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The recent introductions of low-cost, long-read, and read-cloud sequencing technologies coupled with intense efforts to

develop efficient algorithms have made affordable, high-quality de novo sequence assembly a realistic proposition. The re-

sult is an explosion of new, ultracontiguous genome assemblies. To compare these genomes, we need robust methods for

genome annotation. We describe the fully open source Comparative Annotation Toolkit (CAT), which provides a flexible

way to simultaneously annotate entire clades and identify orthology relationships. We show that CAT can be used to im-

prove annotations on the rat genome, annotate the great apes, annotate a diverse set of mammals, and annotate personal,

diploid human genomes. We demonstrate the resulting discovery of novel genes, isoforms, and structural variants—even in

genomes as well studied as rat and the great apes—and how these annotations improve cross-species RNA expression

experiments.

[Supplemental material is available for this article.]

Short-read sequencing prices continue to drop and new technolo-

gies are being combined to produce assemblies of quality compara-

ble to those previously created through intensive manual curation

(Chaisson et al. 2015; Gordon et al. 2016; Putnam et al. 2016;

Weisenfeld et al. 2017; Jain et al. 2018; Kronenberg et al. 2018).

These advances have allowed researchers to perform clade geno-

mics, producing assemblies for multiple members of a species or

clade (Jarvis et al. 2014; Lilue et al. 2018; Thybert et al. 2018),

and are required for the ambitious goals of projects such as

Genome10K (Genome10KCommunityof Scientists 2009), which

aim to produce thousands of assemblies of diverse organisms. In

addition, efforts are growing to produce de novo assemblies of in-

dividual humans to evaluate the human health implications of

structural variation and variation within regions not currently ac-

cessible with reference-assisted approaches (Steinberg et al. 2014;

Pendleton et al. 2015; Schneider et al. 2017).

These advances in genome assembly require subsequent

advances in genome comparison. Central to this comparison is an-

notation. The challenge of finding functional elements in genome

assemblies has been considered for at least the past 20 years

(Haussler et al. 1996). This problem is traditionally approached

by ab initio prediction (using statistical models of sequence com-

position) (Stanke et al. 2004) and sequence alignment of known

mRNAs or proteins (Aken et al. 2016). The former has limited accu-

racy, whereas the latter is limited by the existence of useful se-

quence information. Annotation pipelines such as MAKER

(Cantarel et al. 2008), RefSeq (Pruitt et al. 2006), and AUGUSTUS

(Stanke et al. 2006) make use of both approaches (for a review of

genome annotation methods, see Hoff and Stanke 2015).

A huge amount of effort has gone into the annotation of

model organisms, in particular human and mouse. For the past

five years, the GENCODE Consortium (Harrow et al. 2012) has

used a wide range of sequencing and phylogenetic information

to manually build and curate comprehensive annotation sets,

with more than 43,281 and 60,297 open-reading frames in mouse

and human, respectively. The GENCODE databases give a glimpse

into the diversity of alternative isoforms and noncoding tran-

scripts present in vertebrate genomes. Similarly, efforts in other

model organisms, such as zebrafish (Westerfield et al. 1998),C. ele-

gans (Stein et al. 2001), A. thaliana (Swarbreck et al. 2008), and

many others, have produced high-quality annotation sets for their

respective assemblies.

As we enter a third era of genome assembly, consideration

should be given to scaling annotation. Here, we present a method

and toolkit to make use of multiple genome alignments produced

by Progressive Cactus (Paten et al. 2011) and existing high-

quality annotation sets to simultaneously project well-curated
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annotations onto lesser studied ge-

nomes. In contrast to most earlier align-

ment methods (Blanchette et al. 2004;

Miller et al. 2007; Earl et al. 2014),

Progressive Cactus alignments are not

reference based, include duplications,

and are thus suitable for the annotation

of many-to-many orthology relation-

ships. We show how the output of this

projected annotation set can be cleaned

up and filtered through special applica-

tion of AUGUSTUS (Stanke et al. 2008)

and how novel information can be

introduced by combining the projected

annotation set with predictions pro-

duced by Comparative Augustus (König

et al. 2016). These predictions can be fur-

ther supplemented and validated by in-

corporating long-range RNA-sequencing

(RNA-seq) data, such as those generated

by the Iso-Seq protocol (Gordon et al.

2015). We provide a fully featured

annotation pipeline, the Comparative

Annotation Toolkit (CAT), that can per-

form this annotation process repro-

ducibly on any combination of a local

computer, a compute cluster, or on the cloud. We show that this

pipeline can be applied to a wide range of genetic distances,

from distant members of the same clade to individualized assem-

blies of the same species.

Results

Comparative Annotation Toolkit

CAT provides a software toolkit designed to perform end-to-end

annotation; Figure 1 gives an overview. The only required inputs

are a hierarchical alignment format (HAL) (Hickey et al. 2013)mul-

tiple genome alignment as produced by Progressive Cactus and a

GFF3 format annotation file for the previously annotated ge-

nome(s). CAT can take as optional input a set of aligned RNA-seq

or Iso-Seq BAM format files, as well as protein FASTA files, which

are used to construct hints for AUGUSTUS.

TransMap (Zhu et al. 2007; Stanke et al. 2008) is used to pro-

ject existing annotations between genomes using the Progressive

Cactus alignment. TransMap projections are filtered based on a

user-tunable flag forminimumcoverage, and then the single high-

est scoring alignment is chosen. If this results in transcripts for a

given gene mapping to multiple loci, these are resolved to one

locus based on the highest average score of a locus, rescuing lower

scoring alignments.

Based on input parameters, CATwill run AUGUSTUS in up to

four distinct parameterizations, two of which rely on transMap

projections (AugustusTMR) and two that perform ab initio predic-

tions (AugustusCGP and AugustusPB) using extrinsic information

to guide prediction. AugustusCGPperforms simultaneous compar-

ative prediction (König et al. 2016) on all aligned genomes, where-

as AugustusPB uses long-read RNA-seq to discover novel isoforms.

The output of these modes of AUGUSTUS are evaluated alongside

the original transMap projections using a combination of classifi-

ers as well as the output from homGeneMapping (Stanke et al.

2004), which uses the Cactus alignments to project features such

as annotations and RNA-seq support between the input genomes.

AugustusCGP and AugustusPB transcript predictions are assigned

to transMap genes based on genomic and exonic overlap. If they

overlap projections that were filtered out in the paralog resolution

process, then they are flagged as putatively paralogous; if they do

not overlap any transMap projections, they are flagged as putative-

ly novel. A consensus-finding algorithm combines these gene sets.

The consensus-finding algorithm combines all sources of

transcript evidence into an annotation set. On a per-gene basis,

it evaluates the transMap transcripts for passing user-tunable flags

for RNA-seq and annotation support. It then considers the inclu-

sion of ab initio transcripts based on their assignment to this locus

and their contribution of novel splice junctions supported by

RNA-seq or Iso-Seq. Finally, it evaluates ab initio transcripts not as-

signed to a gene as novel loci if they are supported by RNA-seq or

Iso-Seq as defined by user-tunable flags. For a more detailed de-

scription of CAT, see Supplemental Methods.

Annotation of great apes

The previous generation of great ape assemblies (panTro4,

ponAbe2, and gorGor4), as well as the new SMRTPacific Bioscienc-

es (PacBio) great ape assemblies (Gordon et al. 2016; Kronenberg et

al. 2018),were annotatedbyCATbyusingGRCh38andGENCODE

V27 as the reference. On average, CAT identified 141,477 more

transcripts and 25,090 more genes in the new SMRT assemblies

of the great apes compared to the Ensembl V91 annotation of the

previous generation of great ape assemblies. Relative to the existing

human annotation, the CAT annotations represent an average of

95.0% of GENCODE gene models and 94.3% of GENCODE iso-

forms in the SMRT great ape assemblies. This increase in isoform

representation ismostly due to the large number of isoforms anno-

tated byGENCODEand reproduced in these genomes,whereas the

increase in gene content is due to the mapping over of noncoding

genes poorly represented in the Ensembl annotation. Comparing

the CAT annotations of SMRT great apes and older assemblies, we

Figure 1. CAT pipeline schematic. The CAT pipeline takes as input a HAL alignment file, an existing an-
notation set, and aligned RNA-seq reads. CAT uses the Cactus alignment to project annotations to other
genomes using transMap (Stanke et al. 2008). These transcript projections are then filtered and paralog
resolved. Optionally, AUGUSTUS can be run in as many as four parameterizations. All transcripts are clas-
sified for extrinsic support and structure, and a “chooser” algorithm picks the best representative for each
input transcript, incorporating ab initio transcripts when they provide novel supported information. The
final consensusgene set, aswell as associated feature tracks, areused to create an assemblyhub ready tobe
loadedby theUCSCGenomeBrowser (formoredetail, seeSupplemental Fig. S1; SupplementalMethods).
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see an average increase of 610 genes (1.9%) and 3743 isoforms

(1.0%) (Supplemental Fig. S2) in the SMRT assemblies; given this

relatively small increase, most of the observed increase in genes

and isoforms in the CAT annotations relative to the Ensembl

annotations are therefore a result of the CAT annotation process

rather than the updated assemblies.

In contrast to the overall increases in genes and isoforms, CAT

identifies on average 3553 fewer protein-coding genes than

Ensembl. However, this brings the total number of coding genes

more closely in line with the GENCODE annotation of human,

as Ensembl has an average of 2081 more protein-coding genes in

great apes than GENCODE has for human (Supplemental Fig. S2).

To evaluate these annotations in a non-species-biased fash-

ion, consensus isoform sequences created from Iso-Seq reads for

each species were compared to their respective species annota-

tions. As a baseline comparison, equivalent humandatawere com-

pared to the high-quality humanGENCODE V27 annotation. The

CAT annotation of both the SMRT and older great ape assemblies

(which used the raw Iso-Seq reads during the annotation process)

and the Ensembl annotation of the older assemblies were com-

pared. We calculated the rate of isoform concordance, that is the

fraction of consensus Iso-Seq sequences that match either exactly

or fuzzily an annotated isoform (Fig. 2A; Methods). Fuzzy match-

ing allows for the intron boundaries to shift slightly in a isoform.

A

B

D

C

Figure 2. Primate annotation. (A) Validating CAT annotations using Iso-Seq data. As a baseline comparison, Iso-Seq data from human iPSCs were com-
pared to the GENCODE V27 annotation. Iso-Seq data from chimpanzee, gorilla, and orangutan iPSC lines were compared to respective species-specific
annotations. The Iso-Seq data were clustered with isoform-level clustering (ICE) and collapsed using ToFU (Gordon et al. 2015). CAT annotation of
PacBio great apes showed similar isoform concordance to human and improvement over the older assemblies. (B) Kallisto (Bray et al. 2016) was used
to quantify liver Illumina RNA-seq from each species on both the gene and transcript level on the existing and new great ape assemblies. Solid bars are
transcripts or genes with transcripts per million (TPM) >0.1, whereas shaded hatched bars are the remainder of the annotation sets. CAT annotation of
great apes shows nearly the same number of expressed genes and isoforms as the GENCODE reference on human with the exception of orangutan.
(C) The number of novel isoforms and paralogous genes with Iso-Seq support discovered by analysis of AugustusPB and AugustusCGP predictions for
each species. (D) Kallisto protein-coding gene-level expression for chimpanzee iPSC RNA-seq is compared to human across all of the chimpanzee anno-
tation and assembly combinations as well as when mapped directly to human. In all cases, the x-axis is the TPM of human iPSC data mapped to human.
The highest correlation (Pearson r = 0.96) is seen when comparing Clint annotated with CAT to GRCh38 annotated with GENCODE V27.
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For the SMRT chimpanzee (74.0%/82.1% exact/fuzzy matching)

and orangutan (71.4%/80.4%) genome assemblies the isoform

concordance rates were comparable to the rate for human

(74.6%/82.1%). The gorilla GSMRT3.2 assembly showed lower

concordance (67.6%/76.9%), likely due to the higher indel error

rate in that assembly (Supplemental Fig. S3). In contrast, the iso-

form concordance rate for the older assemblies was lower (on aver-

age 60.0%/69.6%), mostly reflecting exons in gaps and mis-joins,

and was lower still for the existing Ensembl annotations (on aver-

age 47.9%/57.6%).

To assess the utility of CAT annotations for short-read ana-

lysis of RNA expression, species-specific induced pluripontent

stem cell (iPSC) Illumina RNA-seq data were quantified (Fig. 2B).

Comparing the annotations of the older assemblies, CAT identi-

fied an average of 9518 more genes and 54,107 more transcripts

with measurable expression compared to Ensembl.

We might expect the per-gene

abundance estimates of the majority of

genes in matched cell types to agree

between species, particularly for closely

related species. It is reasonable to there-

fore prefer a priori an annotation of the

great apes that produces expression esti-

mates that agree with expression esti-

mates from the matched human data

using the GENCODE annotation. Doing

these comparisons, we find better corre-

lations on average using the CAT annota-

tion of the older assemblies (average

Pearson r = 0.63) (Fig. 2D; Supplemental

Fig. S4) than the Ensembl annotations

of the older assemblies (average Pearson

r = 0.44). However, we find by far the

highest correlation when CAT annotates

the SMRT primate assemblies (average

Pearson r = 0.90). This reflects the in-

creased representation in the updated

assemblies of transcript sequence, espe-

cially 3′ UTRs that are important for

quantifying poly(A) primed RNA-seq

(Kronenberg et al. 2018). Notably, we

find that the correlations between the

CAT annotations of the SMRT assem-

blies and the matched human data are

higher than when mapping the spe-

cies-specific data back to the human

GENCODE annotations and comparing

to the human data (Fig. 2D; Supplemen-

tal Fig. S4), demonstrating the benefit

of having species-specific annotations

within closely related species that have

clear cross-species orthology relation-

ships. Analysis at the isoform level

showed the same patterns (Supplemen-

tal Fig. S5), albeit with slightly weaker

correlations.

Predictions performed by Augu-

stusCGP and AugustusPB were incorpo-

rated into the gene sets based on the

presence of splice junctions supported

by RNA-seq or Iso-Seq and not present

in the transMap/AugustusTMR-derived

annotations (Fig. 2C). An average of 1677 novel isoforms and 64

novel loci were found across the assemblies with at least one Iso-

Seq read supporting the prediction.

CAT provides newmetrics for diagnosing assembly quality. In

the process of annotating the great ape genomes, we noticed that

assemblies that had undergone Quiver and Pilon (Walker et al.

2014) correction still exhibited a systematic bias toward coding de-

letions. These were identified to be related to heterozygosity in the

input data set, and a variant calling–based correction method

(Kronenberg et al. 2018) was developed to resolve these issues, dra-

matically lowering the coding indel rate and reducing systematic

bias (Supplemental Fig. S3). CAT can also measure gene assembly

contiguity by reporting the number of genes whose transcripts

end up split across multiple contigs, or on disjoint intervals in

the same contig. Comparison of split gene metrics between the

old and new primate assemblies shows 504 fewer split genes in

A

B C

Figure 3. Pseudodiploid human annotation metrics. (A) The number and fraction of genes compara-
tively annotated from GENCODE V27 in each assembly. GENCODE biotypes are simplified into protein
coding, lncRNA, ncRNA, pseudogene, and other. Other includes processed transcripts, nonsense-medi-
ated decay, and immune-related genes. (B) Frame-shifting insertions, deletions, and multiple of three
indels that do not shift frame are reported for each assembly. Consistent with the great ape genomes,
there is a systematic overrepresentation of coding deletions in Falcon assemblies, despite these assem-
blies coming from haploid cell lines. 10x Genomics Supernova assemblies also exhibit similar properties.
(C ) Split gene analysis reports how often paralog-resolved transcript projections end up on different con-
tigs, which can measure assembly gene-level contiguity. PacBio assemblies, especially CHM1, are the
most contiguous.
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chimpanzee, 560 fewer in gorilla, and 1858 fewer in orangutan

(Supplemental Fig. S6).

Annotation of personal human diploid assemblies

High-quality de novo assembly of a human genome is increasingly

feasible; both Pacific Biosciences (Chin et al. 2016; Huddleston

et al. 2017; Korlach et al. 2017) (Falcon) and 10x Genomics

(Weisenfeld et al. 2017) (Supernova) provide tools to construct

phased, diploid assemblies. Annotating diploid assemblies pro-

vides a window into haplotype-specific structural variation that

may affect gene expression. To evaluate the ability of CAT to pro-

vide this analysis, Progressive Cactus alignments were generated

between hg38 and the two haploid cell line assemblies, CHM1

(GCA 001297185.1) and CHM13 (GCA 000983455.2), as well as

the 10x Genomics diploid assemblies of four individuals

(NA12878, NA24385, HG00512, and NA19240).

An average of 98.5% of genes present in GENCODE V27 were

identified in CHM1/CHM13, and an average of 97.3% of genes

were identified in the 10x Genomics Supernova assemblies (Fig.

3A). After filtering, an average of 552 genes in the PacBio assem-

blies and 461 genes in the 10x assemblies had frame-shifting indels

(Fig. 3B). Compared to ExAC, which found between 75 and 125

putative truncating events per individual (Karczewski et al.

2017), this result suggests indel errors in the assemblies are produc-

ing false positives. All assemblies exhibit

systematic overrepresentation of dele-

tions, including the PacBio assemblies

despite coming from haploid cell lines

(Fig. 3B). Split gene analysis found the

CHM1assembly to be themost gene con-

tiguous, with only 39 genes split across

multiple contigs, and the PacBio assem-

blies overall more contiguous (Fig. 3C).

Gene contiguity is measured by looking

at genes with multiple alignments post-

paralog resolution that start and end

nearby in transcript coordinates.

Manual analysis of genes with dif-

ferent transMap coverage in CHM13 rela-

tive to CHM1 led to the discovery of the

example region in Figure 4A. This dele-

tion removes most of the exons of

TRIB3, a pseudokinase associated with

type 2 diabetes (Supplemental Fig. S7;

Shi et al. 2009). Similar analysis in the

diploid assembly of NA12878 led to the

discovery of a tandem duplication in-

volving an exon of TAOK3 in one haplo-

type (Fig. 4B).

Reannotating the rat genome

We tested CAT’s ability to reannotate the

rat genome using information from the

mouse genome. These genomes differ

by approximately 0.18 substitutions/

site, much more, for example, than the

0.04 substitutions/site separating the hu-

man and orangutan genomes (Karolchik

et al. 2003).

CAT was run on a Cactus alignment

between mouse (mm10) and rat (rn6) using rabbit (oryCun2),

Egyptian jerboa (jacJac1), and human (hg38) as outgroups. To pro-

vide hints to AUGUSTUS, RNA-seq data were obtained from the

NCBI SequenceReadArchive (SRA) (Supplemental Table S2; Cortez

et al. 2014; Fushan et al. 2015; Liu et al. 2016). For comparison we

used existing Ensembl and RefSeq rat annotations and ran the

MAKER2 pipeline (Holt and Yandell 2011) to generate an annota-

tion set. MAKER2 was provided both a Trinity (Haas et al. 2013)

de novo assembly of the input RNA-seq data provided to CAT

(MAKER2 does not process raw RNA-seq) as well as the mouse pro-

tein sequences from GENCODE VM11, together providing a com-

parable input set to what CAT had.

CAT comparatively annotated 78.1% of genes and 91.9%

of protein-coding genes present in GENCODE VM11 on rn6

(Supplemental Fig. S8), representing an increase of 14,675 genes

and 74,308 transcripts over Ensembl V90, 5104 genes and

32,157 transcripts over RefSeq, and 14,541 genes and 81,022 tran-

scripts overMAKER2. A total of 13,651 loci were identified with no

overlap to any other annotation set (Supplemental Fig. S9).

We compared CDS exon andCDS intron predictions between

annotation sets (Table 1A; Supplemental Fig. S10). We measured

precision and recall of coding intron and exon intervals based

on comparing the CAT annotation to EnsemblV90, in which pre-

cision is the proportion of CAT exons/introns that exactly match

Ensembl, and recall is the proportion of CAT exons/introns that

A

B

Figure 4. Pseudodiploid human annotation examples. (A) UCSC Assembly Hub (Nguyen et al. 2014)
showing TRIB3 deletion in CHM1. Analysis of genes found in one genome and not the other led to the
discovery of a novel structural variant specific to CHM1, which disables the gene TRIB3. Spanning reads
were found in both PacBio and Illumina whole-genome sequencing that validate the deletion. (B) An ex-
ample insertion near an exon of TAOK3 seen in one haplotype of NA12878. It was not possible to deter-
mine if this insertion affects transcription of this gene.

Comparative Annotation Toolkit (CAT)

Genome Research 1033
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233460.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233460.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233460.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233460.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233460.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233460.117/-/DC1


exactly match Ensembl over the number of exons/introns CAT an-

notated. Ensembl, RefSeq, andCATCDS exon annotationswere all

comparably similar (between 0.648 and 0.659 Jaccard similarity);

for CDS introns, CAT and RefSeq displayed the highest Jaccard

similarity (0.841). In all comparisons, MAKER2 was the outlier

(Table 1B) with the lowest similarity to the other sets.

The input RNA-seq data set was used for isoform quantifica-

tion against the CAT, MAKER2, Ensembl, and RefSeq transcrip-

tomes (Fig. 5A). CAT identified 1881 protein-coding genes and

1011 lncRNAs with measurable expression not present in either

Ensembl or RefSeq. CAT also identified

27,712 expressed coding splice junctions

not in the union of RefSeq and Ensembl,

for a total of 21,267 novel expressed iso-

forms. Of the 13,651 loci, 5526 unique

to CAT had measurable expression.

AugustusTMR, which uses trans-

Map and RNA-seq, provides CAT with a

way to improve transcript predictions

projected between species. Comparing

the 9532 multiexon protein-coding tran-

scripts in which the AugustusTMR

prediction differed from the input trans-

Mapprojection,we see considerableover-

all improvement in resulting RNA-seq

support of predicted splice boundaries in

the AugustusTMR transcripts (Fig. 5B).

Annotation of a diverse set of mammals

Finally, to test CAT’s ability to annotate

across a substantial and diverse range of

genomes, 13 mammalian genomes were

comparatively annotated using the mouse (mm10) GENCODE

VM15 as the reference transcript set (Fig. 6A). Species-specific

RNA-seq was used for every genome (Supplemental Table S2). To

assess the completeness of these annotation sets, 4104 bench-

marking universal single-copy orthologs (BUSCO) were used

(Simão et al. 2015), which by design should be nearly uniformly

present in each of these genomes. On average, only 108 BUSCO

genes (2.63%) were not annotated by CAT in each genome

(Supplemental Table S1).

To estimate the usefulness of these annotation sets, the input

RNA-seq data sets were used to quantify expression of the annota-

tion sets (Fig. 6B). The main factor in measurable expression is the

variety of the input RNA-seq data sets, as exemplified by the ability

to measure expression of 88.9% of genes annotated in the sheep

genome.

To assess the CAT translation of annotations over large phylo-

genetic distances, as well as provide a baseline validation of CAT

performance, the annotation of human hg19 (GRCh37) produced

in the representative mammalian genome annotation was com-

pared to the current human GENCODE annotation set for that as-

sembly (GENCODE V27lift37). Of the 19,233 ICE isoforms

detected when running ToFU (Gordon et al. 2015) against hg19,

12,911 (67.2%) fuzzy matched a CAT isoform compared to

15,920 (82.8%) of the human GENCODE annotations. Precision

and recall analysis shows results similar to the rat annotation,

with better matches in introns; 91.2% of CAT introns and 75.2%

of CAT protein coding isoforms match GENCODE (Table 2).

Discussion

Gene annotation is a longstanding and critical task in genome in-

formatics thatmust nowbe scaled to handle the rapidly increasing

number of available genomes. At the time of writing, there were

570 vertebrate genomes available from NCBI, but only 100

(17.5%) and 237 (41.6%) had Ensembl and RefSeq annotations,

respectively.

We introduce CAT to help meet this need, building around

a number of key innovations. First, CAT utilizes the reference-

free, duplication-aware multiple genome alignments we have

BA

Figure 5. Validation of CAT annotation using rat. (A) Each transcript set was used to construct a Kallisto
(Bray et al. 2016) index, and then all the input RNA-seq for annotation were quantified. Solid bars are
genes or transcripts with nonzero expression (TPM>0.1) estimates, and light hatched bars are the re-
mainder of the annotation set. CAT provides an annotation set with slightly more detectable genes
than other annotation methods and far more detectable isoforms. (B) AugustusTMR provides a mecha-
nism to clean up transcript projections and shift splice sites, fixing alignment errors as well as real evolu-
tionary changes. Most of the 9532 AugustusTMR transcripts chosen in consensus finding show an
improvement in RNA-seq support, which is one of the features used in consensus finding.

Table 1. Precision and recall in CAT annotation of rat (A) and Jaccard
similarity in rat annotation sets (B)

A

Annotation
Exon

precision
Exon
recall

Intron
precision

Intron
recall

CAT 0.703 0.559 0.861 0.734
MAKER2 0.507 0.582 0.610 0.746

B

Annotation pair
Exon Jaccard
similarity

Intron Jaccard
similarity

EnsemblV90/
RefSeq

0.658 0.749

CAT/EnsemblV90 0.649 0.740
CAT/RefSeq 0.648 0.841
EnsemblV90/

MAKER2
0.514 0.364

CAT/MAKER2 0.484 0.334
MAKER2/RefSeq 0.464 0.337

(A) Precision is the number of coding exons or coding introns that
exactly match divided by the number of exons or introns in the Ensembl
annotation, whereas recall is the number that exactly match divided by
the number of exons or introns in the CAT or, respectively, MAKER2 an-
notation. (B) Jaccard similarity of CDS introns and exons between rat an-
notation sets shows high similarity between CAT and existing Ensembl
and RefSeq annotations, comparable to the similarity between Ensembl
and RefSeq themselves.
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developed. This allows CAT to annotate multiple genomes sym-

metrically and simultaneously, breaking from the traditional pat-

tern of annotating each new genome individually, as is currently

the practice for the RefSeq, Ensembl, and MAKER2 gene-building

pipelines. Not only does this solve a key scalability issue by

annotating multiple genomes simultaneously and consistently,

CAT is able to produce orthology mappings, naming each equiva-

lence class of orthologs based upon an initial reference annotation,

and add to this sets of newly discovered genes. This can provide

valuable evolutionary insights. For example, the analysis of the

rat genome shows that many of the alternative isoforms and pro-

jected transcription start sites identified by GENCODE in mouse

genes are supported by expression analysis in rat (Supplemental

Fig. S11).

A second key innovation made by CAT is its leveraging of ex-

isting reference annotations. A huge amount of effort has been

placed into the annotation of key species, such as human and

mouse, using a myriad of technologies and extensive, labor-inten-

sive manual curation. It is very unlikely

that this effort will be replicated across a

significant fraction of other genomes,

so instead we propose the “project and

augment” strategy used by CAT to anno-

tate related genomes. Here, we show that

this strategy is very clearly able to im-

prove the annotation of great ape ge-

nomes, using the human GENCODE set

as the reference, and we make the case

that we can even improve the annotation

of a genome as well studied as the rat.

To circumvent the reference bias of

existing annotations and to discover

new genes and isoforms, CAT is able to

integrate multiple forms of extrinsic

information, using multiple, novel pa-

rameterizations of the AUGUSTUS algo-

rithms. This includes use of new long-

read RNA data, in particular Iso-Seq

data, and shortly will integrate Nano-

pore-based long-read data (Byrne et al.

2017). Using this expression data not

only allowed us to confirm expression

of a substantial fraction of isoforms, but

allowed us to discover thousands of nov-

el isoforms and dozens of novel genes in

the great ape genomes.

With the advent of more affordable

de novo genome assembly, there is re-

newed interest in the generation of de

novo human genomes, and in general,

the creation of multiple de novo ge-

nomes for a species. This has the advantage of providing fully in-

dependent reconstruction and is particularly appropriate for

sequences that are highly divergent from the reference, e.g., struc-

tural variations. However, such assemblies do not negate the need

for genome comparison. Cactus can be parameterized to rapidly

create sensitive whole-genome alignments of human genomes,

and here we have demonstrated that CAT can be used to build

upon this to produce a high-quality diploid gene annotation and

ortholog mapping.

CAT works best when provided RNA-seq data, but for many

species thismaynot be possible. Fromour experience, a reasonable

amount (on the order of 50 million reads) of RNA-seq from tissues

like brain and liver is fairly informative. Using poly(A)-selected li-

braries is recommended, because it greatly reduces false positive

predictions inAugustusCGP. Iso-Seq data allowed for the discovery

of thousands of novel isoforms in the great apes butmay be too ex-

pensive for many projects. In clade genomics projects, we would

suggest generating RNA-seq for a few of the species and then

relying on the coordinate mapping that AugustusCGP and

homGeneMapping provide to evaluate support in other members

of the clade.

A key barrier to the use of bioinformatics tools is their ease

of use; we have focused on providing cloud agnostic distributions

of the CAT software so that, despite its complexity, it can be

run within a uniform computational environment by external

groups.

CAT is not without limitations. In the future it would be

good to use the genome alignments to not only project tran-

scripts, but to use the evolutionary conservation signatures to

Table 2. Precision and recall of CAT annotation of hg19 usingmouse
isoforms

Exon
precision

Exon
recall

Intron
precision

Intron
recall

Isoform
precision

Isoform
recall

0.532 0.688 0.777 0.912 0.408 0.752

Precision and recall are measured by looking at exact matches of coding
introns, exons, and isoforms. Isoforms are compared on a coding intron
chain level. Precision and recall are defined in the same way as in Table 1.

A

B

Figure 6. Thirteen-way annotation. (A) The phylogenetic guide tree for 14-mammal alignment. See
Methods for the exact Newick format tree. (B) The gene annotation sets for each of the 13 mammalian
genomes were quantified against the mixed input RNA-seq sets obtained from SRA. Genes or transcripts
with TPM>0.1 are solid colors, whereas genes or transcripts with no measurable expression are shaded.
An average of 2.8 isoforms per gene per genome had quantifiable expression, suggesting that CAT can
infer isoform information across long branch lengths.
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predict the potential likelihood of projected annotations being

coded (Lin et al. 2011). CAT also does not yet provide means

to detect new processed, unprocessed, and unitary pseudogene

predictions other than via projection of existing annotations.

CAT’s current implementation also does not attempt to put

weights on the features used for constructing a consensus

gene set. Instead, it simply scores transcripts based on the

sum of all features evaluated. In the future, deep learning meth-

ods could be added to CAT to construct feature weights and im-

prove consensus finding, better mimicking the labor-intensive

efforts of manual annotators who currently weigh such

evidence.

An earlier version of CAT was used to annotate the PacBio-

based assembly of the gorilla genome (Gordon et al. 2016) as

well as produce the current Ensembl annotations for 16 laboratory

mouse strains as part of the Mouse Genomes Project (Lilue et al.

2018) (http://www.sanger.ac.uk/science/data/mouse-genomes-

project). In addition, CAT has been proposed for the Vertebrate

Genomes Project (VGP), which aims to be a pilot project to

assemble and annotate one member of every order of vertebrate

species. CAT also will be used on the 200 Mammals Project, which

aims to add about 140 new mammalian genome assemblies

to the existing set (https://karlssonlab.org/2017/08/03/the-200-

mammals-project/). These projects will provide a new understand-

ing of gene evolution.

Methods

CAT produces as output a series of diagnostic plots, an anno-

tation set for each target genome, and a UCSC comparative

assembly hub (Nguyen et al. 2014). Both the pipeline and asso-

ciated documentation can be found at https://github.com/

ComparativeGenomicsToolkit/Comparative-Annotation-Toolkit.

CAT is constructed using the Luigi workflow manager (https://

github.com/spotify/luigi), with Toil (Vivian et al. 2017) used for

computationally intensive steps that work best when submitted

to a compute cluster.

RNA-seq

CAT annotation is improved when species-specific RNA-seq data

are provided. These data are used as hints for AugustusTMR and

AugustusCGP. In AugustusTMR, RNA-seq helps fill in missing in-

formation in the alignment and resolve evolutionary changes. In

AugustusCGP, RNA-seq additionally helps prevent false positives

inherent in ab initio gene finding. For these reasons, RNA-seq

was obtained from SRA for all species annotated in this paper.

All RNA-seq were aligned to their respective genomes with STAR

(Dobin et al. 2013), and the resulting BAM files were passed to

CAT to construct the extrinsic hints database. See Supplemental

Table S2 for accessions and tissue types of RNA-seq data used for

annotation. In addition, for the PacBio great ape annotation,

RNA-seq data were generated using iPSC lines for human, chim-

panzee, gorilla, and orangutan derived from cells from the same

individuals as the assemblies (Kronenberg et al. 2018). For all ex-

pression analyses, Kallisto (Bray et al. 2016) was used.

Annotation set similarity analysis

Jaccard similarity analysis was performed with BEDTools (Quinlan

and Hall 2010). The rat locus overlap analysis was performed with

the Kent tool clusterGenes, which requires exonic overlap on the

same strand.

Iso-Seq

Iso-Seq full-length nonchimeric reads (FLNC) were also generat-

ed from the great ape iPSC lines and aligned with GMAP (Wu

and Watanabe 2005). To perform isoform-level validation in

the primates, the Iso-Seq data used as input to CAT were also

clustered with isoform-level clustering (ICE) and then collapsed

into isoforms using ToFU (Gordon et al. 2015). Ensembl provid-

ed a pre-release of their new V91 annotations for panTro4 and

gorGor4, but did not yet run their updated pipeline on

ponAbe2.

ICE validation

The output transcripts from ICEwere compared to various annota-

tion sets in both an exact and fuzzymatching scheme. In the exact

scheme, the genomic order and positions of all of the introns (an

intron chain) of a transcript are compared to any ICE isoforms

which overlap it. In the fuzzy matching scheme, each annotated

intron chain is allowed to move up to 8 bases in either direction

and still be called a match.

BUSCO

The mammalian BUSCO (Simão et al. 2015) analysis was per-

formed using the mammalia odb9 set of 4104 genes. BUSCO was

run against the complete protein-coding sequence repertoire pro-

duced by CAT in that species in the “protein” mode.

Progressive Cactus

All Cactus alignments, except the 14-way mammal alignment,

were generated using Progressive Cactus (https://github.com/

glennhickey/ProgressiveCactus) commit 91d6344. For the

mouse-rat alignment, the guide tree was

(((Lesser_Egyptian_jerboa:0.1,(Mouse:0.084509,

Rat:0.091589)mouse_rat:0.107923)rodent

:0.148738,Rabbit:0.21569)glires:0.015313,

Human:0.143908).

For the primate alignments, the guide tree was

(((((((Susie_Gorilla:0.008964,(Human:0.00655,

Clint_Chimp:0.00684)human_chimp:0.00122)

gorilla_chimp_human:0.009693, Susie_Orangutan:

0.01894)great_ape:0.003471,Gibbon:0.02227)

great_ape_gibbon:0.01204,Rhesus:0.004991)old_

world_monkey:0.02183,Squirrel_monkey:0.01035)

monkey:0.05209,Bushbaby:0.1194)primate_anc:

0.013494,Mouse:0.084509).

An identical tree (with different assembly names)was used for

the alignment of current reference great apes.

For the diploid human alignments, the two haploid cell lines

(PacBio) or all human haplotypes (10x) were placed under the

same node with a very short branch length, with chimpanzee as

outgroup. The guide trees were

((hg38:0.001,chm1:0.001,chm13:0.001)human:0.01,

chimp:0.01)

and

((hg38:0.001,HG00512-H1:.001,HG00512-H2:.001,

NA12878-H1:.001,NA12878-H2:.001,NA19240-

H1:.001, NA19240-H2:.001,NA24385-H1:.001,

NA24385-H2:.001)human:0.01,chimp:0.01),

Fiddes et al.

1036 Genome Research
www.genome.org

http://www.sanger.ac.uk/science/data/mouse-genomes-project
http://www.sanger.ac.uk/science/data/mouse-genomes-project
http://www.sanger.ac.uk/science/data/mouse-genomes-project
http://www.sanger.ac.uk/science/data/mouse-genomes-project
http://www.sanger.ac.uk/science/data/mouse-genomes-project
http://www.sanger.ac.uk/science/data/mouse-genomes-project
http://www.sanger.ac.uk/science/data/mouse-genomes-project
https://karlssonlab.org/2017/08/03/the-200-mammals-project/
https://karlssonlab.org/2017/08/03/the-200-mammals-project/
https://karlssonlab.org/2017/08/03/the-200-mammals-project/
https://karlssonlab.org/2017/08/03/the-200-mammals-project/
https://karlssonlab.org/2017/08/03/the-200-mammals-project/
https://github.com/ComparativeGenomicsToolkit/Comparative-Annotation-Toolkit
https://github.com/ComparativeGenomicsToolkit/Comparative-Annotation-Toolkit
https://github.com/ComparativeGenomicsToolkit/Comparative-Annotation-Toolkit
https://github.com/ComparativeGenomicsToolkit/Comparative-Annotation-Toolkit
https://github.com/ComparativeGenomicsToolkit/Comparative-Annotation-Toolkit
https://github.com/spotify/luigi
https://github.com/spotify/luigi
https://github.com/spotify/luigi
https://github.com/spotify/luigi
https://github.com/spotify/luigi
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233460.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233460.117/-/DC1
https://github.com/glennhickey/ProgressiveCactus
https://github.com/glennhickey/ProgressiveCactus
https://github.com/glennhickey/ProgressiveCactus
https://github.com/glennhickey/ProgressiveCactus
https://github.com/glennhickey/ProgressiveCactus


representing a star phylogeny of the three human assemblies. For

the 14-way mammal alignment, the Progressive Cactus commit

used was e3c6055 and the guide tree was

((((oryCun2:0.21,((Pahari_EiJ:0.03,mm10:0.025107)

1:0.02,rn6:0.013)1:0.252)1:0.01,((((hg19:

0.00642915,panTro4:0.00638042)1:0.00217637,

gorGor3:0.00882142)1:0.00935116,ponAbe2:

0.0185056)1:0.00440069,rheMac3:0.007)1:0.1)

1:0.02,((oviAri3:0.019,bosTau8:0.0506) 1:0.17,

(canFam3:0.11,felCat8:0.08)1:0.06)1:0.02)

1:0.02,loxAfr3:0.15).

Slightly out-of-date versions of some assemblies (hg19 and

rheMac3) were used because a collaborator had data on those as-

semblies that they wished to use the alignment to analyze. The ro-

dent and primate subtrees were first aligned separately (the rodent

subtree originally included additional mouse strains) (Lilue et al.

2018; Thybert et al. 2018). The two subtrees were then “stitched”

together into a single alignment by aligning together their roots

along with several Laurasiatheria genomes. This was done to save

alignment time by reusing existing alignments.

CAT

CAT was run on the UCSC Genome Browser compute cluster for

all annotation efforts in this publication. CAT commit f89a814

was used. For a detailed description of how CAT works, see both

the Supplemental Text as well as the README.md on GitHub

(https://github.com/ComparativeGenomicsToolkit/Comparative-

Annotation-Toolkit).

Pipeline runtime

CAT is relatively efficient, taking on the order of thousands of core

hours to run. The largest considerations for runtime are running

the various parameterizations of AUGUSTUS as well as generating

the required Cactus alignment. AugustusCGP may run signifi-

cantly faster on alignments with many genomes by reducing the

chunk size from the default, but at the cost of lower quality predic-

tions. AugustusTMR runtime scales linearly with the number of

protein-coding transcripts in the input annotation set, but scales

nonlinearly with the number of extrinsic hints provided, particu-

larly if the hints are contradictory.

All of the analyses in this paper were run on theUCSC cluster,

which uses the cluster management tool Parasol and has 1024

cores with 8 GB of RAM per core. CAT was optimized for this

and should not need more memory per core in any case except

the AugustusCGP step when the number of aligned genomes ex-

ceeds approximately 10. This can be adjusted by reducing the

alignment chunk size that AugustusCGP is given to work with.

For example, for the 14-way mammalian analysis, the flags

--maf-chunksize 1000000 --maf-overlap 200000 were set,

which kept memory usage under 8 GB.

Cactus alignments take on the order of 120 CPU days (2880

core h) per internal node on the guide tree, assuming a binary

tree. This number can fluctuate by a factor of 2–4 depending on

how similar the two genomes being aligned at that node are.

Cactus alignments are a mix of high CPU low memory steps

with a few high memory steps, with some jobs requiring ∼240

GB of RAM.

Running CAT on the PacBio primate genomes took a total of

7030 core hours, with 3437 of those dedicated to running

AugustusTMR, 1191 dedicated to running AugustusPB, and 2190

dedicated to running AugustusCGP. Running CAT on the 14-

way mammalian alignment took a total of 24,122 core h, with

14,045 of those dedicated to running AugustusTMR and 8225 ded-

icated to running AugustusCGP.

Software availability

CAT is available on GitHub (https://github.com/Comparative

GenomicsToolkit/Comparative-Annotation-Toolkit). The exact

commit used for these analyses is also in Supplemental Materials.
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