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Comparative analysis of two 
discretizations of Ricci curvature for 
complex networks
Areejit Samal  1, R. P. Sreejith1, Jiao Gu  2, Shiping Liu3, Emil Saucan4,5 & Jürgen Jost6,7

We have performed an empirical comparison of two distinct notions of discrete Ricci curvature for 

graphs or networks, namely, the Forman-Ricci curvature and Ollivier-Ricci curvature. Importantly, 

these two discretizations of the Ricci curvature were developed based on different properties of the 
classical smooth notion, and thus, the two notions shed light on different aspects of network structure 
and behavior. Nevertheless, our extensive computational analysis in a wide range of both model and 

real-world networks shows that the two discretizations of Ricci curvature are highly correlated in many 

networks. Moreover, we show that if one considers the augmented Forman-Ricci curvature which also 

accounts for the two-dimensional simplicial complexes arising in graphs, the observed correlation 

between the two discretizations is even higher, especially, in real networks. Besides the potential 

theoretical implications of these observations, the close relationship between the two discretizations 

has practical implications whereby Forman-Ricci curvature can be employed in place of Ollivier-Ricci 

curvature for faster computation in larger real-world networks whenever coarse analysis suffices.

One of the central quantities associated to a Riemannian metric is the Ricci tensor. In Einstein’s �eld equations, the 
energy-momentum tensor yields the Ricci tensor, and this determines the metric of space-time. In Riemannian 
geometry, the importance of the Ricci tensor came to the fore in particular through the work of Gromov1. �e 
Ricci �ow, introduced by Hamilton2, culminated in the work of Perelman3,4 which solved the Poincarè and the 
more general Geometrization Conjecture for three-dimensional manifolds. On the other hand, there have been 
important developments extending the notion of Ricci curvature axiomatically to metric spaces more general than 
Riemannian manifolds5–7. More precisely, one identi�es metric properties on a Riemannian manifold that can 
be formulated in terms of local quantities such as growth of volumes of distance balls, transportation distances 
between balls, divergence of geodesics, and meeting probabilities of coupled random walks. On Riemannian man-
ifolds such local quantities are implied by, or even equivalent to, Ricci curvature inequalities. Moreover when such 
metric properties are satis�ed on some metric space, one says that the space satis�es the corresponding generalized 
Ricci curvature inequality. �is research paradigm has been remarkably successful, and the geometry of metric 
spaces with such inequalities is currently a very active and fertile �eld of mathematical research (see for instance8). 
Of course, on Riemannian manifolds various such properties are equivalent to Ricci curvature inequalities and 
therefore also to each other. However, when passing to a discrete, metric setting, each approach captures di�erent 
aspects of the classical Ricci curvature and thus, the various discretizations need no longer be equivalent. One such 
approach to Ricci curvature inequalities is Ollivier’s9–12 construction on metric spaces.

�ere is also an older line of research13 that searches for the discretization of Ricci curvature on graphs and 
more general objects with a combinatorial structure. Here, one has exact quantities rather than only inequalities 
as in the aforementioned research. One elegant approach is by Chow and Luo14 based on circle packings which 
lent itself to many practical applications in graphics, medical imaging and communication networks15–17. On 
the other hand, Ollivier’s9–12 discretization has proven to be suitable for modelling complex networks as well as 
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rendering interesting theoretic results with potential of future applications18–24. Yet another approach to discre-
tization of Ricci curvature on polyhedral complexes, and more generally, CW complexes is due to Forman25. In 
recent work26–30, we have introduced the Forman’s25 discretization to the realm of graphs and have systematically 
explored the Forman-Ricci curvature in complex networks. A crucial advantage of Forman-Ricci curvature is 
that, while it also captures important geometric properties of networks, it is far simpler to evaluate on large net-
works than Ollivier-Ricci curvature26,30. In this contribution, we have performed an extensive empirical compar-
ison of the Forman-Ricci curvature and Ollivier-Ricci curvature in complex networks. In addition, we have also 
performed an empirical analysis in complex networks of the augmented Forman-Ricci curvature which accounts 
for two-dimensional simplicial complexes arising in graphs. We �nd that the Forman-Ricci curvature, especially 
the augmented version, is highly correlated to Ollivier-Ricci curvature in many model and real networks. �is 
renders Forman-Ricci curvature a preferential tool for the analysis of very large networks with various practical 
applications.

Although, in this contribution, we show that Forman-Ricci curvature is highly correlated to Ollivier-Ricci 
curvature in many networks, one should not construe from this observation that we introduce Forman-Ricci 
curvature as a substitute (and certainly not as a “proxy”31) for Ollivier-Ricci curvature. As mentioned above, and 
as we shall further explain in the following section, the two discretizations of Ricci curvature capture quite dif-
ferent aspects of network behavior. Indeed the speci�c de�nitions of both Ollivier’s and Forman’s discretizations 
of Ricci curvature prescribe some of their respective essential properties that have important consequences in 
certain signi�cant applications. �erefore, we shall detail these de�nitions and not restrict ourselves to the mere 
technical de�ning formulas.

Given that networks permeate almost every �eld of research32–38, an important challenge has been to unravel 
the architecture of complex networks. In particular, the development of geometric tools10,18–21,23,24,26,39–41, and 
mainly curvature, allow us to gain deep insights into the structure, dynamics and evolution of networks. It is in 
the very nature of discretization of di�erential geometric properties that each such discrete notion sheds a di�er-
ent light and understanding upon the studied object, for example, a network. In particular, Ollivier’s curvature 
is related to clustering and network coherence via the distribution of the eigenvalues of the graph Laplacian, 
giving insights into the global and local structure of networks. In contrast, Forman’s curvature captures the 
geodesics dispersal property and also gives information on the algebraic topological structure of the network. 
Furthermore, Forman’s curvature is simple to compute and can easily be extended to analyze both directed net-
works and hyper-networks26–29. Given the contrast between the two discretizations of Ricci curvature at hand, the 
empirically observed correlation in many networks is quite surprising and encouraging. Moreover, both types of 
curvature admit natural Ricci curvature �ows16,29 that enable the study of long time evolution and prediction of 
networks. Moreover, the observed correlation further increases the relevance and importance of future investi-
gation of discrete Ricci �ows for the better understanding of the structure and evolution of complex networks.

Note that in Riemannian geometry, the Ricci tensor encodes all the essential properties of a Riemannian 
metric. Similarly, it is an emerging principle that Ricci curvature, because it evaluates edges instead of vertices, 
also captures the basic structural aspects of a network. Both Ollivier-Ricci curvature and Forman-Ricci curvature 
are edge-based measures which assign a number to each edge of a (possibly weighted and directed) network that 
encodes local geometric properties in the vicinity of that edge. We highlight that edges are what networks are 
made of as the vertices alone do not yet constitute a network.

Theory
We brie�y present here the geometric meaning of the notion of Ricci curvature, as well as the two discretizations 
considered herein. For other discretizations of this type of curvature and their applications, see for instance16.

Ricci curvature. In Riemannian geometry curvature measures the deviation of the manifold from being 
locally Euclidean. Ricci curvature quanti�es that deviation for tangent directions. It controls the average disper-
sion of geodesics around that direction. It also controls the growth of the volume of distance balls and spheres. In 
fact, these two properties are related, as can be seen from the following formula42:
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Here, n is the dimension of the Riemannian manifold in question, and Volα(ε) is the (n − 1)-volume generated 
within an n-solid angle dα by geodesics of length ε in the direction of the vector v (i.e., it controls the growth of 
measured angles). �us, Ricci curvature controls both divergence of geodesics and volume growth (Fig. 1(a)). In 
dimension n = 2, Ricci curvature reduces to the classical Gauss curvature, and can therefore be easily visualized.

As we shall see, the two discretizations of Ricci curvature by Ollivier and Forman considered here for net-
works capture di�erent properties of the classical (smooth) notion. Forman’s de�nition expresses dispersal (dif-
fusion), while Ollivier’s de�nition compares the averaged distance between balls to the distance between their 
centers. �us, the two de�nitions lead to di�erent generalization of classical results regarding Ricci curvature. In 
this respect, Ollivier’s version seems to be advantageous, since, in addition to certain geometric properties, ana-
lytic inequalities also hold, whereas Forman’s version encapsulates mainly the topology of the underlying space.

Nevertheless, in our speci�c context of complex networks, as we shall show in the sequel, the de�nitions by 
Ollivier and Forman are highly correlated in many networks. �erefore, for the empirical analysis of large net-
works, at least in a �rst approximation, from the analysis of Forman’s de�nition, one can also make inferences 
about the properties encoded by the Ollivier’s de�nition. For instance, Ollivier’s curvature is, by its very de�-
nition, excellently suited to capture di�usion and stochastic properties of a given network. Unfortunately, the 
computation of Ollivier-Ricci curvature might be prohibitive for many large complex networks. In contrast, due 
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Figure 1. (a) �e geometric interpretation of Ricci curvature. Ricci curvature measures the growth of volumes, 
more precisely, the growth of (n − 1)-dimensional solid angles in the direction of the vector v. It also measures the 
dispersion rate of the family of geodesics with the same initial point, that are contained within the given solid angle. 
(b–d) �e interpretation of Ollivier-Ricci curvature. (b) Given two close points x and y in a Riemannian manifold of 
dimension n, de�ning a tangent vector vxy, one can consider the parallel transport in the direction vxy. �en points 
on a in�nitesimal sphere Sε(x) centered at x, are transported to points on the corresponding sphere Sε(y) by a 
distance equal to −

ε( )d x y v( , ) 1 Ric( )
n xy2

2

, on the average. (c) In Riemannian manifolds of positive (respectively, 

negative) curvature, balls are closer (respectively, farther) than their centers. �us, in spaces of positive Ricci 
curvature spheres are closer than their centers, while in spaces of negative curvature they are farther away. (d) To 
generalize this idea to metric measure spaces, one has to replace the (volumes of) spheres or balls, by measures mx, 
my. Points will be transported by a distance equal to (1 − κ)d(x, y), on the average, where κ = κ(x, y) represents the 
coarse (Ollivier) curvature along the geodesic segment xy. �is illustration is an adaptation of the original �gure12. 
(e,f) Forman-Ricci curvature of an edge e connecting the vertices v1 and v2 and contributions from edges parallel to 
the edge e under consideration. An edge is said to be parallel to a given edge e, if it has in common with e either a 
child (i.e., a lower dimensional face), or a parent (i.e., a higher dimensional face), but not both simultaneously. In part 
(e), all the edges e11, …, e15 are parallel to e because they share the vertex v1, while the edges e21, …, e25 are parallel to 
e because they share the vertex v2. In contrast, in part (f), edges e11, e21, e15, e25 are not parallel anymore to the edge e, 
because they have common children with e (namely, v1 and v2) and a common parent with e (namely, f1 or f2). In 
consequence, edges e11, e21, e15, e25 do not contribute in the computation of the Augmented Forman-Ricci curvature 
of edge e which also accounts for the two-dimensional simplicial complexes f1 and f2.
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to its simple, combinatorial formula, Forman-Ricci curvature is easy and fast to compute26. Given the basic equiv-
alence, at least on a statistical level, between these two discretizations, one can therefore determine, at least in �rst 
approximation, many properties encapsulated by Ollivier’s curvature via simple computations with Forman’s cur-
vature. However, for a �ner analysis, each of the two discrete Ricci curvatures should be employed in the context 
that best be�ts the geometrical phenomenology it encapsulates.

Ollivier-Ricci curvature. Ollivier’s approach9–12 interprets eq. 1 as follows: If a small ball Bx of radius ε and 
centered at x is mapped, via parallel transport43 to a corresponding ball By centered at y, then the average distance 
between points on Bx and their corresponding points on By is:

δ
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where d(x, y) = δ, and where ε, δ → 0. �us, we can synthetically characterize Ollivier-Ricci curvature12 by the fol-
lowing phrase: “In positive (negative) curvature, balls are closer (farther) than their centers are”. Balls are given by 
their volume measures, and in fact, one may de�ne a transportation distance for any two (normalized) measures. 
In this sense, Ollivier’s notion compares the distance between the centers of their balls with that between their 
measures (Fig. 1(b–d)). For the distance between the centers one takes (of course) the given metric of the under-
lying space, i.e., manifold, mesh, network, etc. As for the distance between measures, there is a natural choice, the 
Wasserstein transportation metric W1

44. More formally, Ollivier’s curvature is de�ned as:

κ = −x y
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x y1

where mx, my represent the measures of the balls around x and y, respectively. Here, given that the measure m, 
associated to the discrete set of vertices of a graph (network) is obviously a discrete measure, the Wasserstein 
distance W1(mx, my), i.e. the transportation distance between the two probability measures mx and my, is given by
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with Π m m( , )x y  being the set of probability measures µx,y that satisfy:
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Measures satisfying eq. 5 start with the measure mx and end up with my, and represent all the transportation 
possibilities of the mass (measure) mx to the measure my, by disassembling it, transporting it, along all possible 
paths, and reassembling it as my. W1(mx, my) is the minimal cost (measured in terms of distances) to transport 
the mass of mx to that of my. Note that the distance d in eq. 4 above can be any useful or expressive graph metric. 
However, in practice, when considering the Wasserstein metric and Ollivier-Ricci curvature for unweighted net-
works, the combinatorial metric is naturally considered.

In the Riemannian setting, Ollivier’s definition reduces to the classical one. More precisely, if Mn is a 
Riemannian manifold, with its natural measure dVol, then for d(x, y) small enough and v the unit tangent vector 
at x on the geodesic xy
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�e Wasserstein distance44 between two vertices in a network depends on the triangles, quadrangles and 
pentagons that they are contained in (see for instance21,45). It can also be computed in terms of random walks on 
a graph, where one has the choice between the lazy23 and the non-lazy21 random walk. While the two variants 
are clearly equivalent from a theoretical viewpoint, the choices may render di�erences in the implementation. In 
this work, we have used the lazy random walk option within the open-source implementation of Ollivier-Ricci 
curvature, originally developed by P. Romon and improved by E. Madsen, within SageMath so�ware (http://www.
sagemath.org/) for our computations.

While Ollivier-Ricci curvature is essentially de�ned on edges, one can de�ne Ollivier-Ricci curvature of a 
vertex24 as the sum of the Ollivier-Ricci curvatures of edges incident on that vertex in the network, and this is 
analogous to scalar curvature in Riemannian geometry43.

Forman-Ricci curvature. Forman’s de�nition is conceptually quite di�erent from Ollivier’s de�nition. 
To begin with, Forman’s de�nition works in the framework of weighted CW cell complexes, rather than that of 
Markov chains and metric measure spaces, as Ollivier’s de�nition does. �e weighted CW cell complexes are of 
fundamental importance in topology and include both polygonal meshes and weighted graphs. In the setting of 
weighted CW cell complexes, Forman’s de�nition develops an abstract version of a classical formula in di�eren-
tial geometry or geometric analysis, the so called Bochner-Weitzenböck formula (see for instance43), that relates 
curvature to the classical (Riemannian) Laplace operator.

Forman25 derived an analogue of the Bochner-Weitzenböck formula that holds in the setting of CW com-
plexes. In the 1-dimensional case, i.e. of graphs or networks, it takes the following form26:

http://www.sagemath.org/
http://www.sagemath.org/
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where e denotes the edge under consideration between two nodes v1 and v2, we denotes the weight of the edge e 
under consideration, wv1

 and wv2
 denote the weights associated with the vertices v1 and v2, respectively, ∼e ev1

 and 
e ev2
∼  denote the set of edges incident on vertices v1 and v2, respectively, a�er excluding the edge e under consid-

eration which connects the two vertices v1 and v2 (Fig. 1(e)). Since edges in the discrete setting of networks natu-
rally correspond to vectors or directions in the smooth context, the above formula represents, in view of the 
classical Bochner-Weitzenböck formula, a discretization of Ricci curvature. For gaining further intuition regard-
ing this discretization of Ricci curvature in its generality, the reader is referred to Forman’s original work25, and to 
our previous papers26,30 for more insight on its adaptation to networks.

In the combinatorial case, i.e. for we = wv = 1, e ∈ E(G), v ∈ V(G), where E(G) and V(G) represent the set of 
edges and vertices, respectively, in graph G, the above formula (eq. 7) reduces to the quite simple and intuitive 
expression:

∑= −
∼

e vF( ) 4 deg( )
(8)v e

where v ~ e denote the vertices anchoring the edge e. �is simple case captures the role of Ricci curvature as a 
measure of the �ow through an edge and illustrates how Ricci curvature captures the social behavior of geodesics 
dispersal depicted in Fig. 1. While Forman-Ricci curvature is essentially de�ned on edges, one can easily de�ne 
Forman-Ricci curvature of a vertex28 as the sum of the Forman-Ricci curvatures of edges incident on that vertex 
in the network.

Augmented Forman-Ricci curvature. From a graph, one may construct two-dimensional polyhedral complexes 
by inserting a two-dimensional simplex into any connected triple of vertices (or cycle of length 3), a tetragon into 
any cycle of length 4, a pentagon into a cycle of length 5, and so on. �is is natural, if, for instance, one wants to 
represent higher order correlations between vertices in the network. Again, Forman’s scheme assigns a Ricci cur-
vature to such a complex, via the following formula, which also includes possible weights w of simplices, edges, 
and vertices:
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where we denotes weight of edge e, wv denotes weight of vertex v, wf denotes weight of face f, σ < τ means that σ 
is a face of τ, and where || signi�es parallelism, i.e. the two cells have a common parent (higher dimensional face) 
or a common child (lower dimensional face), but not both a common parent and common child. In particular, 
we have employed eq. 9 to de�ne an Augmented Forman-Ricci curvature of an edge which also accounts for 
two-dimensional simplicial complexes or cycles of length 3 arising in graphs while neglecting cycles of length 4 
and greater (Fig. 1(f)).

In unweighted networks, wf = we = wv = 1, ∀f ∈ F(G), e ∈ E(G), v ∈ V(G), where F(G), E(G) and V(G) represent 
the set of faces, edges and vertices, respectively, in graph G. In such unweighted networks, we remark that there 
is a simple relationship46 between Forman-Ricci curvature F(e) of an edge e and Augmented Forman-Ricci cur-
vature F#(e) of an edge e, namely,

= +e e mF ( ) F( ) 3 (10)#

where m is the number of triangles containing edge e under consideration in the network. In this work, we have 
explored both Forman-Ricci curvature and its augmented version in model and real-world networks.

Ollivier’s vs. Forman’s Ricci curvature: A first comparison. As we have seen in detail in the previ-
ous section, and already explained in the Introduction, the two types of discrete Ricci curvature, Ollivier’s and 
Forman’s, express di�erent geometric properties of a network, and they can therefore be quite di�erent from each 
other for speci�c networks. In this section, let us consider some simple examples.

As the �rst example, consider a complete graph on n vertices. �en any two vertices share n − 2 neighbors in the 
complete graph, and therefore, the corresponding balls largely overlap. �e transportation distance between the balls 
is thus very small in a complete graph, and thus, the Ollivier-Ricci curvature (eq. 3) is almost 1 for large n, the largest 
possible value. On the other hand, the degree of any vertex is n − 1 in a complete graph, and therefore, the 
Forman-Ricci curvature (eq. 8) takes the most negative possible value. �us, for such complete graphs, the two types 
of Ricci curvature behave in opposite fashion. �e reason is that Ollivier-Ricci curvature is positively a�ected by 
triangles whereas Forman-Ricci curvature is not at all. �us, it is not surprising that locally they can numerically 
diverge from each other. As the second example, consider a star graph, that is, a graph consisting of a central vertex 
v0 that is connected to all other vertices v1, …, vm, while these vertices have no further connections. Consider an 
edge, for example, e = (v0, v1) in the star graph. �e neighborhood of v1 consists of v0 only, while that of v0 contains 
all the vertices v1, …, vm in the star graph. Since each of these vertices v1, …, vm have distance 1 from v0 in the star 
graph, the transportation cost is 1, and hence the Ollivier-Ricci curvature is 0. In this example of a star graph, there 
are no triangles. In contrast, the Forman-Ricci curvature of the edge in the star graph is 3 − m. As the third example, 
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consider a double star graph, that is, take two stars with vertices v v v, , ,
m0 1 ...  and ′ ′ ... ′

′
v v v, , ,

m0 1 , where the two 
central vertices v0 and ′v 0 of the stars are connected by an edge. In this case of double star graph, almost all vertices in 
their respective neighborhoods are a distance 3 apart, and so, the Ollivier-Ricci curvature of the edge (v v,0 0′ ) is quite 
negative, and so is the Forman-Ricci curvature, which equals 2 − m − m′. �us, the second example of a star graph is 
an intermediate between the �rst example of a complete graph and the third example of a double star graph.

While these examples suggest an equivocal picture wherein sometimes the two discretizations of Ricci curva-
tures are aligned, but in other cases, they may show an opposite behavior, our numerical results in complex net-
works which are reported in the following sections show that, Ollivier-Ricci and Forman-Ricci curvature in many 
networks are highly correlated to each other. �us, in several model and real networks that we have investigated, 
large degrees of the vertices bounding an edge do not correlate highly with large fractions of triangles or other 
short loops containing these vertices. Furthermore, if we augment the de�nition of the Forman-Ricci curvature to 
account for two-dimensional simplicial complexes (i.e., triads or cycles of length 3) arising in graphs (eqs. 9 and 10),  
then such an Augmented Forman-Ricci curvature is even better correlated at small scale to Ollivier-Ricci cur-
vature, as in the augmented de�nition the triangles of vertices no longer contribute negatively to Forman-Ricci 
curvature. In the sequel, we shall also show that the Augmented Forman-Ricci curvature is better correlated to 
Ollivier-Ricci curvature in both model and real-world networks.

Benchmark Dataset of Complex Networks
We have considered four models of undirected networks, namely, Erdös-Rényi (ER)47, Watts-Strogatz (WS)33, 
Barabási-Albert (BA)34 and Hyperbolic Graph Generator (HGG)48. �e ER model47 produces an ensemble of 
random graphs G(n, p) where n is the number of vertices and p is the probability that each possible edge exists 
between any pair of vertices in the network. �e WS model33 generates small-world networks which exhibit both a 
high clustering coe�cient and a small average path length. In the WS model, an initial regular graph is generated 
with n vertices on a ring lattice with each vertex connected to its k nearest neighbours. Subsequently an endpoint 
of each edge in the regular ring graph is rewired with probability β to a new vertex selected from all the vertices in 
the network with a uniform probability. �e BA model34 generates scale-free networks which exhibit a power-law 
degree distribution. In the BA model, an initial graph is generated with m0 vertices. �erea�er, a new vertex is 
added to the initial graph at each step of this evolving network model such that the new vertex is connected to 
m ≤ m0 existing vertices, selected with a probability proportional to their degree. �us, the BA model implements 
a preferential attachment scheme whereby high-degree vertices have a higher chance of acquiring new edges than 
low-degree vertices. �e HGG model48,49 can produce random hyperbolic graphs with power-law degree distri-
bution and non-vanishing clustering. In the HGG model, the n vertices of the network are placed randomly on a 
hyperbolic disk, and therea�er, pairs of vertices are connected based on some probability which depends on the 
hyperbolic distance between vertices. In the HGG model, the input parameters48,49 are the number of vertices n, 
the target average degree k, the target exponent γ of the power-law degree distribution and temperature T. In this 
work, we have used HGG model with default input parameters of γ = 2 and T = 0 to generate hyperbolic random 
geometric graphs. Note that the input parameters, γ and T, of the HGG model48,49 can be varied to produce other 
random graph ensembles such as con�guration model, random geometric graphs on a circle and ER graphs.

Supplementary Table S1 lists the model networks analyzed in this work along with the number of vertices, 
number of edges, average degree and edge density of each network. In each model, we have chosen di�erent 
combinations of input parameters to generate networks with di�erent sizes and average degree (Supplementary 
Table S1). Moreover, we have sampled 100 networks starting with di�erent random seed for a speci�c com-
bination of input parameters from each generative model, and the results reported in the next section for 
model networks in an average over the sample of 100 networks with chosen input parameters (Supplementary 
Tables S2–S5).

We have also considered seventeen widely-studied real undirected networks. �ese are six communication or 
infrastructure networks, the Chicago road network50, the Euro road network51, the US Power Grid network52, the 
Contiguous US States network53, the autonomous systems network52 and an Email communication network54. 
In the Chicago road network, the 1467 vertices correspond to transportation zones within the Chicago region, 
and the 1298 edges are roads in the region linking them. In the Euro road network, the 1174 vertices are cities in 
Europe, and the 1417 edges are roads in the international E-road network linking them. In the US Power Grid 
network, the 4941 vertices are generators or transformers or substations in the western states of the USA, and the 
6594 edges are power supply lines linking them. In the Contiguous US States network, the 48 vertices correspond 
to the 48 contiguous states of USA (except the two states, Alaska and Hawaii, which are not connected by land 
with the other 48 states), and the 107 edges represent land border between the states. In the autonomous systems 
network, the 26475 vertices are autonomous systems of the Internet, and the 53381 edges represent communi-
cation between autonomous systems connected to each other from the CAIDA project. In the Email commu-
nication network, the 1133 vertices are users in the University Rovira i Virgili in Tarragona in Spain, and the 
5451 edges represent direct communication between them. We have considered �ve social networks, the Zachary 
karate club55, the Jazz musicians network56, the Hamsterster friendship network, the Dolphin network57 and the 
Zebra network58. In the Zachary karate club, the 34 vertices correspond to members of an university karate club, 
and the 78 edges represent ties between members of the club. In the Jazz musicians network, the 198 vertices 
correspond to Jazz musicians, and the 2742 edges represent collaboration between musicians. In the Hamsterster 
friendship network, the 2426 vertices are users of hamsterster.com, and the 16631 edges represent friendship or 
family links between them. In the Dolphin network, the 62 vertices correspond to bottlenose Dolphins living o� 
Doubtful Sound in South West New Zealand, and the 159 edges represent frequent associations among Dolphins 
observed between 1994 and 2001. In the Zebra network, the 27 vertices correspond to Grevy’s Zebras in Kenya, 
and the 111 edges represent observed interaction between Zebras during the study58. We have also considered a 



www.nature.com/scientificreports/

7SCIENTIFIC REPORTS |  (2018) 8:8650  | DOI:10.1038/s41598-018-27001-3

scienti�c co-authorship network based on papers from the arXiv’s Astrophysics (astro-ph) section52 where the 
18771 vertices correspond to authors and the 198050 edges represent common publications among authors. We 
have also considered the PGP network59, an online contact network, where the 10680 vertices are users of the 
Pretty Good Privacy (PGP) algorithm, and the 24316 edges represent interactions between the users. We have 
also considered a linguistic network, an adjective-noun adjacency network60, where the 112 vertices are nouns 
or adjectives, and the 425 edges represent their presence in adjacent positions in the novel David Copper�eld 
by Charles Dickens. We have considered three biological networks, the yeast protein interaction network61, the 
PDZ domain interaction network62 and the human protein interaction network63. In the yeast protein interaction 
network, the 1870 vertices are proteins in yeast Saccharomyces cerevisiae, and the 2277 edges are interactions 
between them. In the PDZ domain interaction network, the 212 vertices are proteins, and the 244 edges are 
PDZ-domain mediated interactions between proteins. In the human protein interaction network, the 3133 verti-
ces are proteins, and the 6726 edges are interactions between human proteins as captured in an earlier release of 
the proteome-scale map of human binary protein interactions. �e seventeen empirical networks analyzed here 
were downloaded from the KONECT64 database. Supplementary Table S1 lists the real networks analyzed in this 
work along with number of vertices, number of edges, average degree and edge density of each network.

We remark that the above-mentioned model and real-world networks considered in this work are unweighted 
graphs, and thus, the weights of vertices, edges and two-dimensional simplicial complexes are taken to be 1 while 
computing the Forman-Ricci curvature and its augmented version. Furthermore, the largest connected compo-
nent of the above-mentioned model and real-world networks is considered while computing the Ollivier-Ricci 
curvature of edges. In earlier work26,28, we had characterized the Forman-Ricci curvature of edges and vertices in 
some of the above-mentioned networks. In the present work, we have compared the Forman-Ricci curvature and 
its augmented version with Ollivier-Ricci curvature in above-mentioned networks.

Results
Comparison between Forman-Ricci and Ollivier-Ricci curvature in model and real networks.  
We have compared the Ollivier-Ricci with Forman-Ricci and Augmented Forman-Ricci curvature of edges in 
model networks (Table 1 and Supplementary Table S2). In random ER networks, small-world WS networks and 
scale-free BA networks, we �nd a high positive correlation between the Ollivier-Ricci and Forman-Ricci curva-
ture of edges or between Ollivier-Ricci and Augmented Forman-Ricci curvature of edges when the model net-
works are sparse with small average degree, however, the observed correlation vanishes with increase in average 
degree of model networks (Table 1 and Supplementary Table S2). In hyperbolic random geometric graphs, we 
also �nd a high positive correlation between the Ollivier-Ricci and Forman-Ricci curvature of edges or between 
Ollivier-Ricci and Augmented Forman-Ricci curvature of edges, however, the observed correlation in the hyper-
bolic graphs seems relatively less dependent on average degree of networks based on our limited exploration of 
the parameter space (Table 1 and Supplementary Table S2). We remark that hyperbolic random geometric graphs 
unlike ER, WS and BA networks have explicit geometric structure. Note that the Augmented Forman-Ricci in 
comparison to Forman-Ricci curvature of edges has typically higher positive correlation with Ollivier-Ricci 
curvature of edges in ER, WS and BA models (Table 1 and Supplementary Table S2). Moreover, WS networks 
have higher clustering coe�cient (and thus, higher proportion of triads) in comparison to ER or BA networks 
with same number of vertices and average degree, and thus, it is not surprising to observe that the Augmented 
Forman-Ricci curvature in comparison to Forman-Ricci curvature of edges has much higher positive correlation 
with Ollivier-Ricci curvature of edges in WS networks, especially, when networks become denser with increase 
in average degree (Table 1 and Supplementary Table S2). �is last result is expected because the Augmented 
Forman-Ricci curvature of edges also accounts for two-dimensional simplicial complexes or cycles of length 3 
arising in graphs (see discussion in �eory section and Fig. 1(e,f)).

We have also compared the Ollivier-Ricci with Forman-Ricci and Augmented Forman-Ricci curvature of 
edges in seventeen real-world networks. In several of the analyzed real-world networks, we �nd a moderate to 
high positive correlation between Ollivier-Ricci and Forman-Ricci curvature of edges (Table 1 and Supplementary 
Table S2). We highlight that some of the real-world networks such as Astrophysics co-authorship network, 
Email communication network, Jazz musicians network and Zebra network have very weak or no correlation 
between Ollivier-Ricci and Forman-Ricci curvature of edges (Table 1 and Supplementary Table S2). However, 
in most real-world networks analyzed here, we �nd a moderate to high positive correlation between Augmented 
Forman-Ricci and Ollivier-Ricci curvature of edges (Table 1 and Supplementary Table S2). Interestingly, we also 
�nd that the Augmented Forman-Ricci curvature has moderate to high correlation with Ollivier-Ricci curvature 
of edges in Astrophysics co-authorship network, Email communication network, Jazz musicians network and 
Zebra network where Forman-Ricci curvature has very weak or no correlation with Ollivier-Ricci curvature of 
edges (Table 1 and Supplementary Table S2). �us, at the level of edges, we observe a positive correlation between 
Ollivier-Ricci and Forman-Ricci curvature, especially, the augmented version, in many networks (Table 1 and 
Supplementary Table S2).

From the de�nition of the Ollivier-Ricci and Forman-Ricci curvature of edges, it is straightforward to de�ne 
Ollivier-Ricci and Forman-Ricci curvature of vertices in networks24,28 as the sum of the Ricci curvatures of the 
edges incident on the vertex in the network. Note that the de�nition of Ollivier-Ricci and Forman-Ricci curvature 
of vertices in networks24,28 is a direct discrete analogue of the scalar curvature in Riemannian geometry43.

We have compared the Ollivier-Ricci with Forman-Ricci and Augmented Forman-Ricci curvature of vertices 
in model networks (Table 2 and Supplementary Table S3). In random ER networks, small-world WS networks 
and scale-free BA networks, we �nd a high positive correlation between the Ollivier-Ricci and Forman-Ricci cur-
vature of vertices or between Ollivier-Ricci and Augmented Forman-Ricci curvature of vertices, and the observed 
correlation seems to have minor dependence on size or average degree of networks based on our limited explo-
ration of the parameter space (Table 2 and Supplementary Table S3). In most hyperbolic random geometric 
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graphs analyzed here, we also �nd a moderate positive correlation between the Ollivier-Ricci and Forman-Ricci 
curvature of vertices or between Ollivier-Ricci and Augmented Forman-Ricci curvature of vertices (Table 2 
and Supplementary Table S3). Note that in random ER networks, small-world WS networks and scale-free BA 
networks, the Spearman correlation is typically higher than Pearson correlation between Ollivier-Ricci and 
Forman-Ricci curvature of vertices, however, in the hyperbolic random geometric graphs, the Spearman corre-
lation is typically lower than Pearson correlation between Ollivier-Ricci and Forman-Ricci curvature of vertices 
(Tables 1 and 2 and Supplementary Tables S2 and S3).

We have also compared the Ollivier-Ricci with Forman-Ricci and Augmented Forman-Ricci curvature of 
vertices in seventeen real-world networks. In several of the analyzed real-world networks, we �nd a moder-
ate to high positive correlation between Ollivier-Ricci and Forman-Ricci curvature of vertices (Table 2 and 
Supplementary Table S3). Also, in most real-world networks analyzed here, we �nd a higher positive correlation 
between Augmented Forman-Ricci and Ollivier-Ricci curvature of vertices in comparison to Forman-Ricci and 
Ollivier-Ricci curvature of vertices (Table 2 and Supplementary Table S3). �us, at the level of vertices, we observe 
a positive correlation between Ollivier-Ricci and Forman-Ricci curvature, especially, the augmented version, in 
many networks (Table 2 and Supplementary Table S2).

Importantly, we �nd that the correlation between Ollivier-Ricci and Forman-Ricci curvature of vertices is 
higher than Ollivier-Ricci and Forman-Ricci curvature of edges in most networks analyzed here (Tables 1 and 2  
and Supplementary Tables S2 and S3). An intuitive explanation consists in the following observation. For the 
curvature of a vertex v0 in an unweighted network, we average over all edges (v0, v) that have that vertex as one of 
its endpoints. �erefore, the Forman-Ricci curvature of each edge (v0, v) with vertex v0 as one of its endpoint in an 

Network
OR versus FR 
of edges

OR versus 
AFR of edges

Model networks

ER model with n = 1000, p = 0.003 0.89 0.90

ER model with n = 1000, p = 0.007 0.39 0.43

ER model with n = 1000, p = 0.01 −0.03 0.04

WS model with n = 1000, k = 2 and p = 0.5 0.92 0.92

WS model with n = 1000, k = 8 and p = 0.5 0.18 0.70

WS model with n = 1000, k = 10 and p = 0.5 0.10 0.69

BA model with n = 1000, m = 2 0.74 0.74

BA model with n = 1000, m = 4 0.33 0.36

BA model with n = 1000, m = 5 0.13 0.16

HGG model with n = 1000, k = 3, γ = 2, T = 0 0.78 0.66

HGG model with n = 1000, k = 5, γ = 2, T = 0 0.82 0.76

HGG model with n = 1000, k = 10, γ = 2, T = 0 0.85 0.87

Real networks

Autonomous systems 0.43 0.42

PGP 0.32 0.83

US Power Grid 0.60 0.76

Astrophysics co-authorship 0.25 0.70

Chicago Road 0.98 0.98

Yeast protein interactions 0.70 0.74

Euro Road 0.81 0.88

Human protein interactions 0.48 0.52

Hamsterster friendship 0.23 0.30

Email communication 0.19 0.53

PDZ domain interactions 0.72 0.71

Adjective-Noun adjacency 0.15 0.35

Dolphin 0.07 0.71

Contiguous US States 0.68 0.91

Zachary karate club 0.75 0.81

Jazz musicians 0.11 0.90

Zebra −0.04 0.62

Table 1. Comparison of Ollivier-Ricci curvature (OR) with Forman-Ricci curvature (FR) or Augmented 
Forman-Ricci curvature (AFR) of edges in model and real networks. In this table, we list the Spearman 
correlation between the edge curvatures. In case of model networks, the reported correlation is mean 
(rounded o� to two decimal places) over a sample of 100 networks generated with speci�c input parameters. 
Supplementary Table S2 also contains results from additional analysis of model networks with an expanded set 
of chosen input parameters. Moreover, Supplementary Table S2 also lists the Pearson correlation between the 
edge curvatures in model and real networks.



www.nature.com/scientificreports/

9SCIENTIFIC REPORTS |  (2018) 8:8650  | DOI:10.1038/s41598-018-27001-3

unweighted network has the form, 4 − deg v0 − deg v (see eq. 8), and the Forman-Ricci curvature of all such edges 
(v0, v) share the term deg v0 which decreases the variance. For example, we even �nd a high positive correlation 
between Ollivier-Ricci and Forman-Ricci curvature of vertices in Email communication network where only a 
weak positive correlation exists between Ollivier-Ricci and Forman-Ricci curvature of edges (Tables 1 and 2 and 
Supplementary Tables S2 and S3). In a nut shell, although the two discretizations of Ricci curvature, Ollivier-Ricci 
and Forman-Ricci, capture di�erent geometrical properties, our empirical analysis intriguingly �nds a high pos-
itive correlation in many networks, especially, real-world networks. Deeper investigations in future are needed 
to better understand this empirically observed correlation between Ollivier-Ricci and Forman-Ricci curvature 
in many networks.

Comparison of Forman-Ricci and Ollivier-Ricci curvature with other edge-based measures. We 
emphasize that Ollivier-Ricci and Forman-Ricci curvature are edge-based measures of complex networks. We 
compared Ollivier-Ricci, Forman-Ricci and Augmented Forman-Ricci curvature with three other edge-based 
measures, edge betweenness centrality37,65,66, embeddedness67 and dispersion68, for complex networks. Edge 
betweenness centrality37,65,66 measures the number of shortest paths that pass through an edge in a network. 
Edge betweenness centrality can be used to identify bottlenecks for �ows in network. Embeddedness67 of an edge 
quanti�es the number of neighbors that are shared by the two vertices anchoring the edge under consideration in 
the network. Embeddedness is a measure to quantify the strength of ties in social networks67. Dispersion68 quan-
ti�es the extent to which the neighbours of the two vertices anchoring an edge are not themselves well connected. 
Dispersion is a measure to predict romantic relationships in social networks68.

Network
OR versus FR of 
vertices

OR versus AFR of 
vertices

Model networks

ER model with n = 1000, p = 0.003 0.97 0.97

ER model with n = 1000, p = 0.007 0.97 0.97

ER model with n = 1000, p = 0.01 0.96 0.96

WS model with n = 1000, k = 2 and p = 0.5 0.90 0.90

WS model with n = 1000, k = 8 and p = 0.5 0.80 0.93

WS model with n = 1000, k = 10 and p = 0.5 0.77 0.92

BA model with n = 1000, m = 2 0.61 0.61

BA model with n = 1000, m = 4 0.59 0.60

BA model with n = 1000, m = 5 0.63 0.64

HGG model with n = 1000, k = 3, γ = 2, T = 0 0.48 0.57

HGG model with n = 1000, k = 5, γ = 2, T = 0 0.34 0.41

HGG model with n = 1000, k = 10, γ = 2, T = 0 0.09 0.13

Real networks

Autonomous systems 0.64 0.64

PGP 0.37 0.74

US Power Grid 0.68 0.82

Astrophysics co-authorship 0.43 0.78

Chicago Road 0.96 0.96

Yeast protein interactions 0.85 0.92

Euro Road 0.90 0.92

Human protein interactions 0.83 0.84

Hamsterster friendship 0.85 0.86

Email communication 0.79 0.86

PDZ domain interactions 0.91 0.91

Adjective-Noun adjacency 0.47 0.50

Dolphin 0.04 0.49

Contiguous US States 0.61 0.89

Zachary karate club 0.24 0.70

Jazz musicians −0.79 0.01

Zebra −0.72 0.99

Table 2. Comparison of Ollivier-Ricci curvature (OR) with Forman-Ricci curvature (FR) or Augmented 
Forman-Ricci curvature (AFR) of vertices in model and real networks. In this table, we list the Spearman 
correlation between the vertex curvatures. In case of model networks, the reported correlation is mean 
(rounded o� to two decimal places) over a sample of 100 networks generated with speci�c input parameters. 
Supplementary Table S3 also contains results from additional analysis of model networks with an expanded set 
of chosen input parameters. Moreover, Supplementary Table S3 also lists the Pearson correlation between the 
vertex curvatures in model and real networks.
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In model networks, we �nd that Ollivier-Ricci, Forman-Ricci and Augmented Forman-Ricci curvature have 
signi�cant negative correlation with edge betweenness centrality (Table 3 and Supplementary Table S4). In most 
real networks considered here, we �nd that Ollivier-Ricci curvature has moderate to high negative correlation 
with edge betweenness centrality while Forman-Ricci curvature has a weak to moderate negative correlation with 
edge betweenness centrality (Table 3 and Supplementary Table S4). Moreover, in most real networks considered 
here, we observe a higher negative correlation between Ollivier-Ricci curvature and edge betweenness centrality 
in comparison to Forman-Ricci curvature and edge betweenness centrality (Table 3 and Supplementary Table S4). 
�is may be explained by the fact that Ollivier-Ricci curvature is also a�ected by cycles of length 3, 4 and 5 con-
taining the two vertices of an edge, and these are relevant for edge betweenness centrality. Interestingly, in real 
networks considered here, the Augmented Forman-Ricci curvature in comparison to Forman-Ricci curvature has 
much higher negative correlation with edge betweenness centrality (Table 3 and Supplementary Table S4). Our 
results suggest that the augmented version of Forman-Ricci curvature which also accounts for two-dimensional 
simplicial complexes arising in graphs is better suited for analysis of complex networks.

In both model and real networks considered here, we �nd no consistent relationship between Ollivier-Ricci, 
Forman-Ricci, or Augmented Forman-Ricci curvature of an edge and embeddedness (Table 3 and Supplementary 
Table S4). Similarly, in both model and real networks considered here, we �nd no consistent relationship between 
Ollivier-Ricci, Forman-Ricci, or Augmented Forman-Ricci curvature of an edge and dispersion (Table 3 and 
Supplementary Table S4). In summary, the two discrete notions of Ricci curvatures are negatively correlated to edge 
betweeness centrality but have no consistent relationship with embeddedness or dispersion in analyzed networks.

Network

OR versus FR versus AFR versus

EBC EMB DIS EBC EMB DIS EBC EMB DIS

Model networks

ER model with n = 1000, p = 0.003 −0.86 0.08 0.00 −0.81 −0.07 0.00 −0.82 0.04 0.00

ER model with n = 1000, p = 0.007 −0.53 0.25 0.05 −0.80 −0.11 −0.03 −0.82 0.06 0.02

ER model with n = 1000, p = 0.01 −0.34 0.32 0.10 −0.76 −0.13 −0.05 −0.79 0.07 0.03

WS model with n = 1000, k = 2 and p = 0.5 −0.75 0.00 0.00 −0.57 0.00 0.00 −0.57 0.00 0.00

WS model with n = 1000, k = 8 and p = 0.5 −0.85 0.79 0.44 −0.52 −0.05 −0.08 −0.89 0.68 0.42

WS model with n = 1000, k = 10 and p = 0.5 −0.87 0.82 0.49 −0.45 −0.05 −0.07 −0.89 0.73 0.47

BA model with n = 1000, m = 2 −0.73 −0.09 −0.11 −0.76 −0.30 −0.16 −0.77 −0.26 −0.15

BA model with n = 1000, m = 4 −0.45 0.18 0.14 −0.83 −0.48 −0.35 −0.84 −0.43 −0.33

BA model with n = 1000, m = 5 −0.30 0.30 0.25 −0.85 −0.54 −0.41 −0.86 −0.48 −0.39

HGG model with n = 1000, k = 3, γ = 2, T = 0 −0.47 −0.30 −0.15 −0.67 −0.04 −0.18 −0.76 0.27 −0.07

HGG model with n = 1000, k = 5, γ = 2, T = 0 −0.62 −0.20 −0.13 −0.73 −0.08 −0.17 −0.81 0.20 −0.10

HGG model with n = 1000, k = 10, γ = 2, T = 0 −0.78 −0.03 −0.06 −0.79 −0.15 −0.12 −0.87 0.14 −0.08

Real networks

Autonomous systems −0.17 −0.37 −0.25 −0.26 −0.44 −0.18 −0.27 −0.41 −0.16

PGP −0.64 0.20 −0.13 0.11 −0.69 −0.17 −0.56 0.21 −0.15

US Power Grid −0.61 0.16 0.06 −0.26 −0.41 −0.19 −0.45 0.09 0.04

Astrophysics co-authorship −0.78 0.47 −0.16 −0.23 −0.58 −0.23 −0.63 0.07 −0.27

Chicago Road −0.65 0.00 0.00 −0.65 0.00 0.00 −0.65 0.00 0.00

Yeast protein interactions −0.83 0.06 −0.01 −0.52 −0.15 −0.13 −0.59 0.14 0.00

Euro Road −0.54 0.05 0.02 −0.40 −0.31 −0.07 −0.43 0.00 0.03

Human protein interactions −0.46 0.07 0.01 −0.38 −0.22 −0.19 −0.43 −0.07 −0.10

Hamsterster friendship −0.53 0.12 0.00 −0.35 −0.61 −0.40 −0.42 −0.47 −0.32

Email communication −0.61 0.55 0.24 −0.32 −0.45 −0.41 −0.57 0.01 −0.16

PDZ domain interactions −0.79 −0.04 0.00 −0.55 −0.02 0.00 −0.55 0.06 0.00

Adjective−Noun adjacency −0.51 0.22 0.09 −0.42 −0.72 −0.55 −0.57 −0.42 −0.37

Dolphin −0.66 0.51 0.28 0.11 −0.58 −0.21 −0.61 0.59 0.31

Contiguous US States −0.68 −0.10 −0.15 −0.49 −0.72 −0.71 −0.64 −0.03 −0.08

Zachary karate club −0.79 0.10 −0.06 −0.64 −0.29 −0.37 −0.80 0.43 0.14

Jazz musicians −0.84 0.57 −0.03 −0.22 −0.66 −0.18 −0.76 0.47 −0.05

Zebra −0.94 0.52 0.13 0.04 −0.71 −0.15 −0.65 0.97 0.09

Table 3. Comparison of Ollivier-Ricci curvature (OR), Forman-Ricci curvature (FR) and Augmented 
Forman-Ricci curvature (AFR) of edges with other edge-based measures, edge betweenness centrality (EBC), 
embeddedness (EMB) and dispersion (DIS), in model and real networks. In this table, we list the Spearman 
correlation between the edge-based measures. In case of model networks, the reported correlation is mean 
(rounded o� to two decimal places) over a sample of 100 networks generated with speci�c input parameters. 
Supplementary Table S4 also contains results from additional analysis of model networks with an expanded set 
of chosen input parameters. Moreover, Supplementary Table S4 also lists the Pearson correlation between the 
edge-based measures in model and real networks.
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Comparison of Forman-Ricci and Ollivier-Ricci curvature with vertex-based measures. We 
compared Ollivier-Ricci, Forman-Ricci and Augmented Forman-Ricci curvature of vertices with three other 
vertex-based measures, degree, betweenness centrality37,65 and clustering coe�cient33,69, in a network. Vertex 
degree gives the number of edges incident to that vertex in a network. Betweennness centrality37,65 of a vertex 
quanti�es the fraction of shortest paths between all pairs of vertices in the network that pass through that vertex. 
�e clustering coe�cient33,69 of a vertex quanti�es the number of edges that are realized between the neighbours 
of the vertex divided by the number of edges that could possibly exist between the neighbours of the vertex in the 
network. We remark that the clustering coe�cient has been proposed as a measure to quantify the curvature of 
networks39.

Not surprisingly, we �nd that Ollivier-Ricci, Forman-Ricci or Augmented Forman-Ricci curvature of ver-
tices have high negative correlation with degree in most model as well as real networks analyzed here (Table 4 
and Supplementary Table S5). A�er all, the vertex degree is intrinsic in the de�nition of the Ollivier-Ricci or 
Forman-Ricci curvature of a vertex as it appears implicitly in the sum over adjacent edges in the de�ning for-
mula. Similarly, in model as well as real networks analyzed here, we �nd that Ollivier-Ricci, Forman-Ricci or 
Augmented Forman-Ricci curvature of vertices have high negative correlation with betweenness central-
ity (Table 4 and Supplementary Table S5). In contrast, we do not find any consistent relationship between 
Ollivier-Ricci, Forman-Ricci or Augmented Forman-Ricci curvature of vertices and clustering coe�cient in 
model and real networks analyzed here (Table 4 and Supplementary Table S5).

Network

OR versus FR versus AFR versus

Degree BC CC Degree BC CC Degree BC CC

Model networks

ER model with n = 1000, p = 0.003 −0.94 −0.94 −0.07 −0.94 −0.94 −0.13 −0.94 −0.94 −0.08

ER model with n = 1000, p = 0.007 −0.98 −0.98 −0.18 −0.99 −0.98 −0.26 −0.99 −0.98 −0.21

ER model with n = 1000, p = 0.01 −0.98 −0.98 −0.16 −0.99 −0.98 −0.25 −0.99 −0.98 −0.21

WS model with n = 1000, k = 2 and p = 0.5 −0.71 −0.82 0.00 −0.75 −0.73 0.00 −0.75 −0.73 0.00

WS model with n = 1000, k = 8 and p = 0.5 −0.81 −0.96 0.51 −0.98 −0.91 0.05 −0.91 −0.98 0.38

WS model with n = 1000, k = 10 and p = 0.5 −0.79 −0.95 0.57 −0.99 −0.91 0.09 −0.92 −0.98 0.41

BA model with n = 1000, m = 2 −0.90 −0.90 −0.18 −0.59 −0.77 −0.39 −0.59 −0.78 −0.37

BA model with n = 1000, m = 4 −0.94 −0.88 −0.08 −0.73 −0.84 −0.49 −0.73 −0.85 −0.45

BA model with n = 1000, m = 5 −0.94 −0.90 −0.05 −0.78 −0.85 −0.40 −0.79 −0.86 −0.37

HGG model with n = 1000, k = 3, γ = 2, T = 0 −0.28 −0.30 −0.14 −0.86 −0.60 −0.45 −0.79 −0.58 −0.37

HGG model with n = 1000, k = 5, γ = 2, T = 0 −0.15 −0.17 −0.03 −0.89 −0.61 −0.21 −0.85 −0.60 −0.18

HGG model with n = 1000, k = 10, γ = 2, T = 0 0.06 −0.06 0.01 −0.93 −0.68 0.31 −0.91 −0.66 0.30

Real networks

Autonomous systems −0.85 −0.70 −0.39 −0.51 −0.38 −0.55 −0.50 −0.38 −0.55

PGP −0.12 −0.49 0.29 −0.73 −0.51 −0.51 −0.35 −0.46 −0.05

US Power Grid −0.68 −0.80 0.03 −0.79 −0.62 −0.49 −0.69 −0.68 −0.13

Astrophysics co-authorship −0.39 −0.72 0.62 −0.95 −0.64 0.25 −0.64 −0.66 0.41

Chicago Road −0.33 −0.34 0.00 −0.42 −0.42 0.00 −0.42 −0.42 0.00

Yeast protein interactions −0.54 −0.67 −0.05 −0.57 −0.56 −0.33 −0.45 −0.54 −0.07

Euro Road −0.82 −0.75 −0.22 −0.82 −0.64 −0.38 −0.80 −0.65 −0.24

Human protein interactions −0.77 −0.78 −0.23 −0.71 −0.65 −0.43 −0.67 −0.64 −0.34

Hamsterster friendship −0.87 −0.87 −0.30 −0.92 −0.76 −0.45 −0.91 −0.76 −0.42

Email communication −0.80 −0.88 0.06 −0.97 −0.87 −0.31 −0.93 −0.88 −0.19

PDZ domain interactions −0.50 −0.58 −0.12 −0.62 −0.64 −0.14 −0.61 −0.64 −0.09

Adjective-Noun adjacency −0.57 −0.76 0.07 −0.96 −0.84 −0.50 −0.95 −0.84 −0.45

Dolphin −0.04 −0.39 0.44 −0.98 −0.77 −0.45 −0.73 −0.72 −0.04

Contiguous US States −0.59 −0.74 0.71 −0.98 −0.82 0.55 −0.78 −0.79 0.70

Zachary karate club 0.10 −0.09 0.35 −0.84 −0.76 0.40 −0.47 −0.60 0.52

Jazz musicians 0.78 0.34 0.08 −0.99 −0.72 0.33 −0.49 −0.56 0.56

Zebra 0.78 0.35 −0.33 −0.94 −0.73 0.70 0.76 0.33 −0.31

Table 4. Comparison of Ollivier-Ricci curvature (OR), Forman-Ricci curvature (FR) and Augmented Forman-
Ricci curvature (AFR) of vertices with other vertex-based measures, degree, betweenness centrality (BC) and 
clustering coe�cient (CC), in model and real networks. In this table, we list the Spearman correlation between 
the vertex-based measures. In case of model networks, the reported correlation is mean (rounded o� to two 
decimal places) over a sample of 100 networks generated with speci�c input parameters. Supplementary 
Table S5 also contains results from additional analysis of model networks with an expanded set of chosen input 
parameters. Moreover, Supplementary Table S5 also lists the Pearson correlation between the vertex-based 
measures in model and real networks.
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Relative importance of Forman-Ricci and Ollivier-Ricci curvature for topological robustness 
of networks. We employ a global network measure, communication e�ciency70, to quantify the e�ect of 
removing edges or vertices on the large-scale connectivity of networks. Communication e�ciency E of a graph 
G is given by:

E
n n d

1

( 1)

1
,

(11)i j V G ij( )
∑=

− < ∈

where dij denotes the shortest path between the pair of vertices i and j, n is the number of vertices in the graph, 
and V(G) denotes the set of vertices in the graph. Note that communication e�ciency captures the resilience of a 
network to failure in the face of perturbations, as it essentially identi�es locally with the clustering coe�cient and 
globally with the inverse of the characteristic path length.

Figure 2. Communication e�ciency as a function of the fraction of edges removed in model and real networks. 
(a) Erdös-Rènyi (ER) model. (b) Watts-Strogratz (WS) model. (c) Barabàsi-Albert (BA) model. (d) Hyberbolic 
random geometric graph (HGG) model. (e) US Power Grid. (f) Yeast protein interactions. (g) Euro road. (h) 
Email communication.



www.nature.com/scientificreports/

13SCIENTIFIC REPORTS |  (2018) 8:8650  | DOI:10.1038/s41598-018-27001-3

We investigated the relative importance of Ollivier-Ricci, Forman-Ricci or Augmented Forman-Ricci cur-
vature of edges for the large-scale connectivity of networks by removing edges based on the following criteria: 
random order, increasing order of the Forman-Ricci curvature of an edge, increasing order of the Augmented 
Forman-Ricci curvature of an edge, increasing order of the Ollivier-Ricci curvature of an edge, and decreasing 
order of edge betweenness centrality. In both model and real networks, we �nd that removing edges based on 
increasing order of Ollivier-Ricci curvature or increasing order of Forman-Ricci curvature or increasing order of 
Augmented Forman-Ricci curvature or decreasing order of edge betweenness centrality leads to faster disintegra-
tion in comparison to the random removal of edges (Fig. 2). Furthermore, in most cases, removing edges based 
on increasing order of Ollivier-Ricci curvature or decreasing order of edge betweenness centrality typically leads 
to faster disintegration in comparison to removing edges based on increasing order of Forman-Ricci curvature 

Figure 3. Communication e�ciency as a function of the fraction of vertices removed in model and real 
networks. (a) Erdös-Rènyi (ER) model. (b) Watts-Strogratz (WS) model. (c) Barabàsi-Albert (BA) model. (d) 
Hyberbolic random geometric graph (HGG) model. (e) US Power Grid. (f) Yeast protein interactions. (g) Euro 
road. (h) Email communication.
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(Fig. 2). We remark that both Ollivier-Ricci curvature of an edge and edge betweenness centrality are global 
measures while Forman-Ricci curvature of an edge is a local measure dependent on nearest neighbors of an edge.

We also investigated the relative importance of Ollivier-Ricci, Forman-Ricci or Augmented Forman-Ricci cur-
vature of vertices for the large-scale connectivity of networks by removing vertices based on the following criteria: 
random order, increasing order of the Forman-Ricci curvature of a vertex, increasing order of the Augmented 
Forman-Ricci curvature of a vertex, increasing order of the Ollivier-Ricci curvature of a vertex, decreasing order 
of betweenness centrality of a vertex, decreasing order of vertex degree, and decreasing order of clustering coef-
�cient of a vertex. In both model and real networks, we �nd that removing vertices based on increasing order 
of Ollivier-Ricci curvature or increasing order of Forman-Ricci curvature or increasing order of Augmented 
Forman-Ricci curvature or decreasing order of betweenness centrality or decreasing order of degree leads to 
faster disintegration in comparison to the random removal of vertices (Fig. 3). Furthermore, in most model as 
well as real networks, removing vertices based on increasing order of Ollivier-Ricci curvature typically leads to 
faster disintegration in comparison to removing vertices based on increasing order of Forman-Ricci curvature or 
on increasing order of Augmented Forman-Ricci curvature (Fig. 3). Also, in most model as well as real networks, 
removing vertices based on increasing order of Ollivier-Ricci curvature typically leads to at least slightly faster 
disintegration in comparison to removing vertices based on any other measure (Fig. 3). In summary, vertices or 
edges with highly negative Ollivier-Ricci curvature are found to be more important than vertices or edges with 
highly negative Forman-Ricci curvature for maintaining the large-scale connectivity of most networks analyzed 
here.

Conclusions
We have performed an empirical investigation of two discretizations of Ricci curvature, Ollivier’s Ricci curvature 
and Forman’s Ricci curvature, in a number of model and real-world networks. �e two discretizations of Ricci 
curvature were derived using di�erent theoretical considerations and methods, and thus, convey insights into 
quite di�erent geometrical properties and behaviors of complex networks. Speci�cally, Ollivier-Ricci curvature 
captures clustering and coherence in networks while Forman-Ricci curvature captures dispersal and topology. 
Moreover, in the context of weighted networks, Ollivier-Ricci curvature implicitly, by its very de�nition, relates 
to edge weights as probabilities, while Forman’s Ricci curvature fundamentally views edge weights as abstrac-
tions of lengths, and vertex weights as, for instance, concentrated area measures. �is suggests that Ollivier-Ricci 
curvature is intrinsically better suited to study probabilistic phenomenon on networks while Forman-Ricci 
curvature is better suited to investigate networks where edge weights correspond to distances. Still, our results 
obtained in a wide-range of both model and real-world networks, consistently demonstrate that the two types 
of Ricci curvature in many networks are highly correlated. �e immediate bene�t of this realization is that one 
can compute Forman-Ricci curvature in large networks to gain some �rst insight into the computationally much 
more demanding Ollivier-Ricci curvature. Furthermore, the state of the art computational implementation of the 
Ollivier-Ricci curvature can handle only weights on edges rather than vertices in weighted networks. In addition, 
while computing the Ollivier-Ricci curvature of an edge in a weighted network, a necessary step is the normali-
zation of the neighboring edge weights. In contrast, the mathematical de�nition of the Forman-Ricci curvature 
can incorporate any set of positive weights, placed simultaneously at the vertices and the edges. Furthermore, the 
Augmented Forman-Ricci curvature can also account for higher-dimensional simplicial complexes, thus making 
it a natural and simple to employ tool for understanding networks with explicit geometric structure, especially, 
hyper-networks. �erefore, our empirical observations on the correlation between these two di�erent notions of 
Ricci curvature in networks warrant deeper investigation in the future.

We remark that while the present manuscript was under �nal stages of submission, a preprint71 devoted to 
comparison problem in biological networks appeared on Arxiv server, independently from our present study.

Data availability. All data generated or analysed during this study are included in this article or is available 
upon request from the corresponding author.
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