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Abstract: The prediction accuracies of machine learning (ML) models may not only be dependent on
the input parameters and training dataset, but also on whether an ensemble or individual learning
model is selected. The present study is based on the comparison of individual supervised ML models,
such as gene expression programming (GEP) and artificial neural network (ANN), with that of an
ensemble learning model, i.e., random forest (RF), for predicting river water salinity in terms of
electrical conductivity (EC) and dissolved solids (TDS) in the Upper Indus River basin, Pakistan.
The projected models were trained and tested by using a dataset of seven input parameters chosen
on the basis of significant correlation. Optimization of the ensemble RF model was achieved by
producing 20 sub-models in order to choose the accurate one. The goodness-of-fit of the models
was assessed through well-known statistical indicators, such as the coefficient of determination (R2),
mean absolute error (MAE), root mean squared error (RMSE), and Nash–Sutcliffe efficiency (NSE).
The results demonstrated a strong association between inputs and modeling outputs, where R2 value
was found to be 0.96, 0.98, and 0.92 for the GEP, RF, and ANN models, respectively. The comparative
performance of the proposed methods showed the relative superiority of the RF compared to GEP
and ANN. Among the 20 RF sub-models, the most accurate model yielded the R2 equal to 0.941 and
0.938, with 70 and 160 numbers of corresponding estimators. The lowest RMSE values of 1.37 and
3.1 were yielded by the ensemble RF model on training and testing data, respectively. The results
of the sensitivity analysis demonstrated that HCO3

− is the most effective variable followed by Cl−

and SO4
2− for both the EC and TDS. The assessment of the models on external criteria ensured the

generalized results of all the aforementioned techniques. Conclusively, the outcome of the present
research indicated that the RF model with selected key parameters could be prioritized for water
quality assessment and management.

Keywords: environmental sustainability; machine learning; ensemble learners; water quality model-
ing; comparative analysis; sensitivity analysis

1. Introduction

Rivers are one of the essential components of surface water, which is needed for indus-
trial processes, agricultural production, and hydroelectricity generation. With the economic
development and growing use of water resources, the surface water gets contaminated,
lowering water quality and consequently posing serious threats to human health. The
streams and rivers carry most of the waste load due to their dynamic natures [1]. Some
of the main responsible factors for water pollution are human-induced activities, result-
ing in sewage, industrial discharge, and wastewater from urban areas [2–5]. The present
study considered the total dissolved solids (TDS) and electrical conductivity (EC) as water
quality indicators. Both the TDS and EC are well-accepted parameters for measuring water
quality, examining salt content and organic matter in water [6,7]. The evaluation of water
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quality variables such as TDS and EC is a tedious and labor-intensive procedure which
requires expertise and specialized equipment [8]. On the contrary, artificial intelligence-
based modeling techniques can provide a reasonable alternative to laboratory testing. The
most readily used modeling methods include numerical, statistical, deterministic, and
stochastic models. However, these models have some limitations, such as inadequate
competencies and complex structures, and require exhaustive details about the model
development [9–12]. Moreover, these traditional models showed relatively low prediction
accuracies and unbalanced forecasts for various levels of water quality. The statistical-based
techniques for water quality modeling assume a linear association between several predic-
tors and predicting variables. The available literature demonstrated that the conventional
models often produced inaccurate results due to the complicated hydrological processes.
Therefore, more suitable, reliable, and robust modeling methods are required for water
quality assessment [6,13].

Recently, an emerging class of machine learning (ML) models, such as artificial neu-
ral networks (ANNs), random forest (RF), adaptive neuro-fuzzy inference-based system
(ANFIS), gene expression programming (GEP), group method of data handling (GMDH),
support vector machine (SVM), and ensemble ML models were proposed and successfully
applied in the literature for surface water and groundwater quality prediction [14–31]. The
ANNs are the computational network models based on the biological neural network that
forms the structure of human brain. Similar to the human brain in which neurons are
connected to each other, the ANNs also have neurons that are interconnected to each other
in different layers of the network [32,33]. These neurons are called nodes, which try to
mimic the network of neurons similar to the human brain so that the computers will have
an option to understand things and make decisions in a manner like the human brain. The
nodes in the ANN take the input data and perform some operations. Afterward, the output
of each operation is transferred to other neurons [16,34,35]. The main drawback of the ANN
is that it is considered to be a black box model due to its unexplainable behavior and lack of
information about the adopted process for predicting the output. Similarly, GEP is another
computer-based evolutionary algorithm. The GEP has a complex tree-like structure which
learns and adapts by changing shape, size, and composition just like a living organism [36].
All the GEP programs are encoded in simple and linear structures—the chromosomes. In
GEP, the linear chromosomes work as the genotype and the parse tree as the phenotype,
creating a multigenic system encoding multiple parse trees in each chromosome. In GEP,
the parse trees are termed as expression trees (ETs), which are the result of gene expres-
sion. The ETs are used to represent different expressions in the modeling process. Despite
the obvious advantages, one of the main drawbacks of the GEP is that it cannot handle
exceptions, such as invalid expressions, divided by zero, and infinity [37,38]. Another ML
technique that can solve classification and regression problems is known as random forest
(RF). This method is referred to as the ensemble learning method, which combines various
classifiers to provide the best solution to complex problems [39]. The forest created in
the RF algorithm is a group of decision trees, which is commonly trained on the bagging
method. Instead of relying on a single decision tree, the RF considers the prediction from
each tree and, based on the majority votes of the prediction, it forecasts the output [40]. The
RF creates a large number of trees and combines their outputs, making the model more
complex, time consuming, and ineffective for real-time forecasting. A small change in the
dataset can change the RF algorithm and reduce the model capacity for accurate predictions
outside of the training data [19].

Various researchers used different models to estimate water quality parameters.
Raheli et al. (2017) [41] predicted dissolved oxygen (DO) and biochemical oxygen demand
(BOD) in the Langat River basin, Malaysia, using the multilayer perceptron method com-
bined with a firefly algorithm (MLP-FFA). The prediction of the MLP-FFA was compared
with the MLP model. The authors reported that the results of MLP-FFA outperformed
the MLP in term of modeling accuracy. Palani et al. (2008) [42] employed the ANN in
forecasting the chlorophyll-a, salinity, water temperature, and DO for coastal water. The
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results revealed a good approximation, with NS and R2 both ranging from 0.8 to 0.9.
Bozorg Haddad et al. (2017) [43] modeled the water quality, including TDS and EC, using
support vector regression and the GP method. Good results were obtained, with R2 and
NSE above 0.9 for all the cases. Najafzadeh et al. (2019) [38] used GEP, the model tree (MT),
and evolutionary polynomial regression (EPR) to forecast DO, BOD, and chemical oxygen
demand (COD) in the surface water. The authors reported the superior performance of
the EPR compared to other methods. Nemati et al. (2015) [44] used the ANFIS, MLR,
and ANN models to predict DO concentration in the Tai Po River, Hong Kong. Various
parameters were used as inputs for model development. The results demonstrated the
better performance of the ANN, as compared to the MLR and ANFIS. The chloride and
water temperature turned out to be the most sensitive parameters in the DO prediction.
Shah et al. (2021) [45] used ML- and regression-based techniques in forecasting the TDS
and EC level in river water. The authors reported the accurate results of GEP as compared
to other ML and regression techniques. Mosavi et al. (2021) [46] predicted the salinity of
groundwater by mean of six different machine learning techniques. The authors reported
the superior performance of the support vector machine compared to the other techniques.
Kadam et al. (2019) [47] applied the ANN and regression modeling approach for the predic-
tion of the groundwater quality index. Various physicochemical water quality parameters
were considered for water quality index forecasting. The results of the study revealed a
satisfactory range for the parameters. The predictions of the ANN were acceptable and
showed satisfactory results for both the seasons, as compared with the regression model.

In the aforementioned literature survey, it is observed that the individual ML tech-
niques and ensemble learners behave differently on a given dataset. Therefore, this leads
the author to estimate the performance of individual and ensemble ML methods for the
efficient forecast of river water quality parameters. The objective was accomplished by
applying two supervised models (i.e., GEP and ANN) and an ensemble learning technique
(i.e., RF). The training and testing of the models were completed based on a thirty-year
dataset measured on a monthly timescale at the Upper Indus River basin (UIB) located
in Pakistan. The UIB is part of Indus basin situated upstream of the Tarbela reservoir,
with a 1150 km length and 165,400 km2 drainage area. The optimization of the RF model
was done by producing 20 sub-models in order to select the accurate one. Thereafter, the
performance of the proposed models was computed on the basis of well-known statistical
indicators. Percent relative error (RE%) graphs were prepared for the comparative analysis
of the aforementioned individual and ensemble models. Moreover, sensitivity analysis was
implemented to observe the significance of each variable in predicting the TDS and EC variables.
At last, the external validation criteria were applied to judge the behavior of the developed models.

2. Material and Methods
2.1. Gene Expression Programming (GEP)

GEP is a computer-based program that imitates the biological system to model some
phenomena. This efficient expression–mutation system was first developed by Candida
Ferreira back in 2001 [48], and allows the encoding of expressions for the rapid appli-
cation of a wide range of cross-breeding and mutation techniques. GEP is an enhanced
form of the genetic algorithm (GA), which is known as evolutionary computing. These
evolutionary algorithms are based on Darwin’s theory: “survival of the fittest” [49]. In
GEP, the chromosome (also known as genome) is comprised of one or more genes in a
linear string of fixed length. The individual gene is also of fixed length and composed of
primitives, which may be a terminal or a function. In the GEP process, a function can accept
an argument and return a result after evaluation, while a terminal represents a variable
or a constant in a given program. In the GEP process, a gene can be distributed into two
parts. The first one is called the “head”, which is formed by terminals and functions, while
the second part is known as the “tail”, which is formed by terminals only. Moreover, GEP
uses the arbitrary population of individuals, adopts the fitness criteria for selection, and
introduces a variation in genes based on genetic operators. GEP has the ability to quickly
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mutate expressions in the way it encodes various symbols in genes. In the present research,
the GEP method was applied using GeneXpro 5.0 software tools developed by Gepsoft
Limited located in Portugal. It is a freely available software package which can be used for
genetic-based algorithms. The flowchart of the GEP process is illustrated in Figure 1.
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Figure 1. Flowchart of the GEP model development.

2.2. Random Forest (RF)

The RF is a machine learning (ML) technique that is mainly used to solve regression
and classification-based problems. The RF method is based on an ensemble approach,
which combines many classifiers to solve complex problems. The bagging method is
usually used to train the RF algorithm, which is an ensemble technique for improving the
accuracy of ML models. The RF algorithm is comprised of many decision trees, which is a
basic building block of this algorithm [19]. A typical decision tree is comprised of three
basic nodes: root node, leaf node, and decision node. The algorithm of the decision tree
distributed a dataset into various branches, which further divided into various branches. The
process of segregation into sub-branches continues until a leaf node is reached, after which no
further distribution is possible. Figure 2 shows the different types of nodes in a decision tree.

2.3. Artificial Neural Network (ANN)

The ANNs are computing systems, and a branch of deep learning algorithms. The
structure and name of ANNs are inspired by the human brain, imitating it in the way
in which neurons signal to one another [50]. The artificial neuron, or node, is the basic
building block for simulating the microstructures of the biological nervous system. The
ANNs are composed of different node layers, encompassing input layers, hidden layers,
and output layers. An individual node in the system links to an alternate one which has a
specific weight and threshold. If the output of a node is beyond the indicated limit, that
particular node is activated, which transfers it to the subsequent layer of the network. The
neural networks solely depend on the training data to improve the network accuracy. The
ANNs have been used in many fields for a variety of applications [7,51,52]. Figure 3 shows
the architecture of a typical ANN.
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3. Case Study and Modeling Database
3.1. Depiction of the Study Area—The Upper Indus River Basin (UIB)

The Indus River is selected as a case study which is situated in different parts of
China, Afghanistan, India, and Pakistan. With a total length of 2880 km and a drainage
area of nearly 912,000 km2, the Indus River is one the major rivers in Asia. The Upper
Indus Basin (UIB) is a part of the Indus basin situated upstream of the Tarbela Dam, and is
1150 km in length, 165,400 km2 in drainage area, and has ice reserves of 2174 km3 [53]. The
altitude in the UIB varies from 455 m to 8611 m because the climate inside the basin varies
significantly [45,54]. The mean annual precipitation in the UIB ranges from 100 to 200 mm,
which is mainly due to the turbulences in the western mid-latitude [55,56]. The detailed
land-use characteristics and soil classes with percent area is tabulated in Tables 1 and 2,
respectively. All the dataset collected for this study belong to the Bisham Qilla point, which
is the final gauging station before the Tarbela Reservoir. The mean annual discharge at the
Bisham Qilla outlet is 2425 m3/s, as per our findings. Details of the UIB are given in Figure 4.
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Table 1. Land-use classes in the study region [57].

S. No Land-Use/Land-Cover Classes SWAT * Classes % Area Covered

1 Water WATR 0.24
2 Agricultural Land—Generic AGRL 0.70
3 Agricultural Land—Row Crops AGRR 0.10
4 Agricultural Land—Close-grown AGRC 0.02
5 Hay HAY 0.11
6 Forest—Mixed FRST 0.18
7 Forest—Deciduous FRSD 2.82
8 Forest—Evergreen FRSE 0.27
9 Wetlands—Mixed WETL 0.01

10 Wetlands—Forested WETF 20.08
11 Wetlands—Non-Forested WETN 0.01
12 Pasture PAST 0.37
13 Summer Pasture SPAS 0.01
14 Winter Pasture WPAS 0.01
15 Range—Grasses RNGE 15.45
16 Range—Brush RNGB 59.62

* Soil and Water Assessment Tool.

Table 2. Soil classes in the study region [57].

S. No FAO Soil Type % Area Covered Texture Clay% Silt% Sand%

1 Ao72-2b-3644 4.14 Sandy—Loam 16 19 65
2 Be72-2a-3669 4.91 Loam 22 36 42
3 Be72-2c-3671 2.59 Loam 22 36 42
4 Be78-2c-3679 6.15 Loam 23 37 40
5 GLACIER-6998 19.67 UWB 5 25 70
6 I-B-U-2c-3503 9.15 Loam 26 30 44
7 I-B-U-2c-3713 10.55 Loam 26 30 44
8 I-B-U-3712 15.98 Loam 26 30 44
9 I-Gx-2c-3720 0.01 Loam 19 34 48
10 I-K-U-2c-3723 0.04 Loam 26 28 46
11 I-X-2c-3731 12.51 Loam 22 33 45
12 I-Y-2c-3733 14.30 Loam 23 39 38
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3.2. Modeling Dataset

For the present research, the water quality dataset measured at the Bisham Qilla point
was obtained from WAPDA, Pakistan. The final dataset contained 321 data points collected
monthly between 1975 and 2005. The dataset included the information of a total of nine
parameters, namely; bicarbonates (HCO3

−), calcium (Ca2+), sulphate (SO4
2−), hydrogen

ion concentration (pH), magnesium (Mg2+), chloride (Cl−), sodium (Na+), total dissolved
solids (TDS), and electrical conductivity (EC). The datasets were statistically analyzed
to figure out the relationship of the inputs and outputs. The basic statistical variables,
including mean, minimum value, maximum value, and standard deviation of the modeling
dataset, are illustrated in Table 3. Figure 5 graphically demonstrates a variation in TDS
and EC with time. Considering a substantial correlation of TDS and EC with other water
quality data, the seven most correlated parameters (Ca2+, Mg2+ Na+, Cl−, SO4

2−, HCO3
−,

and pH) were used as modeling inputs for GEP, RF, and ANN models. The correlation
matrix of TDS and EC data is tabulated in Table 4. The final dataset was divided into 70%
and 30% for models training and testing, respectively.

Table 3. Summary of statistics of the water quality parameters.

Variable Unit Minimum Maximum Mean Value Range Standard Deviation

Ca2+ meq/L 0.65 2.45 1.46 1.80 0.32
Mg2+ meq/L 0.04 2.64 0.63 2.61 0.33
Na+ meq/L 0.05 9.0 0.53 8.95 0.69
Cl− meq/L 0.05 4.2 0.28 4.15 0.28

SO4
2− meq/L 0.1 3.2 0.55 3.10 0.37

HCO3
− meq/L 0.3 7.4 1.73 7.10 0.63

TDS ppm 60 260 139.87 200 38.64
EC µS/cm 92 650 242.65 558 67.49
pH - 7.08 8.3 7.83 1.22 0.65
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Figure 5. Observed data used for models training and testing: (a) Total Dissolved Solids (TDS);
(b) Electrical Conductivity (EC) of the Bisham Qilla station on Upper Indus River.

The water quality modeling using the GEP, RF, and ANN models was carried out
using four main steps: (1) data preparation, (2) model development, (3) model assessment
and validation, and (4) model robustness analysis. In the first phase, the data were analyzed
to remove the outliers and statistically confirm the association of modeling outputs with
the input dataset. In the second phase, the GEP, RF, and ANN models were developed with
70% data used for training and 30% for model testing. In the third phase, the models were
assessed by employing four well-known statistical assessment indicators. On the basis of
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statistical values, the most accurate and reliable model was selected. At last, the accuracy
of the models was verified using a validation criterion adopted from the literature.

Table 4. Correlation of the output parameters with modeling inputs.

Parameters Ca Mg Na HCO3− Cl SO4 PH TDS

Ca2+ 1

Mg2+ 0.0194 1

Na+ −0.0037 0.4712 1

HCO3
− 0.0363 0.5324 0.7414 1

Cl− 0.0239 0.5035 0.7041 0.5296 1

SO4
2− 0.0212 0.5415 0.4853 0.2749 0.3698 1

pH 0.0025 0.0737 0.0415 0.0545 0.0561 −0.0445 1

TDS 0.7452 0.7001 0.8629 0.8176 0.7411 0.6297 0.5210 1

Ca2+ 1

Mg2+ 0.0194 1

Na+ −0.0137 0.4712 1

HCO3
− 0.0675 0.5324 −0.5756 1

Cl− 0.0239 0.5086 0.7638 0.5296 1

SO4
2− 0.0674 0.4671 −0.3460 0.2749 0.2698 1

pH 0.0455 0.3005 0.0627 0.2177 0.3417 0.4297 1

EC 0.6539 0.8632 0.5672 0.8545 0.8951 0.7954 0.6202 1

3.3. Models Performance Evaluation and Validation

The statistical indicators were used to evaluate the performance and relative position
or change in the model-predicted data. The selected indicators for this study are well-
known, and included the coefficient of determination (R2), root mean squared error (RMSE),
Nash–Sutcliffe efficiency (NSE), and mean absolute error (MAE) [58]. The aforementioned
indicators are frequently used in modeling studies to assess the accuracy of the model’s
predicted and actual data. These indicators are respectively defined as follows:

RMSE =

√
∑n

i=1(Pi −Mi)
2

N
(1)

NSE = 1− ∑n
i=1(Mi − Pi)

2

∑n
i=1
(
Mi −Mi

)2 (2)

R2 =
∑n

i=1
(
Mi −Mi

)(
Pi − Pi

)√
∑n

i=1
(
Mi −Mi

)2
∑n

i=1
(
Pi − Pi

)2
(3)

MAE =
1
n ∑n

i=1|Pi −Mi| (4)

where n is the total number of data points, Mi and Pi are the respective actual and predicted
datasets, and Mi and Pi respectively represent the average of actual and predicted data.

3.4. Sensitivity Analysis

Sensitivity analysis often involves varying the inputs of a system to assess the impact
of each input on the desired output, which ultimately gives information on the various
effects of the individually tested variable. This method is used in a variety of disciplines to
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optimize the efficacy of a given system [59]. The sensitivity analysis could be a powerful
tool in providing additional insights for a system that would have otherwise been missed.
This method has the potential to describe the substantial input parameters that have a
direct effect on the output. It is indispensable in ML-based modeling to figure out the most
sensitive input parameters which have been proposed in literature [45,60]. In the present
study, the technique proposed by Gandomi et al. (2013) [61] was adopted for sensitivity
analysis. The authors developed Equations (5) and (6) to demonstrate the impact of inputs.

Ni = fmax(xi)− fmin(xi) (5)

Si =
Ni

∑n
j=i Nj

× 100 (6)

where fmax(xi). and − fmin(xi) indicated the highest and lowest values over the ith output.

4. Results and Discussion
4.1. GEP Model Development and Output

The GEP model developed for water quality forecasts was chosen after completing
a set of iterations with basic function sets and the smallest head size. The final model,
trained on monthly TDS and EC datasets, was used to develop the below-mentioned
Equations (7) and (8) in order to estimate TDS and EC concentrations with some input
variables, i.e., Ca, Mg, Na, Cl, SO4, HCO3

−, and pH.

TDS = {( 20390
Ca ) 1

3 − 22HCO3)× (SO4 −HCO3)
1
3 + 1

HCO3
1
3×ln(8.14Cl−1.11)2

+ (4.15 + Na)× 25

−Na×HCO3 − 28
Ca

(
Mg×Cl× 1.17 + SO4

1.03

)
× (51− 7.33Cl)}

(7)

EC = (9.6Cl + 5.1SO4 − ln HCO3)× (4.9−HCO3)
2 +

{(
SO4 × PH× 2.6− 32.7

Ca
)
− 5.8

}
×HO3

+(Na + HCO3 × 10.4− SO4 ×Cl)× 12.12
(8)

Figure 6a–d show the GEP model predictions for the TDS and EC data, which demon-
strated that the proposed model was successfully trained and tested on the given input
data. The output of the GEP model estimation and the actual TDS data depict the NSE,
R2, MAE, and RMSE values as 0.96, 0.96, 6.58, and 7.10 on the training set, and 0.87, 0.89,
5.38, and 4.57 on the testing set, respectively. Likewise, the aforementioned indicators
between the GEP-simulated results and the actual EC data are 0.93, 0.95, 12.2, and 14.4 for
the training set, and the goodness-of-fit are found to be 0.83, 0.89, 6.50, and 12.74 for the
EC testing dataset, respectively. The literature survey demonstrated that the coefficient
of determination (R2) above 0.8 is considered a reasonable value [62]. Moreover, a small
RMSE value and higher R2 and NSE values indicated the acceptable estimation made by
the model when compared with actual data [63]. The results forecasted by the GEP model
showed the R2 value as being above 0.85 for the TDS and EC training, as well as the testing data.

4.2. Random Forest Model for TDS and EC

The RF is an ensemble machine learning approach based on weak learners which
gives the finest model on the basis of R2 value. The RF model applied in the present study
randomly divided the whole dataset into 20 sub-models based on ensemble n-estimators.
Among all the sub-models, the optimized model provided the best R2 value, as depicted
in Figure 7a,b for the TDS and EC models, respectively. All the sub-models for the TDS
have R2 values above 0.75, with an average value of 0.9221, indicating that each of the sub-
models correlated with the TDS-predicted and actual data. Among all the 20 sub-models,
the maximum and minimum R2 for the TDS was found to be 0.941 and 0.805, with 70 and
140 estimators, respectively. Furthermore, among the sub-classes for the EC model, the
mean and maximum R2 value turned out to be 0.928 and 0.938, respectively.
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Figure 6. Analysis of the GEP-predicted data versus the actual data: (a) TDS training; (b) TDS testing;
(c) EC training; (d) EC testing.
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Figure 7. A total of 20 RF sub-models with varying numbers of estimators with the highest R2 (green)
selected for: (a) TDS; (b) EC.
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The RF model output is given in Figure 8a–d against the measured TDS and EC data.
The assessment indicators, i.e., NSE, R2, and RMSE, were found to be 0.97, 0.98, and 1.37,
respectively, for training the RF model on TDS data, and 0.91, 0.93, and 3.10, respectively,
for the TDS testing data. Furthermore, the RF model-simulated outcome versus the actual
EC data is given in Figure 8c,d for the training and testing datasets, respectively. The values
of NSE, R2, MAE, and RMSE were equals to 0.98, 0.98, 2.67, and 3.81 for the EC training set,
and 0.93, 0.93, 2.5, and 3.5 for the testing of the RF model for the EC estimation. The results
predicted by the RF model demonstrated that the NSE and R2 values were above 0.9 for all
the cases, therefore highlighting the accuracy and supremacy of the ensemble-based modeling.
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Figure 8. Analysis of the RF prediction versus actual data: (a) TDS training; (b) TDS testing; (c) EC
training; (d) EC testing.

4.3. Neural Network Model for TDS and EC

The output of the ANN model is illustrated in Figure 9a,b for the TDS, and Figure 9c,d
for the EC data, respectively. The ANN-forecasted outcome shows a good agreement
against the actual TDS and EC data. The evaluation parameters, NSE, R2, MAE, and RMSE,
for the TDS training set were observed to be 0.92, 0.93, 4.8, and 6.3. The aforementioned
indicators were 0.87, 0.88, 5.50, and 12.1, respectively, for the TDS testing set. Similarly,
the ANN modeling outcome for forecasting the EC data is illustrated in Figure 9c,d for
the training as well as testing dataset. The RMSE was found to be 10.8 and 26.7 for the EC
training and testing sets, respectively. Moreover, the NSE and R2 were found to be 0.92
each (training set) and 0.86 and 0.89 (testing set) in EC modeling. The results of the ANN
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modeling demonstrated the reduced efficacy of the model on the testing set compared to
the training data. The values of the statistical indicators, i.e., NSE and R2, were reduced
on the TDS and EC testing datasets, which may be attributed to the complex structure, a
reduced trust in the network, and the unexplainable behavior of the ANN models.
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Figure 9. Analysis of the ANN prediction versus actual data: (a) TDS training; (b) TDS testing; (c) EC
training; (d) EC testing.

4.4. Comparative Analysis of GEP, RF, and ANN Models

Figure 10a–f demonstrates the percent relative error (RE%) graphs of the GEP, RF, and
ANN models. The results of the error demonstrated that most of the GEP model results
range from −25% to +25% for both of the datasets. The error yielded by the GEP model
equals to 6.1 and 7.01 for the TDS and EC predictions. The maximum error yielded in the
RF model was 5.3 and 6.9 for the TDS and EC data, respectively. The results of the RF
model depicted that almost 80% of the TDS and EC data lies from −20% to +20%, which
highlighted the accuracy and predictability of the RF-based ensemble learning method. The
average error in the TDS and EC data yielded by the ANN model was 8.9 and 10.5, respectively.
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Figure 10. Percent relative error (RE%) yielded: (a,b) TDS and EC predicted by GEP; (c,d) TDS and
EC predicted by RF; (e,f) TDS and EC predicted by ANN.

The performance-measured statistical indicators for all the models, i.e., GEP, RF, and
ANN, are listed in Table 5. In term of accuracy, the RF model outclasses other models on
the training dataset as well as the testing dataset, followed by the GEP and ANN models.
The highest R2 value (0.98) and lowest RMSE value (3.1) were both attained by the RF
model. Moreover, the lowest %RE was also observed in the RF model estimation, which
highlights the overall efficiency of the ensemble RF method. The RF model was followed
by the GEP, which also achieved the R2 above 0.9 for all the datasets. The performance of
the ANN was found to be the least accurate when compared to the RF and GEP models.
However, the ANN provided acceptable results, with the R2 being more than 0.85 for the
TDS and EC data. The ANN model provided good results on training data but showed poor
performance on testing data, which can be related to inexplicable behavior and difficult
network structure [64,65].
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Table 5. Results for GEP, RF, and ANN models.

Training Set Testing Set

R2 RMSE NSE MAE R2 RMSE NSE MAE

TDS
GEP 0.96 7.10 0.96 6.58 0.89 4.57 0.87 5.38
RF 0.98 1.37 0.97 2.80 0.93 3.1 0.91 5.10

ANN 0.92 6.37 0.93 4.80 0.88 13.1 0.87 5.50

EC
GEP 0.95 14.4 0.93 12.2 0.89 12.74 0.83 6.51
RF 0.98 3.8 0.98 2.67 0.93 3.52 0.93 2.5

ANN 0.92 10.81 0.92 6.67 0.89 26.7 0.86 13.2

4.5. Sensitivity Analysis Output

In the present study, the sensitivity analysis was carried out by holding all the parame-
ters at their mean values while changing one of the inputs to observe the effects of changing
one variable. Through this procedure, the input parameters were ranked based on their
sensitivity and effect on the output, as illustrated in Figure 11. The results demonstrated
that the input parameters, i.e., Ca, Mg, Na, HCO3

−, Cl, SO4, and pH, contributed 12.92%,
16.98, 14.55%, 22.33%, 21.66%, 11.55%, and 0% in the modeling for the TDS, which shows
that the HCO3

− is the most important and sensitive variable for the TDS. Similarly, the
result depicts the influence of Ca, Mg, Na, HCO3

−, Cl, SO4, and pH as 13.59%, 0%, 5.01%,
42.36%, 12.8%, 25.63%, and 0.61%, respectively, on EC output. Overall, the results showed
that HCO3

− is the most sensitive parameter, while pH is the least influential parameter for
both TDS and EC.
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4.6. External Validation (EV) of the Models

Evaluating the generalizability of machine learning (ML) models is essential as it has
various implications. Therefore, external validation (EV) criteria have been recommended
in the literature. EV often involves the utilization of independent datasets to validate
the performance of a model that was initially trained on an input dataset [66]. The EV
is considered as being significant evidence to judge the generalizability of ML models.
As the EV comes from an external validation source, any feature selected peculiarly in
the input dataset would likely fail in this process. Therefore, a better performance of the
models during EV is considered as being proof of the generalizability. The present study
adopted the same EV criteria for model assessment through the measures recommended
in the literature studies. Gholampour et al. (2017) [67] argued that the precision of a
model was mainly dependent on the number of data points in the training set. Frank and
Todeschini [68] put forward that the ratio among the number of data points and input
variables should be above five for the better approximation capability of the model. In
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this study, the suggested ratio is 45.8 (321/7), which completely fulfills the EV criteria.
Another criterion put forward by Golbraikh et al. (2002) [69] proposed that the slope
of the particular line which is passing from the origin must be nearly equal to one. A
new assessment indicator, i.e., Rm for EV, was developed by Roy et al. (2008) [70], who
suggested that for a good model, the Rm must be higher than 0.5. Moreover, the two new
indicators, i.e., Ro

2 and Ro’2, were proposed by Alavi et al. (2011) [71], and these criteria are
satisfied when both of the indicators yield approximately one. In this study, the predicted
performance of all the developed models has been evaluated through the abovementioned
EV criteria. The result shows that all the models successfully passed the EV criteria and the
outcome is given in Table 6.

Table 6. Results of external validation criteria.

S. No. Equation Condition Model Value Suggested by

1. R =
∑n

i=1(Mi−Mi)(Pi−Pi)√
∑n

i=1(Mi−Mi)
2
∑n

i=1(Pi−Pi)
2 R > 0.8

GEP 0.96

[68]RF 0.98

ANN 0.97

2. k = ∑n
i=1(Mi−Pi)

Mi
2 0.85 < k < 1.15

GEP 1.004

[69]RF 0.997

ANN 0.992

3. k′ = ∑n
i=1(Mi−Pi)

Pi
2 0.85 < k’ < 1.15

GEP 0.995

[69]RF 1.002

ANN 1.007

4. Rm = R2 ×
(

1−
√∣∣∣R2 − R0

2
∣∣∣) Rm > 0.5

GEP 0.799

[70]RF 0.820

ANN 0.811

5.

R0
2 =

∑n
i=1(Pi−Mi

0)
2

∑n
i=1(Pi−Pi

0)
2 , Mi

0 = k× Pi R0
2 ∼= 1

GEP 0.999

[71]

RF 0.999

ANN 0.999

´R02 =
∑n

i=1(Mi−Pi
0)

2

∑n
i=1(Mi−Mi

0)
2 , Pi

0 = k′ ×Mi ´R02 ∼= 1
GEP 0.999

RF 0.999

ANN 0.999

5. Conclusions

The present research aims to develop and compare the forecasting precision of the
traditional and ensemble machine learning models for predicting surface water quality,
and to identify the best model with essential parameters to serve the water quality assess-
ment in the best and most precise manner. The predictive performances of two individual
supervised models (GEP and ANN) and one ensemble learning model (RF) were compre-
hensively developed and compared based on a consistent water quality dataset. The key
findings of this study are:

• An excellent prediction capability has shown by the RF model compared to other meth-
ods, which highlighted the overall supremacy of the ensemble learning techniques;

• Two mathematical expressions were established for TDS and EC prediction, highlight-
ing the uniqueness of the GEP method. These expressions can be easily used for water
quality monitoring and assessment with some known input parameters;

• The reduced performance of the ANN was observed in comparison with the RF and
GEP, which can be attributed to the inexplicable behavior and difficult structure of the
neural network;
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• Important variables for TDS and EC modeling were identified through sensitivity
analysis, where the HCO3

- remained the most sensitive input for both the outputs;
• The modeling outcome verified by external criteria ensured the generalized modeling

capability of the aforementioned techniques;
• The research conducted in this paper can be reckoned as a data mining-based study

for water quality monitoring and assessment. Eventually, the authors recommend to
conduct a heavy study and establish a widespread database for other water quality
parameters considering a number of explanatory variables.

It is recommended to study the new database using other advanced AI modelling tech-
niques, for instance, gradient-boosted trees (GBT), multivariate adaptive regression spline
(MARS), support vector regression (SVR), recurrent neural network (RNN), multilayer
perceptron neural network (MLPNN), among others. The machine learning techniques are
still encountering problems due to flaws like knowledge extraction, interpretability, and
the uncertainty of the model. To have a better understanding of the learning process, extra
emphasis must be devoted to expanding on previous knowledge about the underlying
physical phenomena, such as engineering judgement or human skill.
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