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Abstract. A number of nonequivalent perspectives on granular com-
puting are known in the literature, and many are in states of contin-
uous development. Further related concepts of granules and granula-
tions may be incompatible in many senses. This expository paper is
intended to explain basic aspects of these from a critical perspective, their
range of applications and provide directions relative to general rough sets
and related formal approaches to vagueness. General granular principles
related to knowledge are also mentioned.
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1 Introduction

In its simplest form, granules or information granules are building blocks of
a reasoning or computational procedure in soft or hard contexts. Information
granulation can be viewed as a human way of achieving complexity reduc-
tion (rather than data compression) that often plays a key role in divide-and-
conquer strategies used in human problem-solving. Granulations are collec-
tions of granules that have been integrated by some processes that involve
indistinguishability, similarity, proximity or functionality. Associated soft con-
texts typically involve vagueness, uncertainty, indecision or fuzziness and some
level of indeterminacy. This has lead to many distinct mutually not-necessarily
compatible approaches. For example, not all frameworks of granular comput-
ing used in general rough sets are compatible with those used in fuzzy sets.

A natural question is do granulations come first or do granules come first? If
the goal is to perceive and classify objects irrespective of ontology or associ-
ated process, then the question is not particularly relevant. Some approaches
to granularity as in the classical granular computing approach (CGCP) prefer to
start from granulations and proceed to consider granules at multiple levels
of precision. In the axiomatic approach (AGCP) [1], especially when ontol-
ogy is important, it is more common to proceed from granules to granulations.
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But the converse approach is also relevant in AGCP. In adaptive systems, when
granules are permitted to change relative to events or time or temporal instants,
it makes sense to keep track of the changes through additional operators. This
does suggest that a bottom up approach would be optimal in the scenario.

The number of distinct approaches to ideas of granularity depends on the
perspective used. The level or qualitative description of granules involved may
also be a key determiner of the perspective used. The major approaches are
CGCP, AGCP, primitive granular computing paradigm and adaptive variants
of the first two. Hierarchies within each of these types can also be formalized
or specified.

1.1 Background

The concept of information can also be defined in many not necessarily equiv-
alent ways. In the present author’s view anything that alters or has the potential
to alter a given context in a significant positive way is information. In the contexts
of general rough sets, the concept of information must have the potential to
alter supervenience relations in the contexts (A set of properties Q supervene
on another set of properties T if there exist no two objects that differ on Q with-
out differing on T ), be formalizable and be able to generate concepts of roughly
similar collections of properties or objects. One of the popular abstractions is
that of an information table.

Formally an information table I, is a tuple of the form

I = 〈O, A, {Va : a ∈ A}, {fa : a ∈ A}〉

with O, A and Va being respectively sets of Objects, Attributes and Values respec-
tively. fa : O �−→ ℘(Va) being the valuation map associated with attribute
a ∈ A. Values may also be denoted by the binary function ν : A × O �−→ ℘(V)
defined by for any a ∈ A and x ∈ O, ν(a, x) = fa(x).

Relations may be derived from information tables by way of conditions of
the following form: For x, w ∈ O and B ⊆ A, (x, w) ∈ σ if and only if (Qa,b ∈
B)Φ(ν(a, x), ν(b, w), ) for some quantifier Q and formula Φ. The relational
system S = 〈S,σ〉 (with S = O) is said to be a general approximation space (S
and S will be used interchangeably). In particular if σ is an equivalence relation
then S is referred to as an approximation space. It should be noted that objects
are assumed to be defined (to the extent possible) by attributes and associated
valuations.

In classical rough sets, on the power set ℘(S), lower and upper approxima-
tions of a subset A ∈ ℘(S) operators, apart from the usual Boolean operations,
are defined as per: Al =

⋃
[x]⊆A[x], Au =

⋃
[x]∩A�=∅

[x], with [x] being the equiv-
alence class generated by x ∈ S. If A,B ∈ ℘(S), then A is said to be roughly
included in B (A � B) if and only if Al ⊆ Bl and Au ⊆ Bu. A is roughly equal to
B (A ≈ B) if and only if A � B and B � A. The positive, negative and boundary
region determined by a subset A are respectively Al, (Au)c and Au\Al (c being
the set complement).
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In a general approximation space S = 〈S,R〉, any subset A ⊆ S will be said
to be a R-block if and only if it is maximal with respect to the property A2 ⊆ R.
The set of all R-blocks of S will be denoted by BR(S). If R is reflexive, then BR(S)
is a proper cover of S. These are examples of granules. Any map n : H �−→ ℘(H)
on a set H generates a set of granules called neighborhood granules [2] on H.
These are called neighborhood maps if x ∈ n(x) holds for all x. Specifically, the
successor neighborhood generated by a point x ∈ S is [x] = {a : Rax} (Rax in
infix form is aRx).

In any formal approach to vagueness, it is necessary to specify the environ-
ment or context of discourse, the main objects of interest, presumptions about
how objects interact with the environment, and interpretation. Often people
working in AI and ML refer to meta levels to partly specify this relative to what
is known or assumed in the literature. This relative specification may not be
always adequate (and requires elaboration) in a number of problems as indi-
cated in [1,3]. Specific classes of domains that require different formalism are
considered in [4,5].

In the context of general rough sets, various concepts of rough objects
(including roughly equivalent objects) [1,3,6] with associated meta operations
and rules correspond to semantic domains (or domains of discourse). In the
context of relation based rough sets, the power set ℘(S) (or generalizations
thereof), lower and upper approximation operators, and other usual opera-
tions, generate a semantics. The associated semantic domain in the sense of
a collection of restrictions on possible objects, predicates, constants, functions
and low level operations on those is referred to as the classical semantic domain
(meta-C) for general rough sets [3]. In contrast, the semantic domain associ-
ated with sets of rough objects is a rough semantic domain (meta-R). Many
other domains, including hybrid semantic domains, can be generated [1]. In
[7], the models refer to reasoning about the power set of the set of possible
order-compatible partitions of the set of rough objects in the context, while in
[8], the models refer to maximal sequences of mutually distinguishable objects.

The concept of contamination was introduced in [9] and explored in [1,3,8]
by the present author. It is always relative to the application context and can
be read as a realization of the meta principle models should avoid making assump-
tions or simplifications that are not actualized in the application context in the contexts
of human reasoning (or reasoning that involves causality as in human reasoning). A
model is contaminated if and only if it does not satisfy the principle. Because of
its focus on human reasoning (or reasoning that involves causality as in human
reasoning), the problem of avoiding contamination may not always be impor-
tant or may be solved in much weaker senses in specific application contexts
of rough sets. For example, while computing attribute reducts of high dimen-
sional noisy data, it may be more relevant to focus on quality of classification
(especially when few preferences among attributes can be indicated or derived).
On the other hand, while approximately designing the most tasty food for tigers
under resource constraints, the addition of sodium glutamate and pepper to red
meat (based on the experiences of non-vegetarian humans that possess far more
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sophisticated sense of taste) is not a good idea – in this scenario the approxima-
tions of tasty food are contaminated. Contamination may also be due to opera-
tions used in constructing approximations and rough objects [10].

Contamination avoidance is associated with a distinct minimalist approach
that takes the semantic domains involved into account and has the potential to
encompass the three principles of non-intrusive analysis. Some sources of con-
tamination are those arising from assumptions about distribution of attributes,
introduction of assumptions valid in one semantic domain into another by
oversight [10], numeric functions used in rough sets (and soft computing in
general) and fuzzy representation of linguistic hedges. It is essential for mod-
eling relation between attributes [1,6,11,12]. A Bayesian approach to modeling
causality between attributes is proposed in [13] – the approach tries to avoid
contamination to an extent.

For basics of partial algebras, see [14]. A partial algebra P is a tuple of the form
〈P, f1, f2, . . . , fn, (r1, . . . , rn)〉 with P being a set, fi’s being partial function
symbols of arity ri. The interpretation of fi on the set P should be denoted by f

P
i ,

but the superscript will be dropped in this paper as the application contexts are
simple enough. If predicate symbols enter into the signature, then P is termed
a partial algebraic system.

Terms are defined in the following way:

• All variable symbols are term symbols;
• If t1, . . . tri

are term symbols, then fi(t1, . . . tri
) is also a term symbol;

• Nothing else is a term symbol.

When a term symbol t is interpreted on the partial algebra, then it is formally
denoted by tP and referred to as a term. The distinction between the two will
be left to the context in this paper.

For two terms s, t, s
ω
= t shall mean, if both sides are defined then the two

terms are equal (the quantification is implicit). ω
= is the same as the existence

equality (also written as e
=) in the present paper. s ω∗

= t shall mean if either side
is defined, then the other is and the two sides are equal (the quantification is
implicit). Note that the latter equality can be defined in terms of the former as

(s
ω
= s −→ s

ω
= t)& (t

ω
= t −→ s

ω
= t)

2 Mereology

Mereology is a collective term for a number of philosophical and formal the-
oretical approaches to parts and wholes, connectedness of objects, and variants
thereof. Many of these approaches are not mutually compatible and so the dis-
cipline should be regarded as a plural one that is united by the goal to study
parts and wholes [15,16].
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Five distinct phases in the development of mereology (based on significant
methodological differences) are ancient, medieval, universal parthood related, early
twentieth century and modern mereologies. The subject of mereology is common to
most ancient cultures and philosophical debates associated concern questions
related to the universality of parthood, the whole being a sum or fusion of its
parts and concepts of emptiness. Many of these debates have had significant
impact on subsequent developments. Gradation of wholes into strong, weak and
weaker wholes, for example, can be related to debates about no component (like
wheels, poles and axle) of a chariot having the property of being a chariot. A
whole in which the parts exist relative to the whole and are mutually depen-
dent on the same is said to be strong, while a weak whole is one in which parts
are less united. The concept of emptiness or the empty is complicated in most
mereologies and is of ancient origin.

Some important principles that may be accepted in a specific theory are the
existence of mereological atoms (entities with no proper parts), atomistic compo-
sitionality (everything is ultimately composed of atoms), extensionality (no two
composite wholes can have the same proper parts), and the principle of unre-
stricted composition (any group of objects composes a whole).

A major difference between mereology and set theory is that the latter is
committed to the existence of abstract entities such as empty sets and classes.
In the former, the whole can be as concrete as the part is. The idea of empty
set is inadmissible in Lesniewski’s mereology, and ideally it should be studied
over categories or in a formal language. In most of this tutorial, parthood will
be explored over a set-theoretic framework with its associated dualism. While
the sum of certain things is unique whenever it exists, at least three concepts of
mereological fusion are known. The third definition of fusion is that a fusion of
b’s is a sum of at least some bs. Thus a fusion of tomatoes may be the sum of
all bright red ovaloid tomatoes. Variants of the third definition are used in this
exposition. The fusion axiom is the principle that fusion is unrestricted. That is
the principle that every plurality of objects has at least one fusion – this is not
assumed.

For ground mereology, in a first order language enhanced with quantifiers,
the binary parthood predicate P is assumed to be reflexive, antisymmetric and
transitive. Theories that start from this mereology almost always assume a lot
more. In the axiomatic approach to granules, transitivity is not always assumed. So
associated mereology is quite distinct. From a basic parthood predicate P (irre-
spective of assumptions), the following derived predicates and partial opera-
tions ⊕, ·, � can be defined (some conditions are omitted below):

Overlap: Oxa ↔ (∃z)Pzx ∧ Pza

Proper Part: Pxa ↔ Pxa ∧ ¬Pax,
Overcross: Xxa ↔ Oxa ∧ ¬Pxa

Proper Overlap: Oxa ↔ Xxa ∧ Xax,
wDifference1: (∀x,a, z)(x � a = z → (∀w)(Pwz ↔ (Pwx ∧ ¬Owa)))
Sum1: (∀x,y, z)(x ⊕ y = z → (∀w)(Owz ↔ (Owx ∨ Owy)))
Product1: (∀x,y, z)(x � y = z → (∀w)(Pwz ↔ (Pwx ∧ Pwy)))
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3 General Rough Sets and Granularity

General rough sets can be studied for different purposes from the perspec-
tive of AGCP, CGCP or non-granular perspectives and in many different ways.
Ideas of granularity used in fuzzy sets (see [17]) in particular are not always
compatible with those used in general rough sets. It can however be said that
granules (or information granules) are basically collections sharing some prop-
erties relating to indiscernibility, similarity or functionality at some levels of
discourse.

3.1 Granules and Granulations

A granule may be vaguely defined as some concrete or abstract realization of
relatively simpler objects through the use of which more complex problems
may be solved. They exist relative to the problem being solved in question. In
the present author’s view at least some of the basic ideas of granular computing
have been in use since the dawn of human evolution. In earlier papers [1,3,18],
she has shown that the methods can be classified into the PGCP, CGCP and
AGCP. Adding adaptive aspects and other time related constraints (especially
for handling interactive or emergent systems [19,20]) leads to additional cat-
egories. Because they have been considered in the perspective of CGCP, they
may be regarded as extensions of the same. In all theories or theoretical under-
standings of granularity, the term granules refer to parts or building blocks of
the computational process and granulations to collections of such granules in
the context.

3.2 Primitive Granular Computing

Even in the available information on earliest human habitations and dwellings,
it is possible to identify a primitive granular computing process at work. This
can for example be seen from the stone houses, dating to 3500 BCE, used in
what is present-day Scotland. Related details can be found in [1].

The main features of primitive granular computing are that

• requirements associated with the problem are not rigidly specified;
• both vague and precise granules (more often the former) may be used;
• not much formalization is involved in the specifications (historically these

become more complicated in mereological approaches) and that has never
been part of the goals;

• scope for abstraction is relatively limited and
• the concept of granules used may be concrete or abstract (relative to all mate-

rialist and extended materialist viewpoints), but may be barely constrained
by rules.

While the method may be of ancient origin, it is still used in a num-
ber of modern contexts. The diet of people living in regions close to the sea
depends on seasonal fluctuations in the production of fish and other foods.
These dynamics can be understood in the perspective of PGCP [1].
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3.3 Classical Granular Computing Paradigm

In the context of commercial painting, different parts of navigation indicators
can be painted with brushes of different sizes. The artist involved may be able
to use many distinct subsets of brushes to paint the sign based on choice of
style, the time required to complete the sign and quality. The entire thinking
process associated with the execution of the job can be viewed from a granular
computing paradigm based on approximate precision as opposed to exact pre-
cision (see [1]). One possible granular strategy in the situation is the following:

• draw outline of sign using stencils;
• identify sub-regions from the finest to the broadest;
• make an initial selection of brushes;
• paint and check the progress (and quality) of work produced, and finally
• stop or repeat steps using more appropriate brush sizes.

The strategy used in the example falls under the classical granular comput-
ing because painting brushes have fixed size. It differs from PGCP in that the
form of the sign was preconceived and the tools including brushes do not have
a role in determining the conception of the product.

Security personnel, while opening the gates of a building for incoming or
outgoing vehicular traffic proceed to open gates from a granular perspective of
approximation of the size or width of the vehicle involved in question. Gran-
ules of varying precision may be used in the process as opposed to the kind
of precision supposed in the previous example. This also suggests a different
axiomatic framework being employed in the rough computation. The extent to
which gates have already been opened at a particular instant also has a role
in influencing subsequent moves. If switching between levels of granularity is
done, then it can also be argued that the solution used falls under CGCP and
not PGCP. Because adaptivity is understood from a higher order perspective
and in relation to features falling outside precision, this may be read from such
a viewpoint as well.

In [3], the precision based granular computing paradigm was traced to [21]
and named as the classical granular computing paradigm CGCP by the present
author. More correctly, it is also an ancient method that has been identified as
such in [1] and elsewhere by her. CGCP is often referred to as the granular
computing paradigm and has since been used in soft, fuzzy and rough set the-
ories in different ways [22–26]. Some of the paradigm fragments involved in
applying CGCP are:

• PF-1: Granules can exist at different levels of precision.
• PF-2: Among the many precision levels, a precision level at which the prob-

lem at hand is solvable should be selected.
• PF-3: Granulations (granules at specific levels or processes) form a hierarchy

(later development).
• PF-4: It is possible to easily switch between precision levels.
• PF-5: The problem under investigation may be represented by the hierarchy

of multiple levels of granulations.
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CGCP is Ancient. Many approximation methods used in mathematical practice
essentially use CGCP for solving problems. Examples range from those relating
algorithms for approximating π to finding square roots of numbers. An ancient
procedure of computing square roots is the Babylonian method. It is at least
2500 years old and is essentially the following:

Babylonian Method

• Problem: To compute
√

a, a ∈ R+ to some desired level of accuracy (speci-
fied in relative or absolute terms).

• Initialization: Select an arbitrary value ao close to
√

a.
• Recursion Step: an+1 = 0.5(an + a

an
) for n ∈ N

• Repeat previous step
• stop if desired accuracy is attained

The algorithm is quadratically convergent and good initialization is neces-
sary for fast convergence. In other words some idea about possible approximate
solutions is also essential. It is a special case of many other methods including
the Newton-Raphson method and the modern Householder’s method. In fact,
in mathematical contexts, it is possible to indicate concepts of precision in a
number of ways:

• Fixed values of initialization correspond to bounds on the precision of the
solution at different cycles of computation.

• If the precision of the solution desired is alone fixed, then wide variation in
initialization would be admissible.

• If the time required for computation is alone fixed or specified by an interval,
then again wide variation in precision of initialization would be admissible.

This suggests the following problem: Can CGCP be classified or graded relative
to possible ways in which the precision can be categorized?

3.4 Axiomatic Granular Computing Paradigm

The axiomatic approach to granularity essentially consists in investigations
relating to axioms satisfied by granules, the very definitions of granules and
associated frameworks. Emphasis on axiomatic properties of granules can be
traced to papers [7,9,27] in the year 2007. That is, if some covers used in con-
structing approximations are overlooked. Neighborhoods had been investi-
gated by a number of authors (see references in [3,26,28–30]) with emphasis on
point-wise approximations. A systematic axiomatic approach to granules and
granulations has been due to the present author in [3,9]. Relatively more spe-
cific versions of this approach have rich algebraic semantics associated. Parts of
the axiomatic approach developed by the present author for general rough sets
have been known in some form in implicit terms. But these were not stressed
in a proper way because of the partial dominance of the point-wise approach.
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The axiomatic approach to granularity initiated in [9] has been developed by
the present author in the direction of contamination reduction in [1,3,8,10,12].
The concept of admissible granules, mentioned earlier, was arrived in the latter
paper. From the order-theoretic algebraic point of view, the deviation is in a new
direction relative to the precision-based paradigm. The paradigm shift includes
a new approach to measures.

In the present author’s classification, a rough approximation operator may
be granular (in the axiomatic sense), co-granular, pointwise, abstract or empirical [31].
Most of the point-wise approximations in cover or relation-based approaches
are co-granular. In cover based rough sets, three kinds of approximations
are mentioned in [28]. Of these the subsystem based approximations would
fall under the axiomatic granular approach and are not non granular. This is
because in the approach, granulations are necessarily set-theoretically derived
from covers (while the approximations remain a simple union of granules). By
empirical approximations is meant a set of approximations that have been spec-
ified in a concrete empirical context. These may not necessarily be based on
known processes or definite attributes. Examples of such approximations have
been discussed by the present author in rough contexts in [3,32].

4 High Granular Operator Spaces and Variants

Abstract frameworks for the axiomatic approach called rough Y-systems (RYS)
were introduced and studied by the present author in [3] and other papers.
Granular operator spaces (and variants), investigated by the present author
in [1,33,34] in particular, are simplifications and higher order variants of RYS.
They are meant for both abstract and concrete approximations that are granular
in nature in the sense of the axiomatic approach, and are well suited for inves-
tigating semantic questions, representation, ontology, formulation of semantics
and the inverse problem. Other abstract approaches to rough sets without any
restrictions on granularity, but with additional assumptions about order struc-
ture and negations as in [35] are less related. For the connection of the present
approach to the numeric function based rough mereological approach [36] the
reader may refer to [1,3,37].

In a high general granular operator space (GGS), defined below, aggrega-
tion and co-aggregation operations (∨, ∧) are conceptually separated from
the binary parthood (P), and a basic partial order relation (�). Parthood is
assumed to be reflexive and antisymmetric. It may satisfy additional general-
ized transitivity conditions in many contexts. Real-life information processing
often involves many non-evaluated instances of aggregations (fusions), com-
monalities (conjunctions) and implications because of laziness or supporting
meta data or for other reasons – this justifies the use of partial operations. Spe-
cific versions of a GGS and granular operator spaces have been studied in [1] by
the present author for handling a large spectrum of rough set contexts. GGS has
the ability to handle adaptive situations as in [38] through special morphisms –
this is again harder to express without partial operations.
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The underlying set S may be a set of collections of attributes, objects with or
without labels or anything else. In practice, the set of all attributes in a context
need not be known exactly to the reasoning agent constructing the approxima-
tions. The element � may be omitted in these situations or the issue can be
managed through restrictions on the granulation. Also, it often happens that cer-
tain objects cannot be approximated in an acceptable way. Therefore, it can be argued
that the approximations operations used should be partial. Related abstractions
(Pre-GGS) are not discussed in this tutorial.

Definition 1. A High General Granular Operator Space (GGS) S shall be a partial
algebraic system of the form S = 〈S,γ, l,u,P,�,∨,∧,⊥,�〉 with S being a set, γ

being a unary predicate that determines G (by the condition γx if and only if x ∈ G)
an admissible granulation(defined below) for S and l,u being operators : S �−→ S

satisfying the following (S is replaced with S if clear from the context. ∨ and ∧ are
idempotent partial operations and P is a binary predicate. Further γx will be replaced
by x ∈ G for convenience.):

(∀x)Pxx (PT1)
(∀x,b)(Pxb & Pbx −→ x = b) (PT2)

(∀a,b)a ∨ b
ω
= b ∨ a ; (∀a,b)a ∧ b

ω
= b ∧ a (G1)

(∀a,b)(a ∨ b) ∧ a
ω
= a ; (∀a,b)(a ∧ b) ∨ a

ω
= a (G2)

(∀a,b, c)(a ∧ b) ∨ c
ω
= (a ∨ c) ∧ (b ∨ c) (G3)

(∀a,b, c)(a ∨ b) ∧ c
ω
= (a ∧ c) ∨ (b ∧ c) (G4)

(∀a,b)(a � b ↔ a ∨ b = b ↔ a ∧ b = a) (G5)

(∀a ∈ S)Pala & all = al & Pauauu (UL1)

(∀a,b ∈ S)(Pab −→ Palbl & Paubu) (UL2)

⊥l = ⊥ & ⊥u = ⊥ & P�l� & P�u� (UL3)
(∀a ∈ S)P⊥a & Pa� (TB)

Let P stand for proper parthood, defined via Pab if and only if Pab & ¬Pba). A
granulation is said to be admissible if there exists a term operation t formed from the
weak lattice operations such that the following three conditions hold:

(∀x∃x1, . . . xr ∈ G) t(x1, x2, . . . xr) = xl

and (∀x) (∃x1, . . . xr ∈ G) t(x1, x2, . . . xr) = xu, (Weak RA, WRA)

(∀a ∈ G)(∀x ∈ S)) (Pax −→ Paxl), (Lower Stability, LS)

(∀x, a ∈ G)(∃z ∈ S))Pxz, &Paz & zl = zu = z, (Full Underlap, FU)

The conditions defining admissible granulations mean that every approximation is
somehow representable by granules in a algebraic way, that every granule coincides
with its lower approximation (granules are lower definite), and that all pairs of distinct
granules are part of definite objects (those that coincide with their own lower and upper
approximations). Special cases of the above are defined next.
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Definition 2

• In a GGS, if the parthood is defined by Pab if and only if a � b then the GGS is
said to be a high granular operator space GS.

• A higher granular operator space (HGOS) S is a GS in which the lattice opera-
tions are total.

• In a higher granular operator space, if the lattice operations are set theoretic union
and intersection, then the HGOS will be said to be a set HGOS.

In [39], it is shown that the binary predicates can be replaced by partial two-
place operations and γ is replaceable by a total unary operation. The results in
a semantically equivalent partial algebra called a high granular operator partial
algebra (GGSp).

Example 1. Suppose the problem at hand is to represent the knowledge of a spe-
cialist in automobile engineering and production lines in relation to a database
of cars, car parts, calibrated motion videos of cars and performance statistics.
The database is known to include a number of experimental car models and
some sets of cars have model names, or engines or other crucial characteristics
associated. Let S be the set of cars, some subsets of cars, sets of internal parts
and components of many cars. G be the set of internal parts and components of
many cars. Further let

• Pab express the relation that a is a possible component of b or that a belongs
to the set of cars indicated by b or that

• a � b indicate that b is a better car than a relative to a certain fixed set of
features,

• al indicate the closest standard car model whose features are all included in
a or set of components that are included in a,

• au indicate the closest standard car model whose features are all included
by a or fusion of set of components that include a

• ∨, ∧ can be defined as partial operations, while ⊥ and � can be specified in
terms of attributes.

Under the conditions, S = 〈S,G, l,u,P,�,∨,∧,⊥,�〉 forms a GGS. If the spe-
cialist has updated her knowledge over time, then this transformation can be
expressed with the help of morphisms from a GGS to itself.

Granular operator spaces and variants (specifically high granular opera-
tor spaces) adhere to the weak definitions of granularity as per the axiomatic
granular approach, do not assume a negation operation, their universe may
be a collection of rough objects (in some sense), or a mix of rough and non
rough objects or even a collection of all objects involved, the sense of parthood
between objects is assumed to be distinct from other order relations, permit
realistic partial aggregation and commonality operations, and numeric sim-
plified measures are not assumed in general. These features are motivated by
properties satisfied by models in real reasoning contexts, and help in avoiding
contamination to a substantial extent.
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4.1 Granularity Axioms

Even when additional lower and upper approximation operators are added
to a GGS, the resulting framework will still be referred to as a GGS. In such a
framework, granules definitely satisfy some of the following list of axioms (that
are not assumed to be exhaustive). It is assumed that a finite number of lower
({li}ni=1) and upper ({ui}

n
i=1) approximations are used. These have been grouped

based on their role relative to approximations and ontology, and are known to
have a central role in defining possible concepts of granules. For readability, the
interpretations of the predicate γ are written out explicitly.

Representation Related Axioms. The central idea expressed by these axioms
is that approximations are formed from granules through set theoretic or more
general operations on granules that may be derived from the parthood relation
used. In classical rough sets, every approximation is a union of equivalence
classes (the granules). If + is an aggregation operation (possibly related to the
parthood used)

∀i, (∀x)(∃a1, . . .ar ∈ G)a1 + a2 + . . .+ ar = xli and
(∀x)(∃a1, . . . ap ∈ G)a1 + a2 + . . .+ ap = xui (Representability, RA)

In the weaker versions below, approximations are assumed to be repre-
sentable by derived terms instead of through aggregation of granules.

∀i, (∀x∃a1, . . .ar ∈ G) ti(a1, a2, . . . ar) = xli and
(∀x)(∃a1, . . . ar ∈ G) ti(a1, a2, . . . ap) = xui (Weak RA, WRA)

The prefix sub as in Sub RA is used to indicate situations, where only a
subset of approximations happen to be representable.

Crispness Axioms. As indicated before an object is crisp in a sense if it is its
own approximation in that sense. This is quite different from claiming that crisp
objects are those that cannot be approximated by any other object. While crispness
of granules is not a given, they may possibly satisfy the following crispness
axioms:

For each i, (∀a ∈ G)ali = aui = a (Absolute Crispness,ACG)

Crispness Variants: By analogy, the crispness variants sub crispness (SCG),
lower absolute crispness (LACG), upper absolute crispness (UACG), lower sub
crisness (LSCG), and upper sub crispness (USCG) can be defined as for repre-
sentation related axioms.
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Mereological Axioms. The axioms for mereological properties of granules is
presented next. The axiom of mereological atomicity says that no definite ele-
ments (relative to any permitted pair of lower and upper approximations) can
be proper parts of granules.

∀i, (∀a ∈ G)(∀x ∈ S)(Pxa, xli = xui = x −→ x = a)
(Mereological Atomicity, MER)

The axiom of sub-mereological atomicity says that no definite elements (rel-
ative to at least one specific pair of lower and upper approximations) can be
proper parts of granules, while the axiom of inward-mereological atomicity says
that no definite elements (relative to every permitted pair of lower and upper
approximations) can be proper parts of granules.

(∀a ∈ G)(∀x ∈ S)(Pxa,
∧

i

(xli = xui = x) −→ x = a) (Inward MER, IMER)

Stability Axioms. Stability of granules is that granules should preserve appro-
priate parthood relations relative to approximations. Lower stability, defined
below, says that if a granule is part of an object, then the granule should still
be part of the lower approximation of the object. In general, the same does not
hold for all objects. Some stability axioms are

∀i, (∀a ∈ G)(∀x ∈ S)(Pax −→ P(a)(xli)) (Lower Stability, LS)

∀i, (∀a ∈ G)(∀x ∈ S)(Oax −→ Paxui) (Upper Stability, US)

LS & US (Stability, ST)

Overlap Axioms. The possible implications of the mereological overlap and
underlap relations between granules is captured by these axioms. Some of these
are

(∀x, a ∈ G)¬Oxa, (No Overlap, NO)

∀i, (∀x, a ∈ G)(∃z ∈ S)Pxz, Paz, zli = zui = z (Full Underlap, FU)

∀i, (∀x, a ∈ G)(∃z ∈ S)Pxz, Paz, zli = z (LU)
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Idempotence Axioms. Idempotence of approximation operators relative to
granules are indicated by axioms such as

∀i, (∀x ∈ G)xli = xlili (l-Idempotence, LI)

The pre-similarity axiom concerns the relation of commonalities between
granules and parthood. It is redundant for classical rough sets with granules
being the equivalence relations.

(∀x, a ∈ G)(∃z ∈ G)P(x · a)(z) (Pre-similarity, PS)

Apparently the three axioms WRA, LS, LU hold in most of the known the-
ories and with most choices of granules. This has been the main motivation for
the definition of admissibility of a subset to be regarded as a granule in [3] and
in the definition of GGS.

4.2 Specific Cases

Few examples that partially justify the formalism of the axioms are presented
next. More details can be found in [1,3]. Let S = 〈S,R〉 be a general approx-
imation space, with granulation being G - the set of successor neighborhoods
and

Al = ∪{g : g ⊆ A, g ∈ G}

Au = ∪{g : g ∩ A �= ∅g ∈ G}.

Theorem 1

• If R is an equivalence, then all of RA, ACG, MER, AS, FU, NO, PS, I, ST hold,
but UU does not hold in general.

• If R is a partial equivalence relation (symmetric, transitive and partially reflexive
relation), RA, MER, NO, UU, US hold, but ACG may not.

• If R is a reflexive relation, then RA, LFU holds, but none of MER, ACG, LI, UI,
NO, FU holds in general.

Let 〈S, (Ri)i ∈ K〉 be a multiple approximation space [40], then apart from
the strong lower, weak lower, strong upper and weak upper approximations
discussed in the paper a hierarchy of approximations can be defined and related
properties can be studied [1].

In the perspective of the axiomatic approach, the next definition is natural:

Definition 3. A specific mathematical approach to relation-based rough set is gran-
ular only if it can be rewritten in the form of a general granular operator space or a
higher order granular operator space satisfying additional conditions.

Some representation theorems that connect GGS with general approxima-
tion spaces are known and more are of natural interest [1].
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5 Knowledge Representation and Granularity

From a theory of knowledge and application perspective, it is of much inter-
est to study definitions, representation, ontology and relative consistency of
knowledge among other things. Ontological correspondences between knowl-
edge in different contexts, and problems of conflict representation and resolu-
tion are also of interest. The framework of high granular operator spaces (and
partial algebras) can represent knowledge in a far more substantial way than
is afforded by non granular extensions of the situation in classical rough sets.
More so because it is easily extensible with ontology.

In classical rough sets, if S = 〈S,R〉 is an approximation space, then approx-
imations of subsets of S the form Al and Au represent clear and definite con-
cepts [41]. Further every equivalence class interpreted as a granule is definite.
R in this perspective encodes knowledge by way of the distribution of definite
objects. If Q is another stronger equivalence (Q ⊆ P) on S, then the state of the
knowledge encoded by 〈S, Q〉 is a refinement of that of S = 〈S, P〉. Subsequent
work on logics and semantics for comparing different types of knowledge and
measures of relative consistency can be found in [42–44] and elsewhere.

This knowledge interpretation has been extended in a natural granular way
to general approximation spaces by the present author in [9,11]. In [9], choice
operations are used over granules in the context tolerances spaces for the con-
struction of definite objects that correspond to clear concepts or beliefs with
ontology. The upper approximation of an object may be a proper part of the
upper approximation of the upper approximation of the same object in proto-
transitive rough sets considered in [11]. This itself has an impact on the granular
axioms satisfied.

In general some axioms of interest are

K1 All Granules are atomic units of knowledge.
K2 Knowledge is characterized by granules.
K3 Maximal collections of granules subject to a concept of mutual indepen-

dence are admissible concepts of knowledge.
K4 Parts common to subcollections of maximal collections of granules are also

knowledge.
K5 Knowledge K1 is fully consistent with another knowledge K2 if and only if

both generate the same granules.
K6 Knowledge K1 is fully inconsistent with another knowledge K2 if and only if

no granule of one is included in a granule of the other.
K7 Some Granules are atomic units of knowledge.
K8 Every atomic unit of knowledge is a granule.
K9 Some collections of granules form a consistent unit of knowledge.

These axioms are not necessarily true in every context and stand to benefit
much from additional ontologies that can specify rules of combination. This in
turn makes the different semantic models that generalize high granular opera-
tor spaces (and partial algebras) all the more relevant [1,39,45].
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