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Pühler6, Andreas Schlüter6., Alexander Goesmann1*.

1Computational Genomics, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany, 2 Roche Diagnostics GmbH, Penzberg, Germany, 3Department of

Genetechnology/Microbiology, Bielefeld University, Bielefeld, Germany, 4Department of Periodontology, University Hospital Münster, Münster, Germany, 5Division of

Genetics and Population Health, Queensland Institute of Medical Research, Herston, Australia, 6 Institute for Genome Research and Systems Biology, Center for

Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany

Abstract

Biogas production from renewable resources is attracting increased attention as an alternative energy source due to the
limited availability of traditional fossil fuels. Many countries are promoting the use of alternative energy sources for
sustainable energy production. In this study, a metagenome from a production-scale biogas fermenter was analysed
employing Roche’s GS FLX Titanium technology and compared to a previous dataset obtained from the same community
DNA sample that was sequenced on the GS FLX platform. Taxonomic profiling based on 16S rRNA-specific sequences and
an Environmental Gene Tag (EGT) analysis employing CARMA demonstrated that both approaches benefit from the longer
read lengths obtained on the Titanium platform. Results confirmed Clostridia as the most prevalent taxonomic class,
whereas species of the order Methanomicrobiales are dominant among methanogenic Archaea. However, the analyses also
identified additional taxa that were missed by the previous study, including members of the genera Streptococcus,
Acetivibrio, Garciella, Tissierella, and Gelria, which might also play a role in the fermentation process leading to the formation
of methane. Taking advantage of the CARMA feature to correlate taxonomic information of sequences with their assigned
functions, it appeared that Firmicutes, followed by Bacteroidetes and Proteobacteria, dominate within the functional context
of polysaccharide degradation whereas Methanomicrobiales represent the most abundant taxonomic group responsible for
methane production. Clostridia is the most important class involved in the reductive CoA pathway (Wood-Ljungdahl
pathway) that is characteristic for acetogenesis. Based on binning of 16S rRNA-specific sequences allocated to the dominant
genus Methanoculleus, it could be shown that this genus is represented by several different species. Phylogenetic analysis of
these sequences placed them in close proximity to the hydrogenotrophic methanogen Methanoculleus bourgensis. While
rarefaction analyses still indicate incomplete coverage, examination of the GS FLX Titanium dataset resulted in the
identification of additional genera and functional elements, providing a far more complete coverage of the community
involved in anaerobic fermentative pathways leading to methane formation.
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Introduction

The fraction of renewable energy forms for energy supply is

constantly increasing since fossil fuels are running short and energy

production from fossil fuels brings about emissions of the

greenhouse gas carbon dioxide which has implications on the

climate. In this context the production of biogas by means of

fermentation of biomass becomes more and more important

because biogas is regarded as a clean, renewable and environ-

mentally compatible energy source [1,2]. Moreover, generation of

energy from biogas relies on a balanced carbon dioxide cycle. In

Germany biogas is mainly produced from energy crops such as

maize and liquid manure in medium-sized agricultural biogas

plants [1]. The microbiology of biogas formation from organic

matter is complex and involves interaction of different microor-

ganisms. In the first step of the digestion process, organic polymers

of the substrate such as cellulose, other carbohydrates, proteins and

lipids are hydrolysed to low-molecular weight compounds [3–5].
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Cellulolytic Clostridia and Bacilli are among other bacteria important

for this step. Subsequently, fermentative bacteria convert low-

molecular weight metabolites into volatile fatty acids, alcohols, and

other compounds which are then predominantly metabolised to

acetate, carbon dioxide and hydrogen by syntrophic bacteria [6–

11]. These latter compounds are in fact the substrates for methane

synthesis which is accomplished by methanogenic Archaea [12,13].

Hydrogenotrophic Archaea are able to reduce carbon dioxide to

methane using hydrogen as an electron donor, whereas aceticlastic

Archaea convert acetate to methane [14–18]. The biochemistry and

enzymology of methanogenesis is well known for model organisms,

but the functioning of biogas-producing microbial communities on

the whole is insufficiently explored. Community structures of

biogas-producing microbial consortia were analysed for different

systems and settings including a thermophilic municipal biogas

plant [19], a thermophilic anaerobic municipal solid-waste digester

[20], thermophilic upflow anaerobic filter reactors [21], a

completely stirred tank reactor fed with fodder beet silage [22], a

two-phase biogas reactor system operated with plant biomass [23],

an anaerobic sludge digester [24], mesophilic anaerobic chemostats

[25,26], a packed-bed reactor degrading organic solid waste [27]

and many other habitats. Most of these studies were based on the

construction of 16S rRNA clone libraries and subsequent

sequencing of individual 16S rRNA clones. The resulting nucleotide

sequences were then taxonomically and phylogenetically classified

to deduce the structure of the underlying community. Also, mcrA

clone libraries were used to elucidate methanogenic archaeal

communities of different habitats [28–32]. The mcrA gene encodes

the alpha subunit of methyl-coenzymeM reductase representing the

final enzyme in the methanogenesis pathway. Since mcrA is present

in all methanogenic Archaea analysed so far, it serves as a

phylogenetic marker for this group of Archaea. Usually, analyses of

mcrA and 16S rRNA clone libraries do not cover the whole

complexity of the respective habitats since sequencing can only be

done for limited numbers of clones. Moreover, results of clone

library analyses are always biased by the choice of primers that are

used for amplification of marker gene fragments and cloning

efficiencies. In recent years, microbial communities have been

studied on the basis of their metagenomes which became accessible

by applying high-throughput sequencing technologies. Recently,

the first metagenome sequencing approach for a biogas-producing

community was described [33]. Community DNA isolated from a

production-scale biogas plant fed with maize silage, green rye and

low amounts of chicken manure was sequenced on the Genome

Sequencer FLX platform which resulted in 142 million base pairs of

sequence information. Bioinformatic methods were employed to

deduce the taxonomic composition and functional characteristics of

the intrinsic biogas community [34]. Analysis of the community

revealed Clostridia as the most prevalent phylogenetic class, whereas

species of the order Methanomicrobiales are dominant among

methanogenic Archaea.

Similar results were obtained by parallel construction of 16S

rRNA and mcrA amplicon libraries and subsequent sequencing of

cloned fragments [35]. Moreover, bioinformatics results indicated

that Methanoculleus species play a dominant role in methanogenesis

and that Clostridia are important for hydrolysis of plant biomass in

the analysed fermentation sample. Rarefaction analysis of the

metagenome data showed that the sequencing approach was not

carried out to saturation. Sufficient coverage of non-abundant

microbial groups in the fermentation sample would require deeper

sequencing. Therefore, the available total community DNA

preparation from the biogas fermentation sample was additionally

sequenced on the GS FLX Titanium platform, which provides

longer read lengths and increased throughput compared to the GS

FLX platform. This paper describes an integrated analysis of the

GS FLX and the GS FLX Titanium datasets with the objective to

deepen the knowledge on the taxonomic structure and composi-

tion of a microbial community involved in biogas production

within an agricultural, production-scale biogas plant. Moreover,

the described analysis intends to elucidate the metabolic capacity

of the community, functional roles of specific microorganisms and

key organisms for the biogas production process.

Methods

Total community DNA preparation and sequencing
Total community DNA of a biogas fermentation sample obtained

from an agricultural biogas plant was prepared by a CTAB-based

DNA-isolation method [36] as described recently. More detailed

information on the origin of the fermentation sample is given in a

previous publication [33]. An aliquot of the DNA preparation that

was recently used for whole genome shotgun sequencing on the

Genome Sequencer (GS) FLX platform now served as template DNA

for sequencing on the GS FLX Titanium platform. The sequencing

library was constructed according to the protocol of the GS Titanium

General Library Prep Kit (Roche Applied Science). After titration of

the library using the GS Titanium SV emPCR Kit, a full sequencing

run was carried out on the GS FLX Titanium platform.

Data normalization
To assess the overall comparability of the pyrosequencing

datasets obtained from the GS FLX and Titanium platforms, the

average GC content of all reads was determined for each dataset.

For this, various Perl scripts were developed to determine the

overall and individual GC content of the obtained reads. Results

were visualized using the statistical computing software R [37].

To normalize the data with respect to the observed GC bias (see

Results), an outlier detection approach was applied and the

endpoints of the linear phases were determined; sequences longer

than the computed thresholds were excluded. A linear regression

was calculated for the GC plot beginning with 30 data points

starting at the 100 bp position to exclude the portion of the dataset

with high variance in GC content. In the next step, externally

studentized residuals [38] were computed for the linear regression.

Each data point was inspected whether it deviated from the linear

trend using a Student-t-test. A data point was regarded as being an

outlier if the p{value of the studentized residuals test was below

0.05. If ten outliers in a row were found, the first one of these is

representing the end of the linear phase and was taken as threshold

value for filtering of the dataset.

To rule out sequencing errors as the reason for the observed

decreasing GC content of the longer reads, the analysis was

repeated for publicly available pyrosequencing datasets from both

metagenome as well as genome sequencing projects which were

obtained from NCBI’s Short-Read Archive (SRA). The effect in

question could be observed for all metagenome datasets, where the

DNA fragments from a mixture of organisms have a broad

distribution concerning their GC contents. Single genome

sequencing projects, on the other hand, did not show this effect,

thereby ruling out sequencing errors as an alternative explanation

(see File S1). The comparably narrow GC distribution in the

sequence data from single genome projects does not reveal this

effect, and while backfolding might limit maximum obtainable

read length, similar filtering steps would not be a prerequisite

before e.g. subsequent assembly.

A recent study [39] described the occurence of artificially created

duplicate reads in datasets generated using the pyrosequencing

method. It is assumed that the duplication of individual DNA

Biogas
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fragments occurs during the emulsion PCR reaction, which is a step

of the library preparation. These nearly identical sequences might

lead to inflated estimates of functional genetic elements or introduce

an artificial shift in taxonomic profiles, unless they are filtered from

the dataset. In this study, these duplicates were removed using the

cdhit-454 [40] program, which filters almost identical reads

beginning at the same position. Each dataset was processed

separately using the accurate mode (option ‘-g 1’) of the software.

Identification and taxonomic classification of 16S rRNA
fragments
A BLAST [41] search versus the RDP database (Release 10.10)

was conducted to identify reads carrying fragments of 16S rRNA

genes. Since BLAST excludes regions with low sequence complexity

by default, the sequence complexity filter was explicitly disabled

(option ‘-F F’). Alignments with an E-value of 10{5 or better and a

minimum length of 50 bp were extracted and processed using the

RDP classifier [42], which employs a naive bayesian classifier to

assign the sequences to taxonomic categories. Only 16S rRNA

fragments with at least 80% assignment confidence were considered.

Taxonomic classification of Environmental Gene Tags
(EGTs)
Metagenomic sequences were filtered using a BlastX search

against the Pfam database [43]. Reads without a hit were

additionally scanned for conserved protein domains by conducting

a search for protein family members using Pfam HMMs.

Community sequence reads that were predicted to contain

fragments of genes (environmental gene tags, EGTs) were

subsequently classified on different taxonomic ranks based on a

phylogenetic tree of the metagenomic read itself and the matching

Pfam protein family member sequences. A full description of the

CARMA pipeline can be found in the original publication [44].

Here, an unpublished improved version of CARMA was

applied to process both pyrosequencing datasets using the default

settings. For reads containing more than one EGT and therefore

more than one classification, the taxonomic classifications were

merged into a single one that was determined as the lowest

common ancestor of all classifications. While this approach

decreases the number of classifications on the lower taxonomic

ranks, it simultaneously eliminates contradicting classifications and

reduces the influence of potential mis-classifications.

Community participation in substrate decomposition,
fermentation and methane production
For further analysis both datasets were merged together, as no

significant differences in the taxonomy as well as in the related

enzyme composition could be observed. Orthologous groups of

genes were retrieved by comparing the sequences to the eggNOG

database [45]. For this, sequences were assigned to COGs and

NOGs using BlastX with an E-value cutoff of 10{6 and annotated

according to their best hit. Additionally, taxonomic information

was added using the results obtained from the CARMA pipeline.

Enzymes relevant for biochemical processes were identified with

the help of MetaCyc [46] and the corresponding COGs (Clusters

of Orthologous Groups) were selected and grouped. The

conclusive tree construction based on the NCBI taxonomy [47],

visualisation and data analysis were performed using unpublished

software.

Identification of Methanoculleus variants
To confirm the presence of different Methanoculleus species in the

biogas fermenter, 16S rRNA fragments that were identified by a

homology search and classified as belonging to the genus

Methanoculleus, as described above, were assembled into longer

contigs.

Here, the 16S rRNA nucleotide sequence from Methanoculleus
bourgensis (GenBank accession AY196674) was used as an assembly

template. The pyrosequencing reads were aligned to the reference

sequence using ‘align0’ from the FASTA3 package [48] and then

clustered into several groups based on their SNP (single nucleotide

polymorphism) content. Afterwards, each of the resulting groups of

reads was separately assembled employing Roche’s GS de novo

Assembler software. To put the resulting consensus sequences into

context, a phylogenetic characterization was performed. Together

with other 16S rRNA sequences obtained from GenBank, a

multiple alignment of all sequences was computed using the

MUSCLE tool [49] and a phylogenetic tree was generated with

the fdnapars program [50], which implements the DNA

parsimony algorithm.

Mapping of pyrosequencing reads to Methanoculleus

marisnigri JR1
To identify the overall sequence similarity between the

metagenomic reads and the genome of Methanoculleus marisnigri
JR1, all reads were mapped to the published DNA sequence of this

genome [51]. In a previous study [34], reads were aligned to

reference sequences using BLAST with rather relaxed settings (E-

Value ,10{4, aligned region .100 bp, sequence identity .80%).

Since this approach did not account for the relative fraction of a

read taking part in an alignment, in this study the gsMapper

software from Roche was employed. Coverage information for the

genome and individual genes was extracted from the gsMapper

output using various Perl scripts; the results for gene coverage were

normalized and divided into two groups based on the prediction

found in the HGT-DB [52], a database of procaryotic genomes

that uses different statistical properties of coding sequences to

predict whether they may have been acquired by horizontal gene

transfer. While GC content is one of these parameters, several

others such as codon and amino acid usage are also used. The R

statistical software was employed to compute the kernel density

estimates for both groups; for this, an Epanechnikov kernel with a

bandwith of 0.4 was used.

Detection of hydrogenase gene fragments
To analyse the occurrence of metagenomic reads encoding

hydrogenases or proteins involved in hydrogen uptake systems,

corresponding genes annotated as hydrogenases or hydrogen

uptake systems were extracted from the reference genome of

Methanoculleus marisnigri JR1 [51]. Related gene fragments in the

metagenome datasets were identified by a BLAST search using an

e-value cutoff of 10{5 and a disabled sequence complexity filter

(option ‘-F F’); for each sequence, only the best BLAST hit was

considered.

Biodiversity and Rarefaction analysis
To gain an overview of the biodiversity of the studied microbial

community, the Shannon index was computed based on 16S

rRNA fragments classified on rank genus with at least 80%

confidence as

H~{

Xn

i~1

pi: ln pi,

where pi is the relative abundance of sequences assigned to genus

i, and n denotes the total number of different genera.

Biogas
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Additionally, a rarefaction analysis was employed to assess the

coverage of the microbial community by the datasets. The number

of genera that would be observed for different sample sizes was

estimated using Analytic Rarefaction (version 1.3). Rarefaction

curves were obtained by plotting the sample sizes versus the

estimated number of genera.

A separate rarefaction analysis was conducted to assess the

coverage of the collective gene content of the microbial

community. The number of Pfam protein families that would be

identified in metagenomes of different sizes was estimated using

Analytic Rarefaction. Rarefaction curves were generated by

plotting the number of Pfam families versus the sample sizes.

Data availability
Sequence data from both the GS FLX and Titanium run has

been deposited at the NCBI Short Read Archive (SRA) under the

accessions SRR030746.1 for the GS FLX and SRR034130.1 for

the Titanium dataset. Assembled 16S rRNA consensus sequences

of the different Methanoculleus variants have been submitted to the

GenBank database (accessions GU731070 to GU731076).

Results

Sequencing of the biogas microbial community on the
GS FLX Titanium platform and data preprocessing
Metagenomic DNA from a biogas-producing microbial com-

munity residing in the fermenter of an agricultural biogas plant fed

with maize silage, green rye and low amounts of chicken manure

was recently sequenced on the Genome Sequencer (GS) FLX

platform [33]. This approach resulted in 616,072 sequence reads

with an average read length of 230 bases, accounting for

approximately 142 million bases sequence information. Analysis

of the obtained sequence data revealed that sequencing was not

carried out to saturation [34]. To achieve a deeper coverage of the

intrinsic biogas community and to elucidate its whole complexity,

the same community DNA preparation that was used for

sequencing on the Genome Sequencer FLX was now sequenced

on the GS FLX Titanium platform. The single Titanium run

yielded 1,347,644 reads with an average length of 368 bases

resulting in 495.5 million bases sequence information, which

represents a 3.5-fold increase in coverage of the sample compared

to the previous sequence dataset. Statistical data of the Titanium

run are summarized and compared to the sequencing approach on

the GS FLX platform in Table 1. Although aliquots of the same

DNA sample were used for sequencing on both platforms, the

average GC content of the reads generated on the GS FLX

platform was determined as 51.7%, while the GC content of the

Titanium reads was determined as only 47.4%. Also, the average

GC content for different read lengths was analysed. Results

showed that GC content and obtained read length clearly

correlate for both GS FLX and the Titanium platform. The

applied sequencing methods did not only generate reads with

different average levels of GC content, but also both pyrose-

quencing platforms show a significant decline in GC content once

the read length exceeds a certain value (Figure 1).

While the differences in average GC content can be explained

by variations in the sequencing chemistry and protocol used for

sequencing on the GS FLX and Titanium platforms, the sharp

decline of the GC content present in the longer reads is most

probably caused by backfolding. It is assumed that the GC-rich

parts of the synthesized ssDNA are forming stable secondary

structures during the emulsion PCR process, which subsequently

leads to a termination of the PCR reaction and only the non-

folded part of the DNA fragment being amplified. On the other

hand, DNA fragments with lower GC content are not affected by

this problem and can be amplified over their full length.

Previous studies have already identified GC biases in reads

generated on the Illumina platform [53], but no such findings have

yet been reported for Roche’s pyrosequencing method. Such biases

caused by the sequencing chemistry and protocol are likely to

remain unnoticed in many cases, where research is focused on

analysis of single datasets with no additional data available for

comparison. In the context of metagenome studies, these effects can

easily lead to a distortion of results, where e.g. taxonomic profiles

would underestimate the relative abundance of GC-rich organisms.

In this study, both datasets were filtered to minimize the impact of

the identified GC bias and exclude the artificial duplicate sequences.

The endpoints of the linear phases of the GC plot were determined

at 262 bp for the GS FLX and 535 bp for the Titanium dataset;

subsequent removal of sequences longer than the computed

thresholds resulted in the exclusion of 169,569 (27.52%) of the

GS FLX reads and 26,795 (1.98%) sequences from the Titanium

dataset, which is only marginally affected. This shows a significant

improvement regarding GC bias for the GS FLX Titanium

chemistry compared to the previous GS FLX chemistry.

After the removal of technical replicates, 407,558 reads from the

GS FLX dataset and 1,019,333 of the Titanium reads passed all

filtering steps and are suitable for further analysis. Throughout this

study, these normalized datasets were used for the computation of

relative abundances of either taxonomic groups or the functional

characterization.

Taxonomic composition of the microbial community
based on 16S rRNA analysis
The DNA sequence of the 16S rRNA gene has found wide

application for taxonomic and phylogenetic studies. It is highly

conserved between both Archaea and Bacteria, but also contains

hypervariable regions that can be exploited for accurate

taxonomic assignments. Using the previously filtered pyrosequenc-

ing reads to avoid a distortion of taxonomic profiles, a BLAST

homology search using the RDP database was performed. In this

step, 616 16S rRNA fragments with an average length of 159.5 bp

were identified in the GS FLX dataset, while 2,709 fragments with

an average length of 245.2 bp from the Titanium reads could be

detected. The differing number of 16S rRNA sequences identified

in the GS FLX dataset in comparison to the findings of a previous

study [34] can be explained by the data normalization step as

described above. Furthermore, the ARB database [54] was used

instead of the RDP database. All identified 16S rRNA sequences

were taxonomically classified by means of the RDP classifier [42].

For all taxonomic ranks except domain, the RDP classifier was

able to assign a larger fraction of 16S rRNA fragments from the

Titanium dataset with at least 80% confidence than from the FLX

data. While 18.2% of the 16S rRNA fragments from the GS FLX

reads could be classified on rank order, 25.3% of the Titanium

16S rRNA fragments were assigned on this rank, showing that the

RDP classifier benefits from the longer reads generated on the

Titanium platform. On rank genus, 6.0% of the GS FLX 16S

rRNA fragments and 10.6% of the Titanium 16S rRNA fragments

could be assigned. Nevertheless, it has to be noted that only a low

fraction of pyrosequencing reads actually contains 16S rRNA

fragments (0.15% of the filtered GS FLX reads; 0.26% of the

filtered Titanium reads). While 16S rRNA genes are reliable

phylogenetic markers, the low number that could be detected in

the present metagenome datasets gives only a broad overview of

the most abundant taxonomic groups and may be insufficient to

obtain a detailed picture of the taxonomic composition of a

metagenome.

Biogas
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Taxonomic classification of Environmental Gene Tags
(EGTs)
One of the major limitations of the taxonomic classification of

16S rRNA fragments is the low fraction of reads actually

containing 16S rRNA specific sequences. The CARMA software

[44] overcomes this limitation as it is based on the identification of

environmental gene tags (EGTs) in community sequences using

profile hidden Markov models (pHMMs) and the phylogenetic

deduction of the taxonomic origin of these fragments. The major

strength of this approach is the high accuracy of pHMMs for the

detection of short functional segments of Pfam protein family

members. The search for conserved Pfam protein fragments

resulted in a total of 100,546 identified EGTs (25% of all reads) for

the GS FLX dataset and 329,550 (32% of all reads) for the

Titanium dataset, respectively. At the taxonomic rank super-

kingdom, 88,528 of the GS FLX reads (22%) and 290,008 of the

Titanium reads (28%) could be successfully classified. The fact that

a higher fraction of Titanium reads could be assigned indicates

that CARMA as well benefits from the increased read lengths

generated by the Titanium platform. The community composition

as deduced from EGTs identified in both datasets is almost

identical: The majority of EGTs was classified as belonging to the

superkingdoms Bacteria (GS FLX: 67%; Titanium: 70%) and

Archaea (11% and 8%, respectively). This conformity of taxonomic

composition was also observed for almost all the prevalent and

rare taxa at other taxonomic ranks (Figure 2). Despite this general

accordance, there are some noteworthy differences between the

GS FLX and Titanium datasets. While the summarized

percentage of identified taxa at rank genus is roughly the same

in both datasets, the actual abundance of specific genera differs

between both datasets (Figure 3). A higher amount of variation

exists especially for the most abundant genera between the two

datasets: Both datasets supportMethanoculleus as the most abundant

genus, but a higher fraction of GS FLX reads was assigned to this

genus than from the Titanium reads (4.36% of the GS FLX

dataset; 3.46% of the Titanium data). For the genus Clostridium,

this ratio is reversed: only 2.78% of the GS FLX reads, but 3.19%

of the Titanium sequences were allocated to this genus. Similar

differences can also be noted for Bacteroides and Bacillus. Even

though differences exist between the two taxonomic profiles,

results based on analysis of the Titanium dataset can be considered

more reliable since they were deduced from a larger amount of

sequence information. The discrepancy of the taxonomic profile

for the GS FLX dataset as shown here in contrast to previously

reported results [34] is due to the applied GC filtering step and

adjustments within the CARMA software. Applying an unpub-

lished, enhanced version of CARMA to the unfiltered GS FLX

dataset, EGTs were identified for 167,134 (32%) of the reads,

while only 133,337 (22%) EGTs were reported in the previous

study.

Figure 1. Read length and average GC content of pyrosequencing reads. A sharp decline in GC content can be seen once the read length
exceeds a certain value. The vertical bars indicate the computed filtering thresholds for the GS FLX and the Titanium dataset, respectively.
doi:10.1371/journal.pone.0014519.g001

Table 1. Sequencing results.

number of

reads

number of

bases

avg. read

length

GS FLX 616,072 141,685,079 230.0 bp

Titanium 1,347,644 495,506,659 367.7 bp

ratio Titanium/GS FLX 2.19 3.50 1.60

Overview of sequence data obtained from the studied biogas fermenter
employing different pyrosequencing technologies.
doi:10.1371/journal.pone.0014519.t001

Biogas
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New genera identified in the GS FLX Titanium dataset
Due to the deeper coverage of the metagenome by the dataset

obtained on the GS FLX Titanium system, new genera were

identified in the corresponding taxonomic profile (see Table 4.1,

File S1). These include Streptococcus, Acetivibrio, Garciella, Tissierella,
Gracilibacter, Gelria, Dysgonomonas and Arcobacter to mention just a

few. Streptococcus species were previously detected in different

anaerobic habitats, especially in a mesophilic hydrogen-producing

sludge and a glucose-fed methanogenic bioreactor [55–57]. In the

latter habitat, an acetate- and propionate-based food chain was

prevalent but the specific functions of the Streptococcus members

dominating the bioreactor are not known [55]. Sequences related

to the genus Acetivibrio (Firmicutes) were recently recovered from a

community involved in methanogenesis utilizing cellulose under

mesophilic conditions [58]. Acetivibrio species most probably play a

role in cellulose degradation [58,59]. Species of the genera

Garciella, Tissierella, Gracilibacter and Gelria (all Firmicutes) are also

adapted to anaerobic habitats where they are involved in different

fermentative pathways [60–65]. Interestingly, a reference species

of the genus Geleria, namely G. glutamica, was isolated from a

propionate-oxidizing methanogenic enrichment culture and rep-

resents an obligately synthrophic, glutamate-degrading bacterium

that is able to grow in co-culture with a hydrogenotrophic

methanogen [65]. In this context it should be mentioned that

hydrogenotrophic methanogens are dominant in the fermentation

sample analysed in this study. The genus Dysgonomonas (see Table

4.1, File S1) belongs to the family Porphyromonadaceae of the order

Bacteroidales. Members of the genus Dysgonomonas were inter alia

Figure 2. Characterization of the GS FLX and Titanium datasets based on the taxonomic classification of Environmental Gene Tags
(EGTs). Displayed are only the most abundant taxa among Bacteria and Archaea lineages at various taxonomic ranks. For each group, the first
number represents the number of assigned EGTs from the GS FLX dataset, the second number the EGTs from the Titanium dataset, respectively. Due
to the different number of reads obtained from each sequencing platform, the amount of EGTs listed for the Titanium dataset is typically the fourfold
of the number listed for the GS FLX dataset.
doi:10.1371/journal.pone.0014519.g002
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isolated from stool samples and are able to ferment glucose

resulting in the production of acids [66]. Likewise, bacteria of the

genus Alkaliflexus also cluster within the order Bacteroidales and

represent anaerobic saccharolytic organisms [67]. Other genera

such as Arcobacter were indeed found in an anaerobic community

digesting a model substrate for maize but seem to play no

dominant role in degradation of polysaccharides [68]. Some of the

genera listed in Table 4.1 (File S1) have not been described for

anaerobic, methanogenic consortia so far and hence their

involvement in the biogas production process remains unknown.

In summary, the more detailed taxonomic analysis presented in

this study also revealed less-abundant genera that were missed in

the previous taxonomic profile for the same community. Some of

the newly identified genera presumably are of importance for the

biogas production process.

Community participation in substrate decomposition,
fermentation and methane production
As described in a previous study, Firmicutes andMethanomicrobiales

play a crucial role in hydrolysis, acetogenesis and methanogenesis

representing key steps in anaerobic degradation of plant biomass

[34]. In this study corresponding pathways are investigated in

more detail using the combined dataset consisting of the GS FLX

and newly acquired Titanium reads, and an elaborated method-

ology to identify key organisms involved in the above mentioned

processes. For this purpose all reads were classified according to

Cluster of Orthologous Groups (COG) categories to infer the

functional potential of the underlying community. In a second

step, obtained COG results were annotated with the taxonomic

information generated by the CARMA software. This approach

led to the identification of 292,782 reads (about 21% of the

dataset) for which both functional as well as taxonomic

information could be retrieved. Moreover, a subset of COG

entries representing (a) the process of ‘polysaccharide degradation’,

(b) ‘acetogenesis’ and (c) the ‘methanogenesis’ step within the

fermentation process were chosen for a more detailed taxonomic

analysis (see File S1). Even though not all reads classified into the

selected COG categories may actually represent the pathways in

the focus of this approach, this analysis provides insights into the

relevance of different taxonomic groups for the hydrolysis,

acetogenesis, and methanogenesis steps in fermentation of

biomass. Misallocation of reads to these processes can be due to

the fact that some COG entries include enzymes involved in

different, but functionally related pathways.

One of the first steps in the fermentation process is the

breakdown of polysaccharide components of plant cell material.

Especially, the cell wall polymers cellulose, hemicellulose and

pectin constitute a high amount of the carbon and energy resource

that is available for bacteria in the fermentation sample.

Accordingly, hydrolysis of plant biomass is considered to be the

Figure 3. Comparison of taxonomic profiles on rank genus. The taxonomic profiles for the GS FLX (black bars) and the Titanium (lightgray
bars) datasets were computed employing the CARMA pipeline. The percentage values correspond to the total amount of reads in the filtered
datasets; included are the ten most abundant genera.
doi:10.1371/journal.pone.0014519.g003
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rate-limiting step in biogas production. Based on the assignment to

COG entries (see File S1), a total of 4,762 reads were classified as

potentially coding for enzymes involved in the degradation of

complex polymers, namely cellulose, hemicellulose, and lignin

(Figure 4a). Reads allocated to the cellulose degradation process

account for 71% of the 4,762 reads. Hence, they constitute the

most prevalent group followed by reads predicted to encode

hemicellulose degrading enzymes (27%). As expected, reads

related to lignin degradation (2%) are only rarely found. This is

due to the fact that lignin degradation predominantly occurs under

aerobic conditions, whereas fermentation of plant biomass for

biogas production is an anaerobic process. Most of the reads

(1,571) assigned to the ‘polysaccharide degradation’ context

originate from members of the Firmicutes making this phylum the

most important one. Additionally, Bacteroidetes (661) and Proteobac-

teria (319) are involved in this process, since significant numbers of

reads were grouped into these taxa. The phylum Actinobacteria

includes a high fraction of reads encoding fragments of lignin

degrading enzymes. This is in accordance with literature, since

Actinobacteria are known to express different ligninases [69].

The reductive acetyl-CoA pathway (also called Wood-Ljung-

dahl pathway) is important for acetogenic bacteria to autotrophi-

cally produce acetate from hydrogen and carbon dioxide or

carbon monoxide, respectively [70], whereas aceticlastic methan-

ogens reversely use this pathway to generate methane from

acetate. Several COG classifications representing the Wood-

Ljungdahl and the hydrogenotrophic methanogenesis pathway

were taxonomically analysed to distinguish between aceticlastic

[16] and hydrogenotrophic methanogens [71]. The fact that the

Wood-Ljungdahl pathway is used by acetogenic bacteria like

Clostridia as well as methanogenic Archaea is shown in Figure 4b. To

address the total number of COG hits representing methanogen-

esis, only Archaea with 720 assignments were taken into account for

subsequent analysis. The order Methanomicrobiales (520) constitutes

72% of all COG hits relevant for methanogenesis assigned to the

superkingdom Archaea. Thus, the order Methanomicrobiales is by far

the most abundant taxonomic group producing methane using

CO2 as a carbon source. Besides, it is noticeable that 25% of the

reads assigned to Methanomicrobiales (131) could not be classified at

lower taxonomic levels, indicating that either corresponding

proteins originate from new taxa which are not represented in

COG or highly conserved proteins shared by more than one

taxon. Acetate as source for methane production seems to play a

minor role, which is taxonomically indicated by the low fraction of

Methanosarcinales (2,704 reads) within the group of known

methanogens (27,693 reads). This observation correlates with the

low fraction of hits (3.5%) indicative for acetate conversion to

methane within the group of Archaea as well as the fact that

reductive acetyl-CoA pathway enzymes are mainly found in the

group of Bacteria (95%) with Clostridia as their most abundant class.

Identification of several different Methanoculleus species
Analysis of the community participation in methanogenesis

revealed that members of the order Methanomicrobiales are

dominant among the methanogenic Archaea. Recently, the

complete genome sequence of Methanoculleus marisnigri JR1 of the

order of Methanomicrobiales became available [51]. To gain an

insight into the relatedness of dominant methanogens within the

analysed fermentation sample to this reference species, several

genes were analysed in more detail.

From both the (unfiltered) GS FLX and Titanium datasets, a

total amount of 5,266 reads containing 16S rRNA sequence

fragments was identified. Out of these, 44 of the GS FLX and 88

of the Titanium reads were taxonomically assigned to the genus

Methanoculleus by the RDP classifier, but could not be assembled

into a single consensus sequence due to differences in sequence

composition. Binning of the individual reads based on their SNP

content (Figure 5A) and subsequent assembly resulted in seven

consensus sequences, each of which comprised at least the partial

sequence of a specific 16S rRNA gene. Subsequently, the

consensus sequences were characterized in terms of their

phylogeny together with several reference sequences obtained

from GenBank (Figure 5B). All sequences except one were placed

in close phylogenetic distance to Methanoculleus bourgensis; the one

remaining sequence was placed in a remote branch formed by

Methanoculleus marisnigri, Methanoculleus palmolei, Methanoculleus chiku-

goensis andMethanoculleus thermophilus (Figure 5B). These findings are

consistent with the results of a previous study [35], where a

phylogenetic characterization of the same biogas plant based on

16S rRNA clone library sequences was performed.

For verification, the same analysis was repeated for the 5S

rRNA and the mtrB gene. While the mcr operon is partially

duplicated in the genome of Methanoculleus marisnigri JR1, only one

copy of the mtrB gene exists. Four different variants of the mtrB

gene could be assembled, confirming the presence of several

Methanoculleus species/strains (see File S1). Assembly of the 5S

rRNA gene confirmed three variants (data not shown); down-

stream of the 5S rRNA gene, all three variants differ from

Methanoculleus marisnigri JR1, indicating a different genomic context

for the rrn cluster.

Mapping of metagenome reads to the Methanoculleus

marisnigri JR1 reference genome
In an attempt to reconstruct the genome sequence of one of the

dominant methanogenic species, both datasets were mapped onto

the published genome of Methanoculleus marisnigri JR1, the only

Methanoculleus strain for which a completely sequenced genome

currently exists. Using only the sequence data from the GS FLX

dataset, 39.8% of the reference genome was covered; mapping of

the Titanium dataset resulted in 41.7% coverage. A joint mapping

of both datasets produced a genomic coverage of 45.4%.

Upon further analysis, a correlation between poorly covered

regions and areas with relatively low GC content was discovered

(data not shown). Since variations in GC content often hint at

horizontal gene transfer, the number of bases that could be

mapped to the coding sequence of each gene in the genome of

Methanoculleus marisnigri JR1 was determined and normalized with

respect to the gene length. The results were divided into two

different groups depending on the prediction found in the HGT-

DB: one containing all genes that potentially have been acquired

by horizontal gene transfer, and another one for all remaining

genes. For both groups, the density function of all results was

plotted (Figure 6). A comparison of the results for genes predicted

as acquired by horizontal gene transfer in the HGT-DB and the

remaining genes suggests that some mobile DNA segments are

missing in one or several of the Methanoculleus species present in the

studied biogas fermenter. The coverage of the Methanoculleus

marisnigri JR1 genome as determined from the available metagen-

ome sequence data does not suffice to determine the absence or

presence of individual genes in theMethanoculleus species residing in

the biogas fermenter. This is particularly relevant because several

different Methanoculleus species/strains were identified in the

studied biogas fermenter. Even with the currently available

sequence data, the reconstruction of a complete genome of one

of the dominant species still remains unfeasible due to the

complexity of the microbial community and the close relationship

of some of the dominant species.

Biogas

PLoS ONE | www.plosone.org 8 January 2011 | Volume 6 | Issue 1 | e14519



Hydrogenases of Methanomicrobiales
This study revealed that species of the genus Methanoculleus

dominate among methanogenic Archaea. High abundance of

Methanoculleus members has also been shown for other communities

involved in fermentation of maize silage and related substrates

[58,68,72,73] suggesting that in these habitats methane is mainly

produced via the hydrogenotrophic pathway by reduction of

carbon dioxide. Hydrogenotrophic methanogenesis usually is

accompanied by syntrophic acetate oxidation which necessitates

that released hydrogen from acetate oxidation is efficiently

consumed by cooperating hydrogenotrophic methanogens. It is

assumed that Methanoculleus species have a high hydrogen affinity

Figure 4. Taxonomic and physiological overview of relevant members in ‘polysaccharide degradation’ (a) and ‘acetogenesis/
methanogenesis’ (b). The trees are based on reads classified into the NCBI taxonomy by the CARMA software. For each taxonomic group the
underlying number of reads is given. Numbers in brackets refer to the amount of reads which could not be classified at corresponding lower
taxonomic ranks. Associated COG entries are depicted as pie charts, where the interpretation of the numbers is equivalent.
doi:10.1371/journal.pone.0014519.g004
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Figure 5. Identification of Methanoculleus variants. Partial view (A) of pyrosequencing reads aligned to the 16S rRNA sequence of
Methanoculleus bourgensis (Genbank accession AY196674). Colored bases indicate differences between reads and the reference (shown in the bottom
line). In the depicted part, two of the seven different variants are visible. To characterize the variants, a phylogenetic tree (B) was constructed
together with various reference sequences. Most variants show close relationship to M. bourgensis; only variant VAR2 was placed in another branch
formed by M. marisnigri, M. palmolei, M. chikugoensis and M. thermophilus. Several 16S rRNA sequences from the genus Methanoculleus were used: M.
olentangyi (AF095270), M. bourgensis (AY196674), M. palmaeoli (Y16382), M. thermophilus (AB065297), M. chikugoensis MG62 (AB038795) and M.
marisnigri JR1 (CP000562 (Memar_R0043)). Additional sequences in increasing taxonomic distance were included as outgroups: Methanosarcina
mazeii (MMU20151), Methanococcus vannielii SB (CP000742 (Mevan_R0025)), Clavibacter michiganensis ssp. michiganensis NCPPB 382 (AM711867
(CMM_RNA_0001)) and two sequences from Escherichia coli K12 DH10B (NC_010473 (ECDH10B_3945 and ECDH10B_2759)).
doi:10.1371/journal.pone.0014519.g005
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[73]. BLAST analyses revealed that several metagenome reads

from the biogas community correspond to M. marisnigri JR1

hydrogenase genes (see Table 2). Among the identified genes are

those possibly encoding the membrane-bound hydrogenases Eha

(Memar_1172 - Memar_1185) and Ech (Memar_0359 -

Memar_0364), which were predicted to participate in methano-

genesis [51]. It is likely that Eha and Ech represent high-affinity

hydrogenases contributing to efficient hydrogen oxidation in the

course of methanogenesis. At least some Methanoculleus members

within the community of the analysed fermentation sample possess

membrane-bound hydrogenases related to Eha and Ech of

Methanoculleus marisnigri JR1.

Coverage of the microbial community
To analyse whether the diversity of the biogas-producing microbial

community is sufficiently covered by the sequence data, species

richness, diversity and rarefaction calculations were conducted.

The Shannon index [74] was used to estimate the biological

diversity of the underlying microbial community in the analyzed

fermenter. It is widely applied in ecological studies as a

measurement of biodiversity, accounting for both the number of

different taxa as well as their relative abundances. For this

purpose, 16S rRNA fragments were detected in the normalized

pyrosequencing datasets and classified with the RDP classifier.

Subsequently the Shannon index was computed considering only

16S rRNA sequences that could be classified on rank genus with at

least 80% confidence.

This approach resulted in a Shannon index value of 1.90 for the

GS FLX and 2.51 for the Titanium dataset, showing that sequence

data obtained from the GS FLX platform clearly underestimates

the biodiversity of the underlying community.

Since both datasets differ in size, the Shannon index was also

computed for random subsets of 407,558 reads (i.e. the size of the

normalized GS FLX dataset) extracted from the Titanium data;

5,000 iterations were calculated and the average of all results

taken. The resulting index value of 2.58 shows that even for

equally sized datasets, the Titanium dataset provides an higher

estimate of biodiversity.

Rarefaction analyses of both unfiltered datasets revealed that the

biogas-producing community is covered much deeper by the

Titanium than by the GS FLX sequences (Figure 7). 16S rRNA

fragments identified in the Titanium sequences were assigned to 38

different genera, but only 16 genera were observed for the GS FLX

dataset. Three genera were specific for the GS FLX dataset, 13 were

shared, and 25 were specific for the Titanium data. A full list of all

identified genera can be found in the File S1. The rarefaction curve

computed for the Titanium dataset was also far from reaching the

plateau phase, indicating that considerably higher sequencing effort

would be required to cover all phylogenetic groups of the underlying

microbial community. Rarefaction analysis conducted at rank

family is in accordance with this conclusion (see File S1).

The gene content of the studied metagenome samples was

characterized by assigning reads to Pfam protein families. As

expected, the collective gene content of the studied microbial

community was covered much deeper by the Titanium than by the

GS FLX sequence reads. In total, 4,759 different protein families

were identified in the Titanium dataset, while 3,844 could be

detected in the GS FLX reads. However, the rarefaction curves

computed for the number of protein families also did not reach the

plateau phase, suggesting that additional sampling would be

required to capture the entire gene content of the underlying

community (Figure 8). Protein families identified in the Titanium

Figure 6. Comparison of kernel density estimates for metagenome reads mapped to coding regions of the Methanoculleus marisnigri
JR1 genome. The figure shows the mapped bases per position in the genome separated into different groups: genes that have potentially been
acquired by horizontal gene transfer (HGT, depicted as dot-dashed line) and all other genes without a prediction for horizontal gene transfer (CDS,
shown as dashed line). For comparison, the density function for all genes combined is shown as well (solid line). Poor coverage of HGT genes hints at
genomic features probably missing in the Methanoculleus species present in the studied biogas fermenter, further supporting their difference to
Methanoculleus marisnigri JR1.
doi:10.1371/journal.pone.0014519.g006
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reads were annotated with 1,623 different GO terms, whereas

1,338 GO terms were observed for the GS FLX dataset.

Compared to the GS FLX data, the Titanium dataset provides

a far more detailed overview of the gene content and metabolic

potential of the studied microbial community.

Discussion

In a recent study, the metagenome of a biogas-producing

microbial community was sequenced employing the GS FLX

pyrosequencing platform. Since analysis results showed insufficient

coverage of the community, the study was complemented by

additional sequencing of the same DNA preparation on the GS

FLX Titanium platform.

During the analysis, a previously unreported GC bias in

pyrosequencing data was identified, which affected sequences from

both sequencing runs, thus indicating the importance of thorough

data screening and filtering to avoid a contortion of results.

However, sequence data generated using the GS FLX Titanium

chemistry was only marginally affected by this issue and only a

very small fraction of reads had to be excluded from further

analysis. These differences result from improvements in the

Titanium chemistry, leading to less bias compared to the previous

GS FLX technology. Meanwhile, a new emPCR kit containing a

specific additive has been launched by Roche Applied Science.

Initial studies based on microbial genome sequencing revealed an

almost bias free sequencing of even very high GC content regions

(data not shown).

The composition of the microbial community was deduced

from both the taxonomic classification of 16S rRNA fragments as

well as the assignment of Environmental Gene Tags (EGTs) on

different taxonomic ranks Obtained results essentially confirmed

Table 2. Metagenome reads comprising hydrogenase gene fragments.

Titaniuma GS FLXa locus description

462 134 Memar_0359b 4Fe-4S ferredoxin iron-sulfur binding domain-containing protein

66 44 Memar_0360b NADH-ubiquinone oxidoreductase, chain 49kDa

14 16 Memar_0361b ech hydrogenase, subunit EchD, putative

40 17 Memar_0362b NADH ubiquinone oxidoreductase, 20 kDa subunit

221 111 Memar_0417 (NiFe) hydrogenase maturation protein HypF

46 32 Memar_0470 hydrogenase accessory protein HypB

111 46 Memar_0622 methyl-viologen-reducing hydrogenase, delta subunit

80 59 Memar_1007c nickel-dependent hydrogenase, large subunit

55 28 Memar_1008c NADH ubiquinone oxidoreductase, 20 kDa subunit

21 21 Memar_1014 hydrogenase maturation protease

146 51 Memar_1022 hydrogenase expression/formation protein HypE

11 10 Memar_1023 hydrogenase expression/synthesis, HypA

16 7 Memar_1024 hydrogenase assembly chaperone hypC/hupF

87 49 Memar_1044 coenzyme F420 hydrogenase/dehydrogenase beta subunit

72 45 Memar_1140 hydrogenase expression/formation protein HypD

21 24 Memar_1172d hypothetical protein

12 8 Memar_1173d hypothetical protein

14 10 Memar_1174d hypothetical protein

18 5 Memar_1175d hypothetical protein

37 18 Memar_1176d hypothetical protein

18 15 Memar_1177d uncharacterized membrane protein

3 6 Memar_1179d hypothetical protein

3 5 Memar_1181d hypothetical protein

28 13 Memar_1182d hypothetical protein

24 14 Memar_1183d NADH ubiquinone oxidoreductase, 20 kDa subunit

281 68 Memar_1185d 4Fe-4S ferredoxin iron-sulfur binding domain-containing protein

49 38 Memar_1378 coenzyme F420 hydrogenase/dehydrogenase beta subunit

17 6 Memar_1380 coenzyme F420 hydrogenase/dehydrogenase beta subunit

79 43 Memar_1623 coenzyme F420 hydrogenase/dehydrogenase beta subunit

93 45 Memar_2174 nickel-dependent hydrogenase, large subunit

31 21 Memar_2175 hydrogenase maturation protease

544 178 Memar_2176 coenzyme F420 hydrogenase

54 29 Memar_2177 coenzyme F420-reducing hydrogenase subunit beta

anumber of reads assigned to a specific M. marisnigri JR1 locus (Memar);
bEch operon encoding a membrane-bound hydrogenase [51];
cF420 non-reducing hydrogenase; d Eha operon encoding a membrane-bound hydrogenase [51].
doi:10.1371/journal.pone.0014519.t002
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Figure 7. Rarefaction analysis of observed genera. The rarefaction curves represent the estimated number of genera that would be observed
in biogas fermenter metagenomes of different sizes. The values were determined based on 16S rRNA fragments classified at rank genus identified in
the entire Titanium and GS FLX datasets, respectively.
doi:10.1371/journal.pone.0014519.g007

Figure 8. Rarefaction analysis of Pfam families. The estimated number of Pfam protein families that would be identified in biogas fermenter
metagenomes of different sizes is shown. The values were computed based on the number of protein families identified in the entire Titanium and
FLX metagenomes, respectively.
doi:10.1371/journal.pone.0014519.g008
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taxonomic profiles of the previous study. However, less abundant

taxa could be identified by analyzing the GS FLX Titanium

dataset thus justifying the additional sequencing effort. The fact

that only a very small fraction of metagenomic reads actually

contains fragments of the 16S rRNA gene emphasizes the

advantages of using software such as the CARMA pipeline, which

accurately classifies gene fragments detected in metagenome

sequence data. A rarefaction analysis was performed to estimate

the coverage of the microbial community in both sequencing

datasets; as expected, sequencing data from the GS FLX Titanium

platform provides a far more complete view of the underlying

community, while the GS FLX sequencing run was not carried out

to saturation.

During the functional characterization of the community,

members of the phylum Firmicutes could be confirmed to represent

the dominant organisms involved in the breakdown of polysac-

charides together with Bacteroidetes. Beyond that, the novel analyses

showed that Proteobacteria also play an important role in

polysaccharide degradation. Clostridia were found to dominate

within the functional context ‘acetogenesis’, as deduced by

mapping of bacterial taxa to metagenome hits representing the

Wood-Ljungdahl pathway which is also known as the reductive

acetyl-CoA pathway. Methanomicrobiales are the most abundant

order involved in methanogenesis using CO2 as a carbon source,

while acetate only seems to play a minor role, as indicated by a low

fraction of Methanosarcinales.

Based on the identification of 16S rRNA fragments from the

Methanoculleus genus and subsequent assembly, the presence of

several Methanoculleus species closely related to Methanoculleus
bourgensis in the studied biogas fermenter could be demonstrated.

A rough characterization of the genomic content of these

Methanoculleus species was conducted by mapping the metagenome

sequence reads to the published genome of Methanoculleus marisnigri
JR1. Comparison of the genomic content of dominant Methano-

culleus species within the analysed sample and the reference species

M. marisnigri JR1 revealed that there are several differences mainly

concerning genes that might have been acquired by horizontal

gene transfer. Metagenome reads assigned to the genus Methano-

culleus represent inter alia methanogenesis and membrane-bound

hydrogenase genes predicted to be of importance for the pathway

leading to the formation of methane within biogas. The close

relationship of the Methanoculleus species in the studied biogas

fermenter makes reconstruction of the genomic sequence of one of

the dominant Methanoculleus species from the metagenomic

sequence reads rather unlikely, since a reliable distinction between

the most abundant strains can not be assured. In comparison, the

GS FLX Titanium data offers a far more complete view of the

analysed fermenter, even though analysis results give evidence that

the available sequence data still does not fully cover the microbial

community.

Supporting Information

File S1 Supporting material.

Found at: doi:10.1371/journal.pone.0014519.s001 (0.26 MB

PDF)
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35. Kröber M, Bekel T, Diaz N, Goesmann A, Jaenicke S, et al. (2009) Phylogenetic
characterization of a biogas plant microbial community integrating clone library
16S-rDNA sequences and metagenome sequence data obtained by 454-
pyrosequencing. Journal of Biotechnology 142: 38–49.

36. Zhou J, Bruns M, Tiedje J (1996) DNA recovery from soils of diverse
composition. Applied and Environmental Microbiology 62: 316–322.

37. R Development Core Team (2008) R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
ISBN 3-900051-07-0.

38. Kutner M, Nachtsheim C, Neter J, Li W (2005) Applied linear statistical models.
McGraw Hill.

39. Gomez-Alvarez V, Teal T, Schmidt T (2009) Systematic artifacts in
metagenomes from complex microbial communities. The ISME Journal 3:
1314–1317.

40. Beifang N, Limin F, Shulei S, Weizhong L (2010) Artificial and natural
duplicates in pyrosequencing reads of metagenomic data. BMC Bioinformatics
11: 187.

41. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local
alignment search tool. J Mol Biol 215: 403–410.

42. Wang Q, Garrity G, Tiedje J, Cole J (2007) Naive bayesian classifier for rapid
assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ
Microbiol 73: 5261–5267.

43. Finn R, Tate J, Mistry J, Coggill P, Sammut S, et al. (2008) The Pfam protein
families database. Nucleic Acids Research 36: D281.

44. Krause L, Diaz N, Goesmann A, Kelley S, Nattkemper T, et al. (2008)
Phylogenetic classification of short environmental DNA fragments. Nucleic
Acids Research 36: 2230–2239.

45. Muller J, Szklarczyk D, Julien P, Letunic I, Roth A, et al. (2010) eggNOG v2. 0:
extending the evolutionary genealogy of genes with enhanced non-supervised
orthologous groups, species and functional annotations. Nucleic Acids Research
38: D190.

46. Caspi R, Foerster H, Fulcher C, Kaipa P, Krummenacker M, et al. (2008) The
MetaCyc Database of metabolic pathways and enzymes and the BioCyc
collection of Pathway/Genome Databases. Nucleic Acids Research 36: D623.

47. Sayers E, Barrett T, Benson D, Bolton E, Bryant S, et al. (2009) Database
resources of the National Center for Biotechnology Information. Nucleic Acids
Research 37: D5.

48. Pearson WR (2000) Flexible sequence similarity searching with the FASTA3
program package. Methods Mol Biol 132: 185–219.

49. Edgar R (2004) MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucl Acids Res 32: 1792–1797.

50. Felsenstein J (1989) PHYLIP - Phylogeny Inference Package (Version 3.2).
Cladistics 5: 164–166.

51. Anderson I, Ulrich L, Lupa B, Susanti D, Porat I, et al. (2009) Genomic
characterization of Methanomicrobiales reveals three classes of methanogens. PloS
One 4: e5797.

52. Garcia-Vallve S, Guzman E, Montero M, Romeu A (2003) HGT-DB: a
database of putative horizontally transferred genes in prokaryotic complete
genomes. Nucleic Acids Research 31: 187–189.

53. Dohm J, Lottaz C, Borodina T, Himmelbauer H (2008) Substantial biases in
ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids
Research 36: e105.

54. Ludwig W, Strunk O, Westram R, Richter L, Meier H, et al. (2004) ARB: a
software environment for sequence data. Nucleic Acids Research 32:
1363–1371.

55. Dollhopf S, Hashsham S, Dazzo F, Hickey R, Criddle C, et al. (2001) The
impact of fermentative organisms on carbon flow in methanogenic systems
under constant low-substrate conditions. Applied microbiology and biotechnol-
ogy 56: 531–538.

56. Fang H, Zhang T, Liu H (2002) Microbial diversity of a mesophilic hydrogen-
producing sludge. Applied microbiology and biotechnology 58: 112–118.

57. Fernandez A, Hashsham S, Dollhopf S, Raskin L, Glagoleva O, et al. (2000)
Flexible community structure correlates with stable community function in
methanogenic bioreactor communities perturbed by glucose. Applied and
Environmental Microbiology 66: 4058.
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