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ABSTRACT

Epigenetic regulation is dynamic and cell-type de-

pendent. The recently available epigenomic data in

multiple cell types provide an unprecedented oppor-

tunity for a comparative study of epigenetic land-

scape. We developed a machine-learning method

called ChroModule to annotate the epigenetic

states in eight ENCyclopedia Of DNA Elements cell

types. The trained model successfully captured the

characteristic histone-modification patterns asso-

ciated with regulatory elements, such as promoters

and enhancers, and showed superior performance

on identifying enhancers compared with the

state-of-art methods. In addition, given the fixed

number of epigenetic states in the model,

ChroModule allows straightforward illustration of

epigenetic variability in multiple cell types. Using

this feature, we found that invariable and variable

epigenetic states across cell types correspond to

housekeeping functions and stimulus response, re-

spectively. Especially, we observed that enhancers,

but not the other regulatory elements, dictate cell

specificity, as similar cell types share common en-

hancers, and cell-type–specific enhancers are often

bound by transcription factors playing critical roles

in that cell type. More interestingly, we found some

genomic regions are dormant in cell type but primed

to become active in other cell types. These obser-

vations highlight the usefulness of ChroModule in

comparative analysis and interpretation of multiple

epigenomes.

INTRODUCTION

Identifying cell-type–specific functional regions is an
important step to understand the regulatory mechanisms
underlying cell-type–specific gene expression. Histone
modifications play critical roles in transcriptional regula-
tion (1), and their patterns at enhancers often manifest
the cell-type specificity (2,3). With the fast advancement
of the next-generation sequencing technology, we have
seen explosive accumulation of epigenomic data (3–8), par-
ticularly those generated in many different cell types by the
ENCyclopedia Of DNA Elements (ENCODE) (9,10) and
the NIH Epigenomics Roadmap consortium (11).
The availability of cell-type–specific epigenomic data

provides a unique opportunity for genome-wide identifi-
cation of regulatory regions (2,12–14) or transcription
factor (TF)-binding sites (15–17), which in turn helped
to predict cell-specific gene expression (18–20). Several
computational methods have been developed to annotate
epigenomic states using unsupervised learning methods
(21–23). For example, Ernst and Kellis (21) used an
unsupervised hidden Markov model (HMM) called
ChromHMM to define 41 chromatin states using 49
histone marks. These 41 chromatin states were then
annotated and grouped into five categories based on the
enrichment of known functional sites, such as promoters
or DNaseI hypersensitivity sites (DHSs). This approach
provides a useful annotation of epigenomic states in the
genome, but it also has limitations: for example, binary
representation of the data from chromatin immunopre-
cipitation followed by sequencing (ChIP-seq) experiment
may not optimally capture spatial patterns of the
epigenomic states, and the number of HMM states
needs to be adjusted based on the number of histone
marks. Given a deluge of epigenomic data becoming
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available in various cell types, an urgent need is to conduct
comparative analysis to reveal the epigenomic landscape
underlying the dynamics of transcriptional regulation.
We present here a novel supervised learning method

called ChroModule that is based on an HMM with
modular structure to annotate epigenomic states in the
human genome, which is complementary to the unsuper-
vised learning methods. Inspired by the study of Filion
et al. (24) that only five major chromatin states were
found in Drosophila, we chose to train the HMM using
six modules to annotate genomic regions of five categories:
promoter (forward and backward), enhancer, transcribed
region, repressed region and background. Similar to the
previous studies (12,15,22), ChroModule exploits mixture
Gaussians to model the spatial patterns of the epigenomic
data, which is crucial to capture open chromatin regions
for potential TF binding. The probabilistic mixture
Gaussians also flexibly represent the shapes of epigenomic
signals without pre-selecting the number of HMM states.
Once the model is trained, it can be applied to any other
data set containing same epigenomic data, such as histone
modification and chromatin accessibility data, and thus
allows direct comparison of epigenomic states across cell
types or cellular conditions. We illustrated this feature of
ChroModule by training it in one cell type (Huvec) and
annotating the other seven cell types without re-training.
The predicted promoters/enhancers showed significant
overlap with the ChIP-seq peaks of 58 TFs and p300-
binding sites, which suggest that ChroModule captures
functional regions of the genome.
The annotated regulatory regions in eight cell types

provided an opportunity to comparatively analyse
epigenomic states. We proposed an epigenomic variation
score (EVS) to measure the variation of the epigenomic
state across cell types. We observed that epigenetically
invariable regions mark fundamental functions in a cell,
whereas variable regions were enriched with genes related
to cell signalling and response to stimuli. Comparison of
active enhancers across the eight cell types identified
cell-type–specific enhancers, which show distinct functions
as well as putative binding sites of TFs crucial to the cor-
responding cell type. In addition, we also found that
similar cell types share more common enhancers than
the dissimilar ones, which is resonant to the concept that
similar cell types reside close to each other in the epigen-
etic landscape. Interestingly, we identified cell-type–
specific regulators by comparing the state representation
across cell types, which was further validated by the
ChIP-seq peaks of the TFs.

MATERIALS AND METHODS

Data

We used the data from the ENCODE project (http://
genome.ucsc.edu/ENCODE/) and collected the common
markers in eight cell types: GM12878 (lymphoblastoid),
Hmec (human mammary epithelial cells), Hsmm (normal
human skeletal muscle myoblasts), Huvec (human umbil-
ical vein endothelial cells), K562 (leukaemia), Nhek
(normal human epidermal keratinocytes) and Nhlf

(normal human lung fibroblasts). The chromatin marks
included H3K4me1/2/3, H3K9ac, H4K20me1, H3K27ac,
H3K27me3 and H3K36me3. H3K9me1 was not
included because it was not available in all the cell types.
Additionally, we included chromatin accessibility data
[DHSs or formaldehyde-assisted isolation of regulatory
elements followed by sequencing (FAIRE-seq) data]
(Supplementary Table S1).

The ChroModule model

ChroModule is composed of six modules: promoter
(forward and backward), enhancer, transcribed, repressed
and background module. ChroModule was trained on
Huvec, and each module was trained independently. The
HMM in each module has a left–right structure that is
widely used in signal processing, such as speech recogni-
tion, and has been proved to be effective in capturing
temporal patterns (25). We also chose mixture of
Gaussians to characterize the shapes of histone modifica-
tions because it provides a flexible model to represent the
variable profiles of the sequencing reads. Compared with
methods that discretize the reads into a limited number of
states (21), mixture of Gaussians is able to model a broad
range of variability, which is crucial for handling the noise
of the sequencing data (15,22).

In the previous work, we evaluated the impact of the
number of HMM states and the mixture of Gaussians (the
Gaussians are not tied) on the prediction performance of
the model (12,15). We found that HMMs with �3 states
and �2 Gaussians performed much better than HMMs
with less number of states and Gaussians. This is
because enough number of states/Gaussians can effect-
ively capture the spatial pattern of histone data, such as
the bimodal pattern of H3K4me3 at promoters and
H3K4me1 at enhancers (15). In ChroModule, we chose
to use a five-state HMM with five Gaussians for the
promoter and enhancer module because the five-state
model could detect not only the strong signals around
the peaks but also the weak signals at the flanking
regions of the peak (Supplementary Figure S1).

Supplementary Figure S1 shows the heatmap of histone
modifications at promoters and enhancers, as well as the
emission probabilities of the corresponding HMMs. The
bimodal patterns of epigenomic signals in these regions
were well represented by the emission probability distribu-
tions in the five HMM states. For example, the fourth
state in the promoter HMM module modelled the open
chromatin region, as shown by the high probability at
small read count in H3K4me3 and H3K9ac, and it was
flanked by two shoulder peaks represented by the third
and fifth states; similarly, the HMM emission probabilities
in the enhancer HMM module showed clear depletion of
H3K4me1 and other histone marks on the third state,
whereas the second and fourth states showed higher
emission probabilities to represent shoulder peaks, and
the first and fifth state represent the flanking weak
signals. It is worth of noting that the fine resolution of
the histone profiles captured by the five-state HMM can
greatly facilitate further analyses.
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We used one-state HMM to model the transcribed
(marked by H3K36me3), repressed (marked by
H3K27me3) regions and background, which is equivalent
to those methods using a two-state HMM to identify the
enrichment of these marks (26–28). Supplementary Table
S2 summarizes the parameters we chose.

Bioinformatics tools used in the analyses

Homer (29) was used for de novo motif finding, and the
found motifs were compared with the known motifs in
human and mouse documented in the TRANSFAC (30),
JASPAR (31) and Uniprobe (32) databases. We used
DAVID (33) to perform gene ontology analysis.

RESULTS

ChroModule captures spatial pattern of the epigenomic
data in the regulatory regions

ChroModule is composed of HMM modules, each of
which has a left–right structure to capture the spatial
patterns of the epigenomic signals using mixture of
Gaussians to characterize the shapes of histone modifica-
tions because it provides a flexible model to represent the
variable profiles of the sequencing reads [see detailed
discussion in ‘Materials and Methods’ section and
(12,15,22)]. The data used in this study included eight
histone marks (H3K4me1/2/3, H3K9ac, H3K27ac,
H3K27me3, H3K36me3 and H4K20me1), chromatin ac-
cessibility (DHSs) (Supplementary Table S1). As Filion
et al. (24) only found five distinct chromatin states, we
trained six modules on five categories of annotated
regions (forward/backward promoter, enhancer, repressed
region, transcribed region and background). Initially, each
module was trained separately using the Baum–Welch
algorithm (34). We then linked all modules to construct
the final model in which the transition probabilities were
learned from the data (Figure 1A). This modular design
allows flexible representation of functional states and
precise training of HMMs.

Supplementary Figure S1 shows the heatmap of histone
modifications at promoters and enhancers, as well as the
emission probabilities of the corresponding HMMs. The
bimodal patterns of epigenomic signals in these regions
are well represented by the emission probability distribu-
tions. The fourth and the third states in the promoter and
enhancer HMM modules characterize the open chromatin
regions as illustrated by the depletion of histone signals,
such as H3K4me3 in promoter (Figure 1B) and H3K4me1
in enhancer, respectively (Supplementary Figure S1). Such
a fine resolution of the histone profiles captured by
ChroModule can greatly facilitate further analyses. For
example, when checking enriched motifs in the enhancers,
one can focus on the open chromatin regions decoded
as the third state in the enhancer module, which would
significantly narrow down the searching space for motif
finding (Figure 4).

We used one-state HMM to model the transcribed
(marked by H3K36me3) or repressed (marked by
H3K27me3) regions, which is equivalent to those
methods aiming to identify the enrichment of these

marks (26–28). H3K36me3 and H3K27me3 are known
marks of transcribed and repressed regions (35), respect-
ively, and were used in the previous study for annotating
these regions (36). Even though these two regions are not
well defined by only one characteristic mark, it is import-
ant to distinguish them from promoters or enhancers,
which is especially critical to calculate EVS for comparing
epigenetic states across cell types.
ChroModule is a supervised learning model, and we

selected the training data that represent the most
probable loci belonging to each category (Supplementary
Table S2). Because active promoters and enhancers are
associated with strong H3K4me3 and H3K4me1/2
marks, respectively (14), we chose TSSs with the highest
H3K4me3 to train the promoter module and strongest
distal DHS peaks that are also associated with high
H3K4me1/2 and low H3K4me3 to train the enhancer
module. For the transcribed and regressed regions, we
selected the top 1000 exons in chromosome 1 with a
high H3K36me3 and H3K27me3 signals (>2 normalized
read counts), respectively. We took the entire chromosome
1 to train the background module. We trained
ChroModule in Huvec (see Supplementary Methods for
details) and applied the trained model to annotating other
cell types. We used the Viterbi algorithm (34) to assign
HMM states to each 100-bp bin (Figure 1C shows the
ChroModule annotation based on epigenome data in
K562 and Figure 1D for all cell types).
Especially interesting, ChroModule showed flexibility to

capture various types of spatial patterns, such as both uni-
and bi-modal patterns: uni-modal enhancers were repre-
sented by a sequence of states without visiting third state
(Supplementary Figure S2A) in contrast to bimodal
enhancers represented with at least one third state, as
well as second and fourth states. As uni-modal enhancers
were observed at the binding loci of androgen receptor
(17,37) because of the dynamic nucleosome positioning,
a single model to capture divergent spatial patterns of
histone modifications manifests the unique feature of
ChroModule to represent diverse chromatin states in a
general way. Indeed, when clustering predicted enhancers
in Hmec, there are distinct sub-classes of enhancers
with diverse combinations of histone modifications
(Supplementary Figure S3). We investigated the expres-
sion levels of the nearest genes of the bi-modal and
uni-modal enhancers (Supplementary Figure S2B) and
did not observe statistically significant difference
(P=0.4). This observation is not unexpected, as a
previous study showed that dynamic changes in nucleo-
some occupancy are not predictive of gene expression (38).
There can be several possible reasons, including that genes
are regulated by more than one enhancer, and their ex-
pressions are thus not tightly correlated with the dynamics
of the nucleosome of one enhancer.

Genome-wide annotation using ChroModule

We observed that enhancers are distributed more broadly
than promoters in the genome. ChroModule identified
38 214 (ranging from 21 140 in K562 to 27 237 in
GM12878) non-overlapping promoter blocks in the eight
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cell types spanning 89 Mb, compared with 199 200
(ranging from 37 328 in K562 to 66 419 in Nhlf)
enhancer blocks spanning 260 Mb of the human genome
(Supplementary Table S3). Indeed, similar number of pre-
dicted promoters was found across cell types, but the
number of enhancers varied significantly. We also
noticed that the majority of the human genome was
unlabelled (Supplementary Figure S5) often because of
insufficient sequencing reads available.
The annotation in the eight ENCODE cell types allowed

comparative visualization of the epigenetic states. An
example region is shown in Figure 1C and D: the promoter
of SLC25A23 shows invariable epigenetic states, in

contrast to the variable CRB3 promoter. SLC25A23 is a
calcium-dependent mitochondrial solute carrier (39), and it
is not surprising that it plays roles in many cell types.
Crumbs protein homolog 3 (CRB3) functions in epithelial
cell polarity (39), resonant to the active histone marks in
epithelial (Hmec) and epidermal (Nhek) cells.

ChroModule annotating the genome with a
high performance

To access the quality of ChroModule annotation, we
evaluated the annotated promoters and enhancers. The
promoter annotations in the eight cell types showed con-
sistently satisfactory accuracy, as �60% of the RefSeq

Promoter forward (5 state)

Promoter backward (5 state)

Enhancer (5 state)

Background (1 state)

H3K36me3 enriched region

(transcribed region: 1 state)

H3K27me3 enriched region

(repressed region: 1 state)

H

BA

C

Begin

GM12878

H1

Hmec

Hsmm

Huvec

K562

Nhek

Nhlf

EVS

Promoter Enhancer Transcribed Repressed EVS

CTCF

H3K4me1

H3K4me2

H3K4me3

H3K9ac

H3K27ac

H3K27me3

H3K36me3

H4K20me1

DNase Peak

ChroModule

D

Figure 1. (A) The structure of ChroModule. There are six modules in ChroModule: forward promoter, backward promoter, enhancer,
H3K36me3-enriched region (transcribed region), H3K27me3-enriched region (repressed region) and background. Each module has a left–right
structure, i.e. each state transits to itself or the states located to its right (12,15). (B) Emission probabilities of the five-state HMM for promoter.
The fourth state represents the open chromatin region of depleted H3K4me1/2/3 and enriched DNaseI signals. (C) Example ChroModule annotation
and the epigenomic data in the K562 cells. (D) Example ChroModule annotation of the eight cell types. The probability of each HMM state and
EVS are shown in STAR browser (http://wanglab.ucsd.edu/star/browser) for each cell type.
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genes were predicted to have active promoters with a false-
positive rate <1% (Figure 2A). The remaining 40%
RefSeq promoters are missed mainly because of lack of
H3K4me3, an epigenetic mark for active promoter. This
performance is similar to the previous studies using an
unsupervised learning method ChromHMM (21).

To evaluate the accuracy of the predicted enhancers is
challenging because of the lack of a gold standard of
enhancers. As the binding of transcriptional co-factor
p300 or any TF often indicates location of enhancers,
we collected the p300-binding sites that are distal
(>2.5 kb) from any annotated RefSeq transcription start
site (TSS) in H1, K562 and GM12878 cells, as well as 58
TF ChIP-seq experiments (Supplementary Table S1) that

determine the binding sites of these TFs (TF-binding sites)
in GM12878 and K562 cells. We then evaluated the
overlap between the predicted enhancers and p300- or
TF-binding sites (Figure 2 and Table 1). As a comparison,
we also evaluated the performance of another HMM-
based method ChromHMM (21,36) using the same
criteria. In contrast to ChroModule, ChromHMM is an
unsupervised learning method and discretizes histone
modification reads to binary states (presences or
absence). We found that ChroModule consistently outper-
formed ChromHMM (Table 1, Figure 2 and
Supplementary Figure S6) in predicting enhancers. For
example, �76% and 83% of all predicted enhancers in
GM12878 and K562 cells, respectively, overlap with TF

Figure 2. Evaluation of the ChroModule performance on (A) promoters (accessed using RefSeq TSSs). ChroModule results (promoters and strong
promoters) were obtained from ENCODE (36). (B) Assessment of the enhancers predicted by ChroModule and ChromHMM using p300-binding
sites that are distal (>2.5 kb) from Refseq TSSs. ChroModule outperformed ChromHMM in all the cell types. ChromHMM results (enhancer, strong
enhancer) were downloaded from the study of Ernst et al. (36). Supplementary Figure S6 has comparison in H1, K562 and GM12878.
(C) Assessment of the enhancers predicted by ChroModule and ChromHMM using TF-binding sites in Gm12878 and K562 cells. (D) The com-
parison of ChroModule models independently trained in Huvec and GM12878 (V2). Receiver operating characteristic curves (ROC) curves generated
by using RefSeq promoters to evaluate the promoter prediction.

Nucleic Acids Research, 2013, Vol. 41, No. 8 4427
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ChIP-seq peaks that are at least 2.5 kb away from pro-
moters (P< 10�130), compared with 68% (42%) and
68% (44%) for the strong (all) enhancers predicted by
ChromHMM (Supplementary Table S4). It is also worth
of noting that enhancers with relatively large open chro-
matin region (visiting the third states of the enhancer
HMM at least twice) flanked by shoulder peaks (the
second and fourth states of the enhancer HMM) have
greater overlaps with DHSs (Supplementary Table S3),
which further illustrates the advantage of capturing the
fine spatial pattern of the chromatin modifications.
To investigate the robustness of ChroModule, we

trained the model using the epigenomic data in
GM12878 instead of Huvec and tested it on the other
two cell lines: K562 and H1 (Figure 2D). Regardless of
how the models were trained, ChroModule showed com-
parable performance. As the robustness of a model is
crucial to annotating epigenomes, such a feature of
ChroModule makes it a powerful tool for analysing
epigenomic data in diverse cell types.
We also checked the portion of the predicted promoters

and enhancers that overlap with DHSs measured in the
same cell type and different cell types. We found that,
although a majority of the predicted promoters and en-
hancers overlap with DHSs (FAIRE-seq data in Hsmm) in
the same cell type, there is a significant increase of overlap
percentage (from �70 to >95% of predicted promoters/
enhancers) when considering open chromatin regions in
all eight-cell types (Supplementary Figure S4). Although
the mechanism underlying this observation is unclear,
these genomic regions may be dormant in one-cell type
(no open chromatin) but primed to become active (open
chromatin) in other cell types.

Epigenomic variation score

To quantitatively define the variation of epigenetic states
across the eight cell types, we computed the entropy of
ChroModule labels in each 100-bp bin as the EVS
EVS ¼ �

P

i

Pi lnðPiÞ, where Pi is the occurrence percent-
age of promoter, enhancer, transcribed region, repressed
region or background labels in all cell types (Figure 1D).
We observed 9504 bins with zero EVS (invariable) and
16 876 bins with an EVS of >1.1 (variable). Notably, en-
hancers and promoters, respectively, show consistently

high and low average EVSs across the eight cell types,
which indicate the intrinsic variability difference of their
epigenetic states (Supplementary Table S5). Transcribed
regions show consistently high EVSs, which may be due
to alternative splicing in different cell types. It is not
surprising that the average EVSs of repressed regions
vary on cell types because repressed regions in one cell
type might be active in other cell types.

Checking the genes associated with these annotated
regions, we found that epigenetically invariable regions
are related to housekeeping functions, such as promoters
related to ‘RNA processing’ and ‘cell cycle’, transcribed
regions to ‘RNA splicing’ and ‘translation’, enhancers to
‘cell death’ and ‘actin cytoskeleton organization’ and re-
pressed regions to ‘neuron differentiation’. In contrast, the
epigenetically variable regions are related to stimulus
response as shown by the enriched gene ontology (GO)
terms found by DAVID (33), such as ‘cell adhesion’ and
‘cell–cell signalling’ (Table 2).

Enhancers dominate cell type specificity

To investigate which functional regions were critical to
determine cell specificity, we calculated the number of
mismatches of ChroModule states (promoter, enhancer,
transcribed, repressed or background) between cell types
and clustered the eight cells using this epigenomic distance
as the metric. When using enhancers to compute the
epigenomic distance, the pluripotent H1 cell is distinct
from the remaining differentiated cells, and the epidermal
(Hmec and Nhek) and lymphocytic cells (K562 and
GM12878) are close to each other (Figure 3). This
cluster of cells resembles the cell-type similarity much
better than the clusters generated using promoter alone,
promoter plus enhancer or all the annotated regions
(Supplementary Figure S8). This observation confirmed
that enhancers dictate cell-type specificity (2).

We then conducted GO term analysis (33) on the pro-
moters and the closest genes of the enhancers predicted in
all or only one cell type (Table 3 and Supplementary Table
S6). The common enhancers across eight cell types are
related to ‘cell death’, consistent with the enriched func-
tions of invariable enhancers with low EVS. Checking the
functions related to cell-type–specific enhancers, we
observed a strong correlation between the enriched GO

Table 1. Performance of ChroModule and ChromHMM on predicting promoters and enhancers evaluated using RefSeq promoters

and distal p300-binding sites, respectively

Cell Promoter predictions Distal p300 (enhancer) predictions

ChroModule ChromHMM Cell ChroModule ChromHMM

H1 0.62 0.53 H1 0.77 0.62
GM12878 0.55 0.46 GM12878 0.71 0.65
K562 0.54 0.42 K562 0.84 0.62
Hmec 0.58 0.53
Hsmm 0.54 0.56
Huvec 0.57 0.50
Nhek 0.57 0.52
Nhlf 0.57 0.52

Area under curve (AUC) of the ROC curve is shown. The values are scaled to the maximum value.

4428 Nucleic Acids Research, 2013, Vol. 41, No. 8

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
1
/8

/4
4
2
3
/2

4
0
9
3
2
8
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt143/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt143/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt143/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt143/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt143/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt143/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt143/-/DC1


terms and the function of the cell. For example, ‘lympho-
cyte activation’ is the most significant GO term in the
lymphoblastoid cell GM12878. The functions of
common promoters, such as ‘RNA processing’ and ‘cellu-
lar macromolecule catabolic process’, are essential to the
cell. The enriched GO terms associated with the cell-type–
specific promoters are less well associated with cell speci-
ficity than enhancers.

Comparative methods found cell-type–specific master
regulators

We searched for enriched sequence motifs in the enhancers
using Homer (29) (Figure 4). We restricted the search in
the open chromatin regions marked by the third state of
the enhancer HMM. In the common enhancers, we found
the enrichment of the motif recognized by Fos that regu-
lates diverse biological processes from ‘proliferation and
differentiation’ to ‘defence against invasion and cell
damage’ (41). For cell-type–specific enhancers, we also
found motifs recognized by TFs that specifically
function in the corresponding cells. For example, a motif
identified in H1 cell is similar to the motif of Oct4 (15), a
master regulator of embryonic stem cell (Figure 4).
Indeed, we observed much larger portion of Oct4
ChIP-seq–binding sites in the H1-specific enhancers with
open chromatin region (78 of 504 H1-specific enhancers
with bins marked as the third state in the enhancer HMM)
compared with that in all the enhancers (564 of 24 280
enhancers) (P< 10�130). Another example is the Pu.1
motif found in GM12878, which is consistent with the

observed enrichment of ChIP-seq peaks of Pu.1 in the
GM12878 enhancers (13 031 of 39 662 predicted enhan-
cers) or those in the GM12878-specific enhancers with
an open chromatin (2423 of 4998). The third example is
the identification of the GATA1 motif in K562, whose
functional roles in K562 were previously reported in the
literature (42). Genome-wide ChIP-seq analysis of
GATA1 also showed the enrichment of peaks in K562-
specific enhancers (2632 of 6315 enhancers with an open
chromatin, P< 10�130).

DISCUSSION

With the fast accumulation of epigenomic data, there
is an urgent need for global analysis of such data and
annotation of the genome in a cell-type–specific manner.
The ChroModule method developed in this study provides
a useful tool to label functional regions based on epigen-
etic information. ChroModule has several unique features.
First, the design of ChroModule allows separate training
of individual modules and then linking these modules to
build a full model, which significantly reduces the com-
plexity of model tuning. The modular design of HMM has
been successfully applied to biological sequence analysis
(43–46). Modular HMM not only allows easy interpret-
ation of the decoding results but also often achieves higher
prediction accuracy than non-modular models especially
in the biology domain because it is non-trivial to automat-
ically learn the HMM structure from complicated
and noisy biological data (47,48). In addition, modular
design allows easy extension of the model to represent
new biological observations by including additional
modules.
Second, ChroModule models the sequencing data

directly that avoids the arbitrariness of selecting the cut-
off for discretization as done in ChromHMM. As shown
in this and previous studies (12,15,22), mixture of
Gaussians capture fine spatial patterns that can greatly
facilitate follow-up analysis, such as searching for motifs
recognized by TFs in the open chromatin states (e.g. the
third state of the enhancer HMM module). In addition,
as shown in the Supplementary Figure S3, diverse
chromatin patterns can be represented by a single
module in ChroModule.

Table 2. Functions of the genes in the epigenetically invariable and variable regions

Number of blocks Genes GO terms (number of genes; P-value)

Invariable promoters 9422 8540 RNA processing (429; 1.4 e-65a)
Cellular macromolecule catabolic process (517; 4.0e-56)
Cell cycle (536; 2.0e-51)

Invariable transcribed region 983 668 RNA processing (78;3.3e-21a)
Translation (54;6.8e-17)

Invariable enhancers 271 238 Cell death (25; 1.8e-3a)
Regulation of apoptosis (24;1.4e-2)

Invariable repressed region 216 58 Neuron differentiation (14; 5.5e-8a)
Variable region 16 876 1319 Cell adhesion (86;3.1e-5a)

Cell–cell signalling (73; 1.8e-4)

DAVID (33) was used to perform GO analysis. We assigned enhancers to their closest gene, and multiple enhancers can be assigned to
a single gene. Inside the parenthesis are the number of genes associated with each term and the Benjamini–Hochberg adjusted P-value.
aThe most significant biological process.

Figure 3. The epigenetic distance between cell types calculated based
on the enhancer segmentation using the Pvclust R package (41).
Clusters with unbiased P> 0.95 are indicated by the rectangles. See
Supplementary Figure S8 for other clusters.
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Third, ChroModule has a small number (five) of func-
tional categories, which does not require the non-trivial
process of determining the number of HMM states
in the unsupervised learning approach. In addition,
the output annotation of ChroModule is easy to inter-
pret without relying on other data or knowledge to

annotate the HMM states as in unsupervised learning
methods (36).

Unsupervised learning methods have been applied
to annotating epingenomes (23,36,49) and searching for
combinatorial patterns of epigenetic modifications (50).
We conducted a bona fide assessment of the performance
of ChroModule, especially on the predicted promoters
and enhancers, using p300- and TF-binding peaks.
When compared with a state-of-art method
ChromHMM, ChroModule consistently showed superior
performance in identifying enhancers in different cell
types. Unsupervised learning methods can uncover novel
features of epigenetic modifications, whereas supervised
learning methods can take advantages of the existing
knowledge to extract information of interest more accur-
ately. We thus believe ChroModule provides a powerful
tool that is complementary to the unsupervised methods,
such as ChromHMM and Segway (23,49) in annotating
epigenetic states of the cell.

Given the fixed number of functional categories, the
epigenetic annotations made by ChroModule can be
compared directly across cell types. Taking advantage of
such a comparative annotation, we defined the EVS to
quantitatively measure the variability of epigenetic state.
The functional analyses based on the EVS showed that
EVS is a useful metric to define cell-type–specific

Table 3. Cell-type–specific enhancers and the functions of the closest genes

Type Number of
cell-type–specific
enhancers

Number of
assigned genes

GO terms

Common enhancers 522 435 Cell death (43;2.2E-5a)
Apoptosis (38;1.2E-5)

H1 specific 21 353 8274 Human embryonic stem cell
Neuron differentiation (276;1.7E-23) (a)
Cell morphogenesis involved in differentiation (169;7.0E-20)

GM12878 specific 19 430 7928 Lymphoblastoid
Regulation of lymphocyte activation (107;9.5E-14) (a)
Regulation of leucocyte activation (116;1.2E-13)
Regulation of T cell activation (85;3.5E-11)

Hmec specific 10 224 5159 Human mammary epithelial cell
Cell motion (173;3.9E-6) (a)
Cell adhesion (236;3.9E-6)

Hsmm specific 10 934 5684 Normal human skeletal muscle myoblasts
Skeletal system development (144;8.0E-11a)

Huvec specific 11 383 5492 Human umbilical vein endothelial cell
Enzyme-linked receptor protein signalling pathway (145;2.8E-8) (a)
Blood vessel development (100;9.8E-5)

K562 specific 15 827 7287 Leukaemia
Positive regulation of leucocyte proliferation (41;9.4E-5) (a)
Positive regulation of lymphocyte proliferation (40;9.9E-5)

Nhek specific 8356 4959 Normal human epidermal keratinocytes
Cell morphogenesis involved in differentiation (104;1.1E-7a)
Neuron projection morphogenesis (94; 5.5E-8)

Nhlf specific 16 691 6377 Normal human lung fibroblasts
Cell motion (219; 8.9E-11) (a)
Lung development (53;1.5E-4)

Because multiple enhancers can be assigned to the same gene, the number of assigned genes is often smaller than that of enhancers. We used DAVID
(33) for GO analysis. Inside the parenthesis are the numbers of genes in each term and the Benjamini–Hochberg adjusted P-value. We selected three
biological processes from the significant categories.
aThe most significantly enriched biological processes.

Figure 4. Enriched motifs found by Homer (29).
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regulation. Especially, enhancers showed relatively higher
EVSs than the other functions regions and enhancers
dominate the cell-type specificity. Furthermore, cell-
type–specific enhancers are also enriched with motifs of
TFs that play important roles in the corresponding cell.

Interestingly, we found some promoters and enhancers
are dormant in one-cell type but become active in other
cell types, as they do not overlap with DHS peaks in the
same cell type but with DHS peaks in other cell types. TF
binding or epigenetic marks priming for future gene acti-
vation in differentiation has been observed in embryonic
stem (ES) cells (51,52). Our observation suggests epigen-
etic priming may exist more profoundly even in
differentiated cells. This hypothesis is waiting for further
experimental test.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–6, Supplementary Figures 1–8,
Supplementary Methods and Supplementary Reference
[53].
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