specific clade containing 12 of the T. brucei NEK
kinases, which was supported by all of the methodologies.
The trypanosomatid NEK kinases have perhaps a mod-
estly higher preponderance of accessory domains com-
pared to other trypanosomatid kinases (see below). For
example, several possess a coiled coil region downstream
of the catalytic domain (Tb03.27C5.650, Tb05.26K5.430,
Tb10.61.2330, and Tb10.70.7860). This feature is also
found in human NEK1 and NEK2. Several other trypano-
somatid NEK kinases have a C-terminal PH domain, a
combination not described in the NEK kinases of other
species. These kinases lie within the trypanosomatid-spe-
cific clade. The roles of the trypanosomatid NEK kinases
have not been studied in any detail, although at least one
is known to be developmentally regulated [72] and one
has a role in basal body duplication (D. Robinson, per-
sonal communication).

Among the families of "Other" protein kinases repre-
sented in trypanosomatids, several have been shown to be
involved in cell division in various organisms (AUR,
Aurora; PLK, polo-like kinases; Weel) DNA replication/
repair (TLK, also ATM/ATR atypical kinases described
below), and stress responses (PEK family). Activators of
CAMKs (CAMK kinases, CAMKK) are also present, as are
multiple CK1 and CK2 isoforms (formerly known as
casein kinase I and II) [73,74]. A member of the VPS15
family (involved in vacuolar protein sorting), was also
identified, although the Leishmania orthologue may not
be catalytically active. One representative of the ULK fam-
ily kinases was found in each trypanosomatid. ULK
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Page 10 of 19

(page number not for citation purposes)



BMC Genomics 2005, 6:127

http://www.biomedcentral.com/1471-2164/6/127

To03 211 4880 CK2ZA1

Thod 2909 440

Figure 6

HaNEKS
— e
CeF19M5.1

Hs‘JEKm
CeF‘QN 25

— S HKINJ
DmNEK2
HANEKZ

TH08 2308.470
PIE1200W
_1&* ThOG2NA460
PRALEP1 26
PRAALTPY 600

Tha27.2.2120
_i- HaNEKS
o I
Ca¥39G10AR4
HsNEKS
— o

TLOT 28613 440

T3 3K10.210

TB11.04.6650
i
Tb%0.70.0970

[1r-4_-1 241860
Llnaz THOB 1010.T%0

0. 70 056

Tryp

ThO4. 24M18.200
——rt —{
4 O &7 THO8. 10K 10 RA0

ThiD5 26¥5. 430
T&10.70.7860

HINEK4

—1050 HsNEK1
HsNEKS
— HSNEKN
PRLOOEOC

= TEOA2TCS.650

| ] TH10 70.6680

Th09. 160 0450
_l Th11.01.2900

24

Phylogram of NEK kinases. NEK sequences from human (Hs), S. cerevisiae (Sc), C. elegans (Ce), D. melanogaster (Dm), P. fal-
ciparum (Pf) and T. brucei (Tb) were analyzed using MRBAYES. TbCK2A | was used as an outgroup. Nodes with a bootstrap
value greater than 0.95 are marked by a dot, values ranging from 0.7-0.95 are indicated numerically. Similar results were
obtained with PAUP*. Two NEK kinases had recognizable PH domains that did not achieve the Pfam HMM search cutoff

(Tb04.24M18.60, and Tb08.10K 10.710).

Page 11 of 19

(page number not for citation purposes)



BMC Genomics 2005, 6:127

1050

100

1040

E value

10'20

100 Lo

4-kinome Pfam

Figure 7

T. cruzi unique ePKs: similarity to other ePKs and
Pfam kinase domain. The E-values for the relationship of
individual T. cruzi ePKs as compared to the 4-kinome dataset
and to the Pfam domain. Many of the T. cruzi ePKs show
strong E-values against the Pfam kinase domain, despite their
low similarity to the kinases in human, D. melanogaster a, C.
elegans, and S. cerevisiae.

kinases are involved in autophagy in yeast [75] and in
pattern formation and development in multicellular
organisms [76].

A significant number of ePKs were classified as unique, as
they showed no clear affinity to any known group or
family within the 4-kinome dataset. For example, a
number of T. cruzi ePKs which had significant matches to
the protein kinase Pfam domain signature (Pfam 00069)
did not show any distinct similarity to specific kinases in
the 4-kinome dataset. Of this group, half had E-values of
1035 or better against the Pfam domain (Figure 7). On the
other hand, approximately one-third of the T. cruzi
unique kinases showed relatively poor matches against
the Pfam domain (E-values < 10-1¢), but nonetheless were
observed to possess a complete subdomain structure as
well as the required catalytic residues. The ePKs classified
as unique were the least conserved among the trypano-
somatids, with 63% being absent in at least one of the
three species. As such, the unique kinases are likely to rep-
resent instances of lineage-specific evolution defined by
gene gain and/or loss in these organisms. Such divergent
kinases may provide a set of useful protein kinase drug tar-
gets, since they have no closely related homologues in the
host.

Membrane kinases interfacing with the environment?

Most mammalian receptor kinases belong to the tyrosine
kinase group, a group which is lacking in
trypanosomatids. However, in plants, most receptor

http://www.biomedcentral.com/1471-2164/6/127

kinases are serine/threonine kinases. Bearing this in mind,
we searched the T. brucei genome for genes bearing the
protein kinase Pfam domain plus the annotation of a
transmembrane domain. Ten candidates fit the criteria
(see Additional file 3), these were spread among a variety
of ePK groups, with a somewhat higher representation
among the STE kinases. At this juncture, there is no evi-
dence that any domain of these molecules is displayed on
the parasite surface, where it might respond to host or par-
asite derived ligands. Alternatively, if surface-localized,
the kinase could phosphorylate host or parasite molecules
to modify their environment. We note with interest previ-
ous reports of an ectokinase with a substrate profile char-
acteristic of CK1 in Leishmania [77,78]. Intriguingly, one
of the L. major CK1 genes identified in this analysis
encodes a protein with a predicted signal anchor sequence
(LmjF17.1780). Assessing whether any parasite protein
kinases interface with the host environment is an impor-
tant arena for future experimental studies.

Inactive protein kinases

Approximately 8% of the ePKs of each species are pre-
dicted to be catalytically inactive, based on the presence of
mutations in essential residues (K in subdomain 2 and D
in subdomains 6 and 7). Most of these possess an ortho-
logue in at least one other trypanosomatids. Of the 13 T.
brucei ePKs predicted to be catalytically inactive, 11 are
mutated to a predicted non-catalytic form in each of the
three species. Genome-wide, the level of amino acid
sequence identity among COG members averages 61 +/-
7% between T. brucei and T. cruzi [79], with a similar level
of identity for a sampling of ePKs (60% +/- 7%). The ePKs
predicted to be inactive show a lower level of identity at
44% +/- 8%. Hence, while conserved, these sequences are
somewhat more divergent across species.

We also estimated the synonymous (Ks) and nonsynony-
mous nucleotide (Ka) nucleotide substitution rates in T.
brucei versus T. cruzi genes encoding ePKs predicted to be
catalytically active or inactive. The Ka/Ks ratio (sometimes
designated as dN/dS) can reflect the selective constraints
on a gene. Ka/Ks = 1 is expected for genes evolving neu-
trally. Ka/Ks < 1 is thought to indicate selection to remove
amino acid replacements. In the rare cases where the Ka/
Ks > 1, selection for amino acid divergence is usually
invoked. For a random subset of 90 active ePKs, Ka =
0.336, Ks = 4.822 and Ka/Ks = 0.077. For the inactive
ePKs, these figures were 0.535, 9.639, and 0.110, respec-
tively. These data indicate that in both sets synonymous
mutations are highly preferred. Nonetheless, the Ka and
Ka/Ks were significantly different in the active versus inac-
tive datasets (p = 0.0003 and p = 0.0045, Mann-Whitney
U-test, two tailed). There was no statistically significant
difference in the calculated Ks scores between these two
datasets (p = 0.3). These findings suggest that the encoded
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Table 2: Additional Pfam domains on trypanosomatid ePKs
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Pfam Tha Tc Lm TriTrypb Other kinomesb Comments
Armadillo 0 | | ULK NEK, STEI'I, ULK related to HEAT
B-box Zn finger 0 0 | NEK nd Zn binding

Cl-like 0 | | AGC AGC possible diacylglyerol binding
cap-gly | | | CAMK VPSI5 cytoskeleton associated
cNMP binding 0 | 2 STE AGC cyclic nucleotide binding
EF Hand 2 2 2 CAMK CAMK Calcium binding

FHA | 2 4 CAMK, STE CAMK phosphopeptide binding
FYVE | 2 | AGC nd Zn binding

HAMP 0 | 0 STE nd in diverse signaling proteins
HEAT I I 0 ULK VPSI5 protein interaction
HECT 0 0 | unique nd ubiquitin transferase
Kelch | 0 0 unique nd propeller structure
LRR | | | CAMKK TK, TKL, plantrk protein interaction
MORN | I | STE TKL, unique unknown function

PAS | | | STE CAMK, TKL signal sensor

PH 6 7 6 AGC, NEK AGC, CAMK, STE20 Phosphatidylinositol binding
PKC-Cterm 0 0 2 AGC AGC found on protein kinases
POLO | | | POLO POLO POLO kinase region
PX | | | AGC AGC phosphoinositide binding
RWD | 0 0 PEK PEK unknown function
TPR2 0 2 | STE, unique plantrk protein interaction
zf-C2H2 2 | | unique AUR zinc binding

2 The number of genes bearing the indicated Pfam domain.

b Classification of ePKs bearing the designated domain in the TriTryps or other kinomes (as detected in S. cerevisiae, Schizosaccharomyces pombe, P.
falciparum, C. elegans, D. melanogaster, A. thaliana, and Oryza sativa) using the web tools at the Kinases in Genomes (KING) website [81]. The plantrk
group is comprised of serine/threonine receptor kinases present in plant; nd, none detected.

proteins continue to play a significant functional role
within the organisms, although the predicted lack of
catalytic activity indicates this role is likely to be via a dis-
tinct mechanism, such as regulation via protein-protein
interaction. Indeed, a recent analysis has shown that inac-
tive protein kinases are not an exception in metazoa and
that a few have evolved novel functions, some of which
might be involved in processes that enhance the complex-
ity of regulatory phosphorylation networks [80].

Accessory domains

A characteristic of human ePKs is the presence of accessory
domains. Indeed, over 50% of human protein kinases
have additional Pfam domains, and more are found when
criteria are relaxed [21]. We examined all of the trypano-
somatid ePKs for significant matches to additional Pfam
domains (Table 2). In the case of L. major, only 25 ePKs
possessed additional Pfam domains that met the default
cutoff. Three additional ePKs, which had orthologues in T.
brucei or T. cruzi that had a significant Pfam domain, were
found to possess partial motifs, and others had domains
of lower significance. The accessory domains were gener-
ally conserved among members of a COG. Notably four of
the five most common Pfam domains on human ePKs are
absent in the trypanosomatid kinome: Ig, fn3, SH2, and
SH3. Ig and fn3 domains are generally extracellular

domains that interact with ligands, so their absence may
not be surprising given the paucity (or absence) of recep-
tor ePKs in trypanosomatids. SH2 domains interact with
phosphotyrosine, and their absence in the trypanosoma-
tid genomes could suggest a co-evolution with dedicated
tyrosine kinases. SH3 domains bind to proline rich
sequences.

Several unusual domain combinations are found in
trypanosomatid protein kinases (Table 2, examples
shown in Figure 8). A search of eight eukaryotic kinomes
using the KinG Kinases in Genomes Resource [81]
revealed that some accessory domains found in trypano-
somatids that were not associated with ePK catalytic
domains in other species. For example, LmjF35.4000,
which is a Leishmania-specific gene, contains a unqiue ePK
catalytic domain, along with three TPR motifs (which are
present on some plant receptor kinases) along with a
domain associated with ubiquitin transferase (HECT), a
domain not seen in the sampled genomes. A T. cruzi ePK,
Tc00.1047053511727.210, has a TPR motif and HAMP
domain (found on various signaling proteins including
histidine kinases), both of which are recognizable on the
T. brucei orthologue, but not on the L. major orthologue.
Others domains are associated with ePKs of different clas-
sification. For example, the very large STE kinase
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LmjF15.1200, has an unusual juxtaposition of two
domains related to cyclic nucleotide binding and a PAS
domain, associated with signal sensing. In other species,
the PAS domain is found on CAMK and TKL kinases,
while the cNMP domain is restricted to AGC kinases. The
L. major domain structure is likely conserved in T. cruzi,
although the coding region is interrupted by a contig
break. No orthologue is present in T. brucei. Some other
accessory domains are found on similar groups of kinases
(RWD, PX). Despite the paucity of identified domains, the
trypanosomatid ePKs are generally considerably larger
than the 250 aa kinase domain. For example, half of T.
cruzi ePKs are larger than 64 kDa, and 38 are larger than
100 kDa.

Atypical protein kinases

The parasites possess a complement of atypical protein
kinases, including representatives of all of the more well-
characterized families: RIO, alpha, PIKK and PDK (Figure
9 and Additional file 4), although no functional analyses
have been carried out to date on any representative aPK
from trypanosomatids. The RIO family of atypical kinases
is related to ePKs, but RIO proteins lack the sequences
known to be involved in peptide binding in ePKs [82].
Nonetheless, the catalytic residues are present. Trypano-
somatids possess two RIO proteins, which are clearly
assigned to the RIO1 and RIO2 subfamilies. In other
organisms both RIO1 and RIO2 are required for
ribosomal biogenesis, and RIO is involved in cell cycle
progression [26]. Interestingly, the similarity between
human and trypanosomatid RIO2 extends into the N-ter-
minus, where the structure of the human enzyme shows a
winged helix-turn-helix motif [82]. Such helix-turn-helix
motifs are often found on DNA binding proteins such as
transcription factors, a class of proteins which are rare in
trypanosomatids.

The alpha kinases, so named because they phosphorylate
their substrates within alpha helices, show a small
amount of sequence similarity to ePKs, with conservation
of the catalytic residues in subdomains 2, 6, and 7 [27].
One set of the alpha kinases in trypanosomatids is com-
prised of small molecules, being little more than the 241
aa alpha domain. This type of alpha kinase is present in all
three species. However, L. major possesses two additional
alpha kinase genes, which are very large (>1000 amino
acids). Interestingly, three of the four L. major alpha
kinases are found on a 12 kb segment on chromosome 36.
None of the alpha kinases appear to be fused to an ion
channel, as is the case for certain vertebrate alpha kinases
[27].

The PIKK kinases represent a particularly interesting fam-
ily in which the protein kinase domain structurally resem-
bles that of phosphatidylinositol 3-kinases [25]. In
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Figure 8

Domain structure of Tritryp ePKs with unusual addi-
tional domains. Examples from Table 2 are shown. ePK
domains are predicted to be active.

addition to the kinase domain, these proteins also have
FAT and FATC motifs which are not found in the lipid
kinases. The similarity between the trypanosomatid PIKK
kinases and those in the 4-kinome dataset is highly signif-
icant, with E-values of 1090 or better. PIKK kinases are
quite large in general and those in T. brucei are no excep-
tion, ranging in predicted size from 271 to 468 kDa. The
parasites possess clear homologues to the specific PIKK
kinases involved in genome surveillance: ATM and ATR
[83]. They also have four kinases that belong to the FRAP
family (this family includes FRAP and mTOR). TOR (tar-
get of the immunosuppressive agent rapamycin) modu-
lates translation and cell cycle in response to nutrient and
growth signals [84]. Multiple drugs targeting mTOR are in
trials for the treatment of various cancers [84].

The trypanosomatids contain 3 genes encoding putative
pyruvate dehydrogenase kinases (PDK). In mammals, the
activity of mitochondrial pyruvate dehydrogenase is
tightly regulated by multi-site serine phosphorylation of
the Elo subunit [85]. Despite their exclusive phosphor-
ylation of serine residues, the PDKs lack the domains
characteristic of ePKs. Rather, these kinases have two
distinct domains. A C-terminal domain that shares struc-
tural conservation with the GHKL ATPase/kinase super-
family (including members of the histidine kinase family)
and an N-terminal domain that resembles a histidine
phosphoryl transfer domain of bacterial two component
systems [86]. The presence of an active pyruvate dehydro-
genase in trypanosomatids with an Ela subunit suggests
that regulation of activity by phosphorylation is likely to
be conserved in these species.
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Comparison of T. brucei and human atypical protein
kinase classification. See Additional file 4 for systematic
gene names.

Conclusion

The analysis presented here shows that trypanosomatids
possess a large complement of protein kinases, indicating
that protein phosphorylation is a key mechanism for reg-
ulation of parasite processes. In metazoa and yeast, the
ultimate targets of many signaling cascades are
transcription factors, which then trigger the expression of
new sets of genes. In contrast, since trypanosomatids
indiscriminately transcribe most genes in large polycis-
tronic units, signaling cascades in these organisms must
function in post-transcriptional regulation. Key regulators
of specific mRNA turnover are still being sought, and we
propose that protein kinases are major players in these
processes. We also propose that trypanosomatids, more
than many other organisms, rely on the phosphorylation
of the downstream molecules that perform stage-specific
and cell-cycle specific functions. Phosphorylation has
been shown to modulate protein turnover, localization,
interaction and activity for various molecules in
eukaryotes. Both ePKs and aPKs are the targets of major
drug discovery efforts in chronic human diseases
[56,84,87,88]. Exploiting the knowledge and resources
generated in those efforts could provide new answers in
the search for new drugs to combat trypanosomatid dis-
eases. A major effort to understand the functions of indi-
vidual protein kinases will allow increased focus on key
molecules. We suggest that PKs closely related to human
drug targets would be a useful first set to be explored.
However, perhaps just as useful could be the group of
unique kinases, which show little resemblance to human
PKs.

http://www.biomedcentral.com/1471-2164/6/127

Methods

Classification

All ePKs were retrieved from GeneDB [29] through a com-
bination of searches with the protein kinase Pfam
domain, BLAST analysis using diverse ePKs, and examina-
tion of COGS. L. major (version 5.0, Feb 2005); T. brucei
(version 4.0, Feb 2005) and T. cruzi (version 3.0, July
2004) were the final datasets used in this study. In the case
of T. cruzi, in which the genome strain is a hybrid, the two
presumed alleles were identified through analysis of
COGs [79], and counted as one gene, even though up to
7% sequence allelic sequence divergence occurs in this
strain [5]. All ePKs were examined for the presence of the
11-subdomain structure, and the presence of lysine in
subdomain 2 and aspartic acid in subdomains 6 and 7,
which are required for catalysis [24,89]. Those lacking
these residues were categorized as catalytically inactive.
Similarly, a few ePKs lacked any sequence resembling sub-
domain 1, which functions in ATP binding, and were also
categorized as catalytically inactive. Atypical PKs were
identified by BLAST analysis using representatives of each
group of aPKs from other species as queries.

Each ePK was analyzed for the presence of additional
domains by hidden Markov model analysis of the Pfam
database [90]. The default cutoffs were used.

All predicted ePKs from each species were analyzed by
BLAST analysis against the 4-kinome dataset comprised of
all human, Saccharomyces cerevisiae, Drosophila mela-
nogaster, and Caenorhabditis elegans protein Kkinase
domains [34]. Since phylogenetic inference indicated that
members of trypanosomatid COGs were more closely
related to each other than to ePKs of the 4-kinome dataset,
all COG members were classified congruently (the sole
exception we found was two kinases that shared extensive
homology outside of the kinase domain, LmjF15.1200
and Tc00.1047053505977.13). Assignments required an
E-value difference of 5 logs or more between groups or
families of ePKs for one of the trypanosomatid ortho-
logues. When all trypanosomatid orthologues had E-val-
ues poorer that 10-16, or had similar E-values for different
groups of ePKs, those ePKs were designated "unique".

Phylogenetic inference

Due to the relatively low degree of sequence conservation
at the nucleotide level within some of these families, phy-
logenetic inference was carried out on amino acid align-
ment, rather than attempting alignment at the nucleotide
level. Kinase domains were identified by analysis of align-
ments with the Pfam protein kinase domain, and
extended manually as needed. Insertions larger than 25
amino acids were identified and removed prior to subse-
quent analyses. The SAM (Sequence Alignment and Mod-
eling System using Hidden Markov Model (HMM)
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software was used to build HMMs representing the kinase
domains of the gene families discussed in this paper [91].
These trained models were then used to identify residues
capable of discriminating between the various domain
families. In addition, by aligning the sequences of the
kinase domains to these models, we created multiple
sequence alignments of these gene families. These align-
ments were then visually inspected to verify that all sub-
domains were appropriately aligned, as well as to allow
removal of both gene-specific insertions (in addition to
those previously removed) and deletions and phylogenet-
ically uninformative residues. These edited HMM-gener-
ated alignments were used as the starting point for
phylogenetic reconstruction of these domain families.

Phylogenetic analysis of the kinase domains of these pro-
teins was carried out using a variety of techniques. As a
preliminary step in the phylogenetic investigation of our
dataset, we used the Neighbour-joining approach as
defined by Saitou and Nei as implemented in ClustalX
[92]. Due to the relatively high degree of divergence that
might be expected within our dataset we used the correct
for multiple substitutions option in our analysis. Boot-
strapping was carried out on the dataset with 1,000
replicates.

These aligned amino acid sequences were also subjected
to parsimony analysis using PAUP*, version 4.0b8
[93,94]. Given the relatively large number of taxa in this
dataset, the use of an exhaustive search was not possible.
In its place, an heuristic search strategy was employed to
attempt to find the best tree by reducing the set of trees
examined and just calculating the score for likely trees. It
should be noted that this method is not guaranteed to
identify the most parsimonious trees from the sequences.
We carried out 100 random stepwise addition sequences
of taxa, each with TBR swapping and MAXTREES set to
10,000. Parsimony bootstrapping on the dataset was per-
formed with 1,000 replicates and the same settings, except
that only 10 random stepwise addition sequences were
used per bootstrap replicate.

The same datasets were analysed using a Maximum Like-
lihood approach, as implemented in the web available
PHYML application [95,96]. Analysis using the WAG
amino acid substitution model inferred the starting tree.
The proportion of invariable sites and the gamma distri-
bution parameter were estimated by maximizing the like-
lihood of the phylogeny. The number of substitution rate
categories was set at four for these analyses. Non-paramet-
ric bootstrap analysis was then carried out on the original
data set with 500 replicates (the upper limit available for
this web service). Majority-rule consensus trees were cre-
ated for each of the three methodologies outlined above.

http://www.biomedcentral.com/1471-2164/6/127

Finally, MRBAYES was used to carry out a Bayesian analy-
sis of our data [97]. We used the WAG amino acid substi-
tution model (based on nuclear genes and globular
protein sequences, respectively), with a gamma rate distri-
bution estimated from the data set to infer the phylogeny
of our dataset. Starting from random trees, four parallel
Markov chains were run to sample trees using the Markov
Chain Monte Carlo (MCMC) principle. In general,
1,000,000 generations were run; after the burn-in phase,
every 100t tree was saved.

Estimation of KalKs

Analysis of the synonymous/non synonymous substitu-
tion rates required construction of pairwise, codon
aligned, sequence alignments. These were generated using
the PAL2NAL web server [98], which converted full-length
amino acid alignments and the corresponding DNA
sequences into a codon-based DNA alignment. The
amino acid sequence alignments were obtained using the
Water programme from the EMBOSS package using
default parameters [99]. Estimation of Ka/Ks (dN/dS)
ratios was then carried out by maximum likelihood using
the pairwise codon-based substitution model in Codeml,
which is part of the Phylogenetic Analysis by Maximum
Likelihood (PAML) suite of programs [100].
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aPK, atypical protein kinase; COG, clustered orthologous
groups; ePK, eukaryotic protein kinase, PK, protein
kinase, TriTryp, the trypanosomatids Leishmania major,
Trypanosoma brucei, and Trypanosoma cruzi.
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