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Abstract

Objectives: In the present study, we have analyzed the anatomy of the radiocarpal

joint ligaments and muscles in Pan troglodytes and Homo sapiens in order to identify

similarities and differences between the two species that may be related to differ-

ences in hand use and function.

Materials and Methods: Anatomical dissections of the ligaments and muscles of the

radiocarpal joint were performed in six adult chimpanzees and 12 humans. The mass

of each ligament and of the functional ligament groups were calculated relative to

the total ligament mass and compared between the two species. The mass of the

functional muscle groups relative to the total mass of the muscles of the radiocarpal

joint was also calculated and compared between the two species.

Results: The ligaments of the radiocarpal joint had similar anatomical characteristics

in chimpanzees and humans. The relative mass of the palmar ligaments was greater

in humans, while that of the dorsal radiocarpal ligament was greater in chimpanzees.

In both species, the relative mass of the palmar and dorsal muscle groups was

inversely related to that of the corresponding ligament groups.

Discussion: The greater relative mass of the palmar ligaments in humans may be

related to the importance of wrist extension during manipulative tasks. The greater

relative mass of the dorsal radiocarpal ligament in chimpanzees may be related to the

need to stabilize the radiocarpal joint in flexion, mainly during arboreal locomotion.
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1 | INTRODUCTION

Relatively few studies have reported qualitative or quantitative data

on soft tissues in hominoid primates, mainly due to the difficulty in

conducting detailed anatomical studies in this group of primates.

Nonetheless, it is important to increase our knowledge of the anatom-

ical characteristics of hominoid primates, which are closely related

phylogenetically to Homo sapiens (Almécija et al., 2021). The super-

family Hominoidea (hominoid primates) includes the family

Hylobatidae (gibbons and siamangs) and the family Hominidae (great

apes and humans). The family Hominidae includes the subfamilies

Ponginae (orangutans) and Homininae (gorillas, chimpanzees, bono-

bos, and humans) (Almécija et al., 2021). In fact, chimpanzees and

bonobos are the hominine primates most closely related to humans

(Prüfer et al., 2012), so their study will allow a better understanding of

certain morphological and functional details of modern humans. Com-

parative studies of the musculoskeletal system of primates have mostly

focused on osteological and muscular analyses (e.g. Carlson, 2006;

Marzke et al., 1999; Michilsens et al., 2009; Myatt et al., 2012; Oishi

et al., 2009; Potau et al., 2009; Thorpe et al., 1999; Tuttle et al., 1972;
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Van Leeuwen et al., 2018), while ligaments, especially those of the

upper limbs, have received relatively little attention (Sarmiento, 1988;

Shrewsbury, 2003; Tuttle, 1969; Van Leeuwen et al., 2019), in spite of

the fact that they are basic structures directly involved in the physiol-

ogy of joints (Nordin & Frankel, 2001; Taleisnik, 1985).

The main functions of ligaments are to stabilize joints, restrict their

movements, maintain correct contact between joint surfaces, and trans-

mit loads generated during the use of the joint (Berger, 1997; Nordin &

Frankel, 2001). Also, ligaments contain mechanoreceptors that capture

mechanical stimuli that act on the joint and influence periarticular

muscles through ligament-muscular reflexes (Apergis, 2013). These

reflexes have been described in various joints in humans, including the

wrist (Hagert et al., 2009). This functional importance of ligaments sug-

gests that by studying them, we can better understand the anatomical

and functional characteristics of the large joint complexes of primates.

This is especially evident in those joints subjected to high functional

loads during use, such as the wrist of the chimpanzees (Orr, 2017), which

must combine the mobility required for the handling of objects (Hopkins

et al., 2002) with the stability necessary to withstand the compressive

forces of knuckle-walking (Pontzer et al., 2014; Thompson et al., 2018)

and the tensile forces of suspensory behavior like vertical climbing or

clambering (Hunt, 1991; Whitehead, 1993). Despite their functional

importance, little is known about the anatomical characteristics of the

ligaments of the radiocarpal joint in chimpanzees. Most studies have

focused on the thickening of the palmar joint capsule (Tuttle, 1969) or of

the palmar ulnocarpal (PUC) ligament (Sarmiento, 1988), which increase

wrist stability in chimpanzees as an adaptation to knuckle-walking.

In humans, in contrast, the anatomical and functional characteristics

of the ligaments of the radiocarpal joint are well known (Apergis, 2013;

Cardoso & Szabo, 2007; Taljanovic et al., 2011). The palmar region of

the joint capsule is reinforced by the palmar radiocarpal (PRC) ligament

and by the PUC ligament (Apergis, 2013; Ringler & Murthy, 2015)

(Figure 1). The PRC ligament comprises the radioscaphocapitate (RSC)

ligament, which connects the palmar surface of the styloid process of

the radius to the scaphoid and capitate (Buijze et al., 2011); the long

radiolunate (LRL) ligament, which connects the palmar surface of the

radial scaphoid fossa with the lunate; and the short radiolunate (SRL)

ligament, which connects the palmar surface of the radial lunate fossa

with the lunate bone (Ringler & Murthy, 2015). The PUC ligament

comprises the ulnolunate, ulnotriquetral and ulnocapitate ligaments

(Taljanovic et al., 2011). These three ligaments originate in the palmar

radioulnar ligament and in the fovea of the ulnar head and insert into the

lunate, triquetrum and capitate, respectively. The RSC, LRL and SRL

ligaments together form the main stabilizing element of the radiocarpal

joint in humans (Apergis, 2013). These ligaments restrict the dorsal

translation of the carpus and tighten during wrist extension. Also, the

RSC stabilizes the scaphoid, while the LRL and SRL stabilize the lunate

(Apergis, 2013; Ringler & Murthy, 2015). The PUC ligament, which also

stabilizes the radiocarpal joint during wrist extension (Apergis, 2013), is

part of the triangular fibrocartilage complex (TFCC), which separates the

distal radioulnar joint from the proximal carpal bones in hominoid

primates (Palmer & Werner, 1981), contributing to the stability of the

distal radioulnar joint (Apergis, 2013).

The dorsal region of the radiocarpal joint capsule is reinforced by

the dorsal radiocarpal (DRC) ligament (Apergis, 2013; Rainbow

et al., 2012) (Figure 2). This ligament originates at the dorsal edge of

the distal radial epiphysis, distally and ulnarly to the dorsal tubercle,

and inserts into the dorsal surface of the lunate and triquetrum

(Apergis, 2013). The DRC ligament tightens during flexion and wrist

radial deviation (Rainbow et al., 2012), restricting these movements

and helping to stabilize the lunate (Rainbow et al., 2012; Ringler &

Murthy, 2015). The radial region of the radiocarpal joint capsule is

reinforced by the radial collateral (RC) ligament (Figures 1 and 2),

which extends between the radial styloid process and the scaphoid

(Orlandi et al., 2012; Ringler, 2013) and which tightens during wrist

ulnar deviation. Some authors consider the RC ligament to be a part

F IGURE 1 Palmar view of the wrist ligaments in (a) Homo sapiens (right hand, specimen HS02) and (b) pan troglodytes (right hand, specimen
PT04). (c) Anatomical drawing of the chimpanzee wrist. 1 = Radioscaphocapitate (RSC) ligament; 2 = long radiolunate (LRL) ligament; 3 = short
radiolunate (SRL) ligament; 4 = palmar ulnocarpal (PUC) ligament; 5 = radial collateral (RC) ligament; 6 = ulnar collateral (UC) ligament;
R = radius; U = ulna; S = scaphoid; L = lunate; T = triquetrum; Ps = pisiform; Tz = trapezium; td = trapezoid; C = capitate; H = hamate
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of the RSC ligament and not a differentiated ligament (Apergis, 2013;

Ringler & Murthy, 2015). Finally, the ulnar region of the radiocarpal joint

capsule is reinforced by the ulnar collateral (UC) ligament (Figures 1 and

2), which extends between the ulnar styloid process, the pisiform and

the triquetrum. Some authors believe that the UC ligament should be

considered a thickening of the joint capsule of the TFCC and not a dif-

ferentiated ligament (Brown et al., 1998; Orlandi et al., 2012).

In the present study, we have performed a qualitative and quantita-

tive anatomical study of the ligaments of the radiocarpal joint in chimpan-

zees and compared these with the ligaments in humans. We chose to

focus on chimpanzees due to their close phylogenetic relationship with

humans (Prüfer et al., 2012) and to the specific morphological and func-

tional characteristics of the hand in chimpanzees. Chimpanzees and bono-

bos have a well-muscled hand in the palmar region (Van Leeuwen

et al., 2018; Zihlman & Underwood, 2019). This large mass makes their

hands strong—an anatomical adaptation to arboreal locomotion—while at

the same time keeping them flexible enough for a variety of tasks. The

multifunctional hand of chimpanzees can be used to grab food and other

objects (Marzke et al., 2015), to manipulate vegetation to build nests, to

use objects like tools (Hernandez-Aguilar et al., 2007), and to communi-

cate (Goodall, 1986). At the same time, the hands of chimpanzees have a

relatively long carpus and relatively short phalanges—an anatomical adap-

tation to knuckle-walking (Drapeau & Ward, 2007). In our quantitative

analysis, we compared the relativemass of thewrist ligaments in chimpan-

zees and humans. The principal cells in ligaments, the fibroblasts, increase

the expression of type I collagen, which is the main component of the

extracellular matrix of ligaments, when they are under mechanical strain

(Breen, 2000). Ligaments under greater strain will have a larger amount of

type I collagen, and thus a greater mass, as has been observed in animals

undergoing physical exercise, which have stronger and more rigid liga-

ments aswell as collagen fiberswith longer diameters (Tipton et al., 1970).

Since ligaments stabilize joints and transmit the functional loads

generated during their use (Nordin & Frankel, 2001), we hypothesized

that there would be significant differences between humans and

chimpanzees in the different groups of ligaments of the radiocarpal

joint and that these differences would be related to the different use of

the hand in the two species. Specifically, these differences would be

related to the greater compressive and tensile forces acting on the wrist

of chimpanzees due to their knuckle-walking and suspensory locomo-

tion (Richmond & Strait, 2000; Kelly, 2001; Richmond et al., 2001),

compared to modern humans, who use the wrist and hand mainly in

manipulative tasks (Gebo, 2014). In chimpanzees, the wrist is flexed

during suspensory locomotion and vertical climbing (Sarmiento, 1988).

On the other hand, the wrist is slightly in extension and has an ulnar

deviation during the stance phase of knuckle-walking (Kivell &

Schmitt, 2009; Thompson, 2020). This leads us to hypothesize that

chimpanzees would have a larger relative mass of the dorsal and radial

ligaments, which are subject to greater mechanical strain at these times.

In humans, in contrast, the functional position of the hand is associated

with an extension of the wrist to allow the maximum amount of manual

force (Hazelton et al., 1975; Volz et al., 1980), leading us to expect a

larger relative mass of the palmar ligaments.

The main objective of our study is to amplify the scant informa-

tion currently available on the anatomy of the wrist ligaments of chim-

panzees, which will allow us to better understand the functional

aspects of this important anatomical region in a species closely related

to humans. In addition, since some of these ligaments leave clearly

identifiable marks on the distal radial epiphysis (Casado et al., 2019),

this increased knowledge will help improve the interpretation of these

bone impressions in fossil primates. This, in turn, will facilitate the

assignment of a particular locomotor behavior to fossil primates with

a well-preserved distal radial epiphysis.

2 | MATERIALS AND METHODS

2.1 | Muscle and ligament samples and dissection

Six upper limbs of chimpanzees and 12 of humans were dissected for

this study (Table 1). The upper limbs of chimpanzees were dissected

F IGURE 2 Dorsal view of the wrist ligaments in (a) Homo sapiens (right hand, specimen HS02) and (b) pan troglodytes (left hand, specimen
PT01). (c) Anatomical drawing of the chimpanzee wrist. 1 = dorsal radiocarpal (DRC) ligament; 2 = radial collateral (RC) ligament; 3 = ulnar
collateral (UC) ligament; R = radius; U = ulna; S = scaphoid; L = lunate; T = triquetrum; Tz = trapezium; td = trapezoid; C = capitate;
H = hamate
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at the facilities of the Anatomical Museum of the University of

Valladolid and included an adult male and five adult females. All the

chimpanzee specimens came from different Spanish zoos and had died

from causes unrelated to this study. The human samples came from the

Body Donation Service of the University of Barcelona and included

seven men and five women with an average age of 87.9 years (range

81–94 years). All individuals had been cryopreserved without chemical

fixation within 24–48 h after death. Each specimen was completely

defrosted approximately 24 h before dissection.

All dissections were performed by the same investigator (J.M.P.).

All the muscles of the shoulder, arm, forearm and hand were

isolated, and the ligaments of the radiocarpal joint were carefully

dissected. All possible data on the anatomical characteristics of the

muscles were collected before isolating them and weighing them

with a precision scale (Kern-EW with a resolution of 0.001 g). Once

the muscles were isolated, the insertion sites of each of the

ligaments of the radiocarpal joint were examined. Passive flexion,

extension, radial deviation and ulnar deviation of the wrist were then

performed manually to confirm that the same groups of ligaments

were tightened in both species when subjected to the same

maneuvers. Finally, the ligaments were isolated individually and

weighed separately with a precision scale. In order to minimize the

possible effects of moisture loss on the weight of the ligaments, all

the specimens were dissected under similar temperature conditions

(15–17�C) and in similar lengths of time (30–40 min), and once each

ligament had been identified, it was covered with damp gauze while

the other ligaments were being dissected. When all the ligaments

were disinserted and removed, none of the radiocarpal joints studied

were found to have anatomical alterations arising from the presence

of fractures or joint degenerative processes.

Once the mass of the ligaments was quantified, the mass of each

ligament was calculated relative to the total ligament mass. The

ligaments were then classified into four groups: palmar (RSC + LRL +

SRL + PUC ligaments); dorsal (DRC ligament); radial (RC ligament); and

ulnar (UC ligament). The mass of each group was then calculated relative

to the total ligament mass to enable comparison between differently-

sized species.

Finally, the total mass of the forearm muscles that cross the radio-

carpal joint, participating in its movement and stability, was obtained

and these muscles were classified into the same functional groups as

F IGURE 3 Boxplot of the relative mass of the (a) palmar ligaments, (b) dorsal ligaments, (c) radial ligaments, and (d) ulnar ligaments in humans
and chimpanzees. HS = Homo sapiens; PT = pan troglodytes
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the ligaments: palmar (m. flexor digitorum superficialis + m. flexor

pollicis longus + m. flexor digitorum profundus); dorsal (m. extensor

digitorum + m. extensor digiti minimi + m. extensor pollicis longus

+ m. extensor indicis); radial (m. flexor carpi radialis + m. extensor carpi

radialis longus + m. extensor carpi radialis brevis + m. abductor pollicis

longus + m. extensor pollicis brevis); and ulnar (m. flexor carpi ulnaris

+ m. extensor carpi ulnaris). The m. flexor pollicis longus and the

m. extensor pollicis brevis are characteristic of humans and are not pre-

sent in chimpanzees. The muscle mass of each group was then calcu-

lated relative to the total muscle mass.

2.2 | Statistical analyses

Sample normality was tested in PAST software using the Shapiro–

Wilk and Anderson-Darling tests. The relative mass of each ligament,

the relative mass of each ligament group, and the relative mass of

each muscle group were compared between chimpanzees and humans

using the parametric T-test and the nonparametric Mann–Whitney

U test. Statistical significance was set at p ≤ 0.05.

2.3 | Ethical note

The research complied with protocols approved by the Institutional

Animal Care and Use Committee of the University of Barcelona.

3 | RESULTS

3.1 | Qualitative analysis

In all chimpanzees, the anatomical arrangement of the ligaments of

the radiocarpal joint was similar to that of the human specimens. In

the palmar region (Figure 1), the PRC ligament (comprising the RSC,

LRL and SRL ligaments) and the PUC ligament were identified. In the

dorsal region (Figure 2), the DRC ligament was identified as the only

stabilizing ligament. In the radial and ulnar regions (Figures 1 and 2),

the RC and UC ligaments, respectively, were identified. As previously

described in humans (Apergis, 2013), the RSC ligament in the chim-

panzee specimens extended from the palmar surface of the radial sty-

loid process to the scaphoid and capitate, the LRL ligament extended

F IGURE 4 Boxplot of the relative mass of the (a) palmar muscles, (b) dorsal muscles, (c) radial muscles, and (d) ulnar muscles in humans and
chimpanzees. HS = Homo sapiens; PT = pan troglodytes
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from the palmar surface of the radial scaphoid fossa to the lunate, and

the SRL ligament extended from the palmar surface of the radial

lunate fossa to the lunate. In the radial region, the RC ligament

extended between the radial styloid process and the scaphoid, while

in the ulnar region, the UC ligament connected the ulnar styloid pro-

cess, the pisiform and the triquetrum (Figures 1 and 2). In the dorsal

region of the chimpanzee wrist, the DRC ligament was larger than in

humans (Figure 2), as can be seen in the proximal insertion of the

DRC ligament. While in humans, it is inserted in the central region of

the dorsal edge of the distal radial epiphysis, distally and ulnarly to the

dorsal tubercle (Figure 2), in chimpanzees, the insertion is more pro-

nounced and extends along the entire dorsal edge of the distal radial

epiphysis (Figure 2). Distally, the DRC ligament extends to the lunate

and the triquetrum in both chimpanzees and humans.

The passive maneuvers performed after the removal of the mus-

cles and the identification of the radiocarpal ligaments revealed that

the four palmar ligaments (RSC, LRL, SRL and PUC) are tightened dur-

ing wrist extension, the RSC and LRL ligaments are tightened during

wrist ulnar deviation, and the SRL and PUC ligaments are tightened

during wrist radial deviation. The DRC ligament tightens during wrist

flexion, the RC ligament tightens during wrist ulnar deviation, and the

UC ligament tightens during wrist radial deviation.

3.2 | Quantitative analysis

The absolute values of the mass of the ligaments are shown in

Table S1. The relative mass of the palmar group of ligaments was sig-

nificantly higher in humans than in chimpanzees (0.61 in humans

vs. 0.50 in chimpanzees; p = 0.005), while the relative mass of the

dorsal group of ligaments was significantly higher in chimpanzees than

in humans (0.25 in chimpanzees vs. 0.18 in humans; p = 0.001)

(Figure 3 and Table S2). However, no significant differences were

observed between the relative mass of the radial group (0.06 in

humans vs. 0.09 in chimpanzees; p = 0.092) or the ulnar group (0.16

in humans vs. 0.16 in chimpanzees; p = 1.000) (Figure 3). The mass of

each of the individual ligaments of the palmar group relative to the

total ligament mass was always higher in humans (Table 1), but these

differences were only significant for the LRL ligament (15.5% in

humans vs. 10.0% in chimpanzees; p = 0.004). Significant differences

between humans and chimpanzees were also observed when compar-

ing the relative mass of the three ligaments of the PRC ligament (RSC,

LRL and SRL), which are the main stabilizers of the radiocarpal joint

(46.9% in humans vs. 36.8% in chimpanzees; p = 0.007).

Finally, the analysis of the stabilizing muscles of the radiocarpal

joint showed that the relative mass of the palmar group of muscles

was significantly higher in chimpanzees than in humans (49.8% in

chimpanzees vs. 46.5% in humans; p = 0.004), while the relative mass

of the dorsal group of muscles was significantly higher in humans than

in chimpanzees (15.5% in humans vs. 11.9% in chimpanzees;

p < 0.001) (Figure 4 and Table S3). No significant differences between

humans and chimpanzees were observed in the relative mass of the

radial and ulnar groups of muscles (Figure 4 and Table S3). These

results were confirmed when we compared the ratio between the

palmar and dorsal flexors in humans and chimpanzees (4.23 in

chimpanzees vs. 3.06 in humans; p = 0.002) and between the radial

and ulnar deviators, which were similar in the two species (2.15 in

chimpanzees vs. 1.89 in humans; p = 0.335).

4 | DISCUSSION

There are functional differences between the radiocarpal joint in

humans and in chimpanzees, mainly due to the greater compressive

and tensile forces arising from the locomotor behavior of chimpanzees

(Sarmiento, 1988). In modern humans, the radiocarpal joint is mainly

involved in manipulative functions, while in chimpanzees, in addition

to a manipulative use (Zihlman & Underwood, 2019), it participates

directly in knuckle-walking, which generates compressive forces

(Thompson et al., 2018; Tuttle, 1969), and in different forms of

suspensory behavior, such as clambering or vertical climbing, which

place tension on the wrist (Hunt, 1991). In the present study,

however, we have observed that these functional differences

between the two species in the radiocarpal joint do not translate into

large qualitative anatomical differences in their ligaments. We have

identified the same ligaments and a similar anatomical arrangement in

our specimens of chimpanzees and humans (Apergis, 2013). The only

marked qualitative difference between the two species was the

greater extension of the proximal insertion of the DRC ligament in

chimpanzees (Figure 2), which is linked to the larger dimensions of this

ligament, as confirmed in the subsequent quantitative analysis.

The quantitative analysis indicated that, even though the body

mass of adult humans can be double that of adult chimpanzees, the

total mass of the wrist ligaments was larger in chimpanzees compared

to humans (Table S1), which was to be expected in a joint subjected

to the compressive and tensile forces arising from the locomotor

behavior of chimpanzees (Hunt, 1991; Tuttle, 1969). Surprisingly,

however, these differences were only significant for the DRC and RC

ligaments, while the other ligaments had similar values in the two

species and the absolute mass of the LRL ligament was even slightly

larger in humans. This finding may indicate that the greater stability of

the wrist of chimpanzees compared to that of humans (Hunt, 1991;

Kelly, 2001; Orr, 2017; Richmond et al., 2001) is more due to the

anatomy of bone surfaces than to the morphological characteristics of

ligaments. Among the bone characteristics that limit wrist extension in

chimpanzees are the development of the scaphoid beak on the dorsal

aspect of this bone that is in contact with the dorsal aspect of the

distal radial epiphysis (Orr, 2017) and the marked distal projection of

the dorsal aspect of this distal epiphysis, that is characteristic of all

hominoid primates except humans (Orr, 2017; Richmond et al., 2001;

Richmond & Strait, 2000; Tallman, 2012; Tuttle, 1969).

When comparing the ligament groups between chimpanzees and

humans (Table S2), we observed that the humans had a greater rela-

tive mass of the palmar ligaments, while the chimpanzees had a

greater relative mass of the dorsal ligaments (Figure 3). This feature of

the palmar ligaments in humans may be related to the fact that in
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humans, wrist extension is necessary for effective manipulative func-

tion and maximum strength (Hazelton et al., 1975; Volz et al., 1980).

Of the four palmar ligaments of the radiocarpal joint, the three that

form the PRC ligament (RSC, LRL and SRL) are the main stabilizing ele-

ments of the radiocarpal joint in humans (Apergis, 2013). These three

ligaments are tightened during wrist extension, stabilizing the scaph-

oid (RSC ligament) and the lunate (LRL and SRL ligaments) (Ringler &

Murthy, 2015), and their combined relative mass was significantly

higher in humans than in chimpanzees (46.9% vs. 36.8%; p = 0.007).

Of these three palmar ligaments, only the LRL ligament had a signifi-

cantly higher relative mass in humans compared to chimpanzees

(Table 1). Because the main function of the LRL ligament is the stabili-

zation of the lunate during wrist extension (Apergis, 2013; Ringler &

Murthy, 2015), we can speculate that its higher relative mass in humans

compared to chimpanzees compensates for the absence of bone char-

acteristics that stabilize the lunate in chimpanzees. These stabilizing

characteristics include both the distal projection of the dorsal aspect of

the distal radial epiphysis and the dorsopalmar and mediolateral expan-

sion of the lunate, which creates a large surface for the radius that can

better absorb the large loads to which the radiolunate joint is subjected

during arboreal locomotion and knuckle-walking (Kivell et al., 2013). In

humans, the lack of development of these stabilizing adaptations

implies a greater mobility of the wrist that allows a more effective

manipulative function (Heinrich et al., 1993).

On the other hand, the larger relative mass of the dorsal ligament

group in chimpanzees was related to the dimensions of the DRC liga-

ment, which had a significantly higher relative mass in chimpanzees than

in humans (25.5% in chimpanzees vs. 17.7% in humans; p = 0.004). In

humans, the DRC ligament tightens during wrist flexion to stabilize the

scaphoid, lunate and triquetrum (Rainbow et al., 2012). The fact that the

insertion sites of the DRC ligament are the same in chimpanzees and in

humans and that it is tightened during wrist flexion in both species may

indicate that it is an important stabilizer of the proximal carpal bones

during wrist flexion in chimpanzees, and its greater mass may be related

to the need for stabilizing the wrist in flexion during locomotion. During

the support phase of knuckle-walking, the chimpanzee wrist is slightly in

extension (Kivell & Schmitt, 2009; Thompson, 2020), so the stabilizing

function of the DRC ligament would be less important, since the stability

of the radiocarpal joint in extension is guaranteed in chimpanzees by the

stabilizing osteological mechanisms (Kivell & Schmitt, 2009; Orr, 2017;

Richmond et al., 2001; Richmond & Strait, 2000; Tuttle, 1969). These

mechanisms are highly effective, since cineradiographic studies

(Jenkins & Fleagle, 1975) have shown that the proximal carpal remains

static during the support phase of knuckle-walking (Richmond &

Strait, 2000). Moreover, during this phase, chimpanzees do not recruit

the flexor muscles of the wrist and fingers to ensure the stability of the

wrist in extension, indicating that this stability is passively obtained

(Leijnse et al., 2021; Richmond & Strait, 2000; Susman & Stern, 1979).

Also, it has been observed that the ground reaction forces generated in

the upper extremity of chimpanzees during the support phase of

knuckle-walking do not generate high impact peaks (Pontzer et al., 2014;

Thompson et al., 2018) and thus do not require the wrist ligaments to

stabilize the radiocarpal joint during this phase.

In contrast with knuckle-walking, during vertical climbing and

other suspensory behavior, the wrist of chimpanzees is in flexion, and

the larger the diameter of the support structure, the greater degree of

flexion (Sarmiento, 1988). Unlike wrist extension, during wrist flexion,

chimpanzees have no osteological mechanisms to stabilize the radio-

carpal joint. Therefore, the DRC ligament plays an important stabiliz-

ing role during vertical climbing and other suspensory behavior, which

would explain the greater relative mass of this ligament in chimpan-

zees compared to humans, as observed in the present study. In addi-

tion, during vertical climbing and suspensory behavior, large loads are

placed on the radiolunate joint of chimpanzees (Kivell et al., 2013),

which would also explain the larger mass of the DRC ligament in these

primates, since this ligament is the main stabilizing element of the

lunate during wrist flexion (Rainbow et al., 2012).

In addition to wrist flexion, wrist ulnar deviation also occurs in

chimpanzees during vertical climbing and other suspensory behavior

(Hunt, 1991; Kivell et al., 2013; Sarmiento, 1988), as well as during

the stance phase and weight-bearing touchdown of knuckle-walking

(Sarmiento, 1988; Thompson, 2020; Whitehead, 1993). However, this

ulnar deviation of the radiocarpal joint during locomotion does not

translate into a greater relative mass of the RC ligament in chimpan-

zees (Table 1). In humans, the RC ligament is slightly controversial, as

some investigators believe it should be considered the radial part of

the RSC ligament rather than a separate ligament (Apergis, 2013;

Ringler & Murthy, 2015). However, in our chimpanzees, we were able

to identify a RC ligament that was perfectly differentiated from the

RSC ligament (Figure 1).

Our analysis of the relative mass of the periarticular muscles of

the wrist showed that in both chimpanzees and humans, the muscle

and ligament patterns had an inverse relationship (Figures 3 and 4). In

the chimpanzees, the lesser relative mass of the LRL ligament was

counterbalanced by a greater relative mass of the palmar muscles,

while in humans, the lesser relative mass of the DRC ligament was

counterbalanced by the greater relative mass of the dorsal muscles

(Table S3). This finding is pertinent to previous reports that the DRC

ligament in humans has a greater innervation than the palmar liga-

ments, which may be related to the importance of ligament-muscular

reflexes in the dorsal stabilization of the wrist (Hagert et al., 2007).

Thus, it can be concluded that in humans, the DRC ligament has an

important function as a generator of proprioceptive information

(Apergis, 2013), while in chimpanzees, it is predictable that this

ligament will present a more mechanical function. We found no

differences between humans and chimpanzees in the relative mass

of the radial and ulnar muscles (Figure 4 and Table S3), which is

consistent with the lack of significant differences between the two

species in the relative mass of the radial and ulnar ligaments (Figure 3

and Table S2). This observation does not support our hypothesis that

the RC ligament would be more developed in chimpanzees.

In conclusion, our analyses of the ligaments of the radiocarpal

joint in chimpanzees and humans have identified differences that may

well be related to the different use of the wrist in the two species.

These differences were more evident in the quantitative than the

qualitative parameters. In humans, we observed a greater relative
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mass of the palmar ligaments, in particular the LRL, which is related to

the importance of wrist extension during manipulative tasks (Hazelton

et al., 1975; Volz et al., 1980), while in chimpanzees, we found a

greater relative mass of the dorsal ligament, namely DRC ligament,

which is related to its role as a stabilizer of the radiocarpal joint in

wrist flexion during vertical climbing and suspensory locomotion. Fur-

thermore, our finding of an inverse relationship between muscle and

ligament relative mass in both species, with a greater relative mass of

the palmar muscles in chimpanzees and the dorsal muscles in humans,

highlights the importance of the cooperative role of ligaments and

muscles in stabilizing joints (Hagert et al., 2007; Hagert et al., 2009).

Our study provides novel information on wrist ligaments in

chimpanzees—structures that generally receive little attention in com-

parative anatomy studies. Having been able to access six specimens

of chimpanzees—a relatively large number in soft tissue studies of

hominines—we were able to statistically compare quantitative data on

wrist ligaments and muscles. Ideally, however, a further study with a

larger number of hominoid primate specimens and species would

allow us to validate our findings and evaluate if these also hold true in

primates with different types of locomotion.

Our results will contribute to a better understanding of the ana-

tomical and functional characteristics of the wrist region in hominines

and will be useful in diverse disciplines, including comparative anat-

omy, physical anthropology and evolutionary anatomy. In addition,

since some of the ligaments studied leave recognizable marks on the

distal radial epiphysis (Casado et al., 2019), whose morphological char-

acteristics can be related to different types of locomotion in primates,

our findings can help to assign a specific type of locomotion to fossil

hominoid primates based on the study of preserved distal radial

epiphyses. For example, in a fossil primate with an intact distal radial

epiphysis, we could deduce that a greater relative size of the insertion

site of the RSC and LRL ligaments would indicate a greater relative

mass of these ligaments (Casado et al., 2019) and a use of the upper

extremity similar to modern humans.

The main limitations of this study are related to the characteristics

of the specimens. The human specimens were obtained from the Body

Donation Service of the Human Anatomy Unit of the University of Bar-

celona. Cadavers donated to the Service are divided into specific ana-

tomical regions upon arrival, making it impossible for us to know the

total body weight of each individual, which would have helped in the

scaling of ligament mass. Moreover, cadavers donated to the Service are

usually elderly individuals, in whom the ligaments can be deteriorated.

We minimized the possible effect of this age-related deterioration as

much as possible by excluding specimens showing signs of degeneration,

trauma, or macroscopic indications of degradation. Finally, although we

used the parameter of relative mass to compare the ligaments of the

radiocarpal joint in humans and chimpanzees, our findings warrant fur-

ther functional analyses based on other quantifiable parameters of the

ligaments, such as cross-sectional area, stiffness, and failure strength.
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