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Abstract

Background: Understanding the regulation of gene expression, including transcription start site usage, alternative
splicing, and polyadenylation, requires accurate quantification of expression levels down to the level of individual
transcript isoforms. To comparatively evaluate the accuracy of the many methods that have been proposed for
estimating transcript isoform abundance from RNA sequencing data, we have used both synthetic data as well as
an independent experimental method for quantifying the abundance of transcript ends at the genome-wide level.

Results: We found that many tools have good accuracy and yield better estimates of gene-level expression
compared to commonly used count-based approaches, but they vary widely in memory and runtime requirements.
Nucleotide composition and intron/exon structure have comparatively little influence on the accuracy of expression
estimates, which correlates most strongly with transcript/gene expression levels. To facilitate the reproduction and
further extension of our study, we provide datasets, source code, and an online analysis tool on a companion
website, where developers can upload expression estimates obtained with their own tool to compare them to
those inferred by the methods assessed here.

Conclusions: As many methods for quantifying isoform abundance with comparable accuracy are available, a
user’s choice will likely be determined by factors such as the memory and runtime requirements, as well as the
availability of methods for downstream analyses. Sequencing-based methods to quantify the abundance of specific
transcript regions could complement validation schemes based on synthetic data and quantitative PCR in future or
ongoing assessments of RNA-seq analysis methods.

Background

The general availability of high-throughput sequencing

technologies greatly facilitated the detection and quanti-

fication of RNA species, including protein-coding RNAs,

long non-coding RNAs, and microRNAs, in many differ-

ent systems. In higher eukaryotes, the vast majority of

protein-coding genes express multiple transcript iso-

forms [1–3]. Although a substantial proportion of tran-

script isoforms may result from stochasticity in the

splicing process [4, 5], striking examples of isoform

switching with large impact on cellular phenotypes are

also known (for example, [6, 7]). Tissue-specific splicing

patterns have been linked to the expression of specific

RNA-binding proteins [8], some of which appear to act

as ‘master’ regulators of alternative splicing in individual

tissues [9]. For example, muscleblind-like proteins 1 and

2 (MBNL1/MBNL2) are expressed in mesenchymal cells

and their downregulation facilitates somatic cell repro-

gramming [10], while the epithelial splicing regulatory

proteins 1 and 2 (ESRP1/ESRP2) establish epithelia-

specific patterns of isoform expression [11]. Neverthe-

less, despite the long history of the field, the functional

relevance of most isoforms that can be detected with se-

quencing approaches remains unclear [12], particularly

in light of the rapid change of isoform usage pattern in

evolution that indicates relatively weak selection pres-

sure [13].

Analysis of expression pattern is often one of the first

steps towards understanding a gene’s function. However,

transcript isoform abundance is almost always quantified
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indirectly; most of the sequencing technologies that are

currently used yield reads that are short (≤200 nt) rela-

tive to the length of eukaryotic transcripts (2.2 kb in

mammals, on average) [14] and thus, a sequenced read

can typically be assigned to more than one isoform. This

is not the case with the technology developed by Pacific

Biosciences that enables sequencing of full-length

cDNAs [15]. A drawback of this technology is, however,

that the throughput is relatively low, of the order of 104

transcripts, which does not allow accurate quantification

of transcript abundance. Furthermore, the error rates are

relatively high, making the transcript identification non-

trivial. Thus, accurate and cost-effective quantification of

the complete repertoire of full-length expressed tran-

scripts, which are in the range of hundreds of thousands

per cell [16], remains an open problem.

As RNA sequencing (RNA-seq) has become common-

place in molecular biology laboratories, a variety of com-

putational approaches has been proposed for isoform

reconstruction from short read sequencing data (see, for

example, [17]). Similarly, quite a number of methods has

been developed for the inference of isoform abundance

(reviewed in [18]). While short read alignment and tran-

script reconstruction methods have been extensively

benchmarked recently [17, 19, 20], only one study, ra-

ther limited in scope, evaluated some isoform quantifica-

tion methods [21]. Independently and comprehensively

evaluating the accuracy of such computational methods

is difficult, because experimental validation strategies

by, for example, quantitative PCR are typically re-

stricted to just a limited number of isoforms (see, for

example, [22]). Developers therefore typically evaluate

their tools on synthetically generated datasets which

may not capture adequately the complexities of RNA-

seq experiments.

In this study we carried out a systematic evaluation of

a large number of methods for isoform quantification

from RNA-seq data. We used not only synthetic, but

also genome-wide experimental datasets. We took ad-

vantage of newly developed protocols for quantifying the

abundance of distinct RNA 3′ ends, which result from

the use of alternative 3′ end processing sites. These pro-

tocols allow a comprehensive surveillance of 3′ end pro-

cessing site usage, with a method that is distinct from

RNA-seq [23–25]. From two types of cells and from two

species (human Jurkat T cells or mouse NIH/3T3 cells)

we prepared two libraries, one with an RNA-seq proto-

col and the other with a protocol for capturing the 3′

ends of polyadenylated RNAs. We submitted the aligned

RNA-seq reads to the entire panel of computational

methods for estimation of transcript isoform abundance.

We then compared these estimates with those that we

obtained independently, through the analysis of the cor-

responding 3′ end sequencing data.

Our results indicate that many of the available

methods have comparable accuracy, and that the abun-

dance of highly expressed isoforms is more accurately

inferred than the abundance of isoforms with low ex-

pression levels. We further found that even the quantifi-

cation of gene expression is more accurate when gene

expression levels are computed by cumulating the levels

of transcript isoforms than when ignoring the transcript

structures. Given that many methods are available that

differ little in accuracy, a user’s choice will likely be de-

termined by factors such as the memory and runtime re-

quirements, as well as the availability of methods for

downstream analyses such as differential gene/transcript

expression.

Results
We initially performed an extensive literature survey to

identify tools that were developed for inferring the abun-

dance of transcript isoforms from RNA-seq data. Al-

though we tried to include as many of these as possible,

our study setup required that tools are able to quantify a

set of transcripts that we provided as input, thereby sep-

arating the problem of transcript reconstruction from

that of abundance quantification. To be able to interpret

the results, we further focused on methods that have

been duly described in the literature. Lastly, we thought

that ease of use would be critical for the adoption of the

tool by the user community and we did not pursue

methods which we were unable to implement within a

reasonable amount of time. Table 1 lists the remaining

11 tools, together with their underlying principle, input

requirements, and references. A description of how each

of the tools was applied is provided in the Methods

section.

Runtime and memory requirements differ substantially

between tools

Most of the tools that we surveyed have previously been

tested by the developers on simulated data. Here, we

have used the Flux Simulator software [26] to generate

reads corresponding to GENCODE-annotated transcripts

(Additional file 1: Figure S1). To assess how the runtime

complexity, memory requirements, and accuracy of the

different programs depended on the sequencing depth we

generated sets of 1, 3, 10, 30, and 100 million single-end

reads, the latter two values being in the range that is cur-

rently obtained from sequencing a typical RNA-seq library

on broadly used next-generation sequencing platforms.

We found that the tested programs differ substantially in

their runtimes and memory footprints, as measured under

defined conditions on a dedicated machine (maximum

available memory = 64 Gb). As shown in Fig. 1, the CPU

times necessary to process the different datasets span

about three orders of magnitude when a single processor
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is used (Fig. 1a), and two orders of magnitude when the

multi-threading option (16 cores; Fig. 1b) is used. In par-

ticular, the times required to process the alignments of

100 million in silico-generated reads range between ap-

proximately 7 min (IsoEM) and more than 1 week

(TIGAR2) when a single processor is used, and between

about 5 min (IsoEM) and 8 h (RSEM) when 16 cores are

available for the tools that support multi-threading

(TIGAR2 does not). With the exception of Sailfish, run-

times strictly increased with the number of processed read

alignments. Assuming that a method-specific, but largely

sample size-independent time span is required to index

the supplied transcriptome, time complexities for most of

the quantification algorithms appear to be approximately

linear. Sailfish’s runtimes seem to be the highest for the

smallest dataset, presumably because the convergence of

estimation is slow for small datasets, when the vast major-

ity of transcripts are sparsely covered. Notably, Sailfish

computes abundances based on raw read sequences rather

than alignments. Thus, whenever alignments are dispens-

able, a considerable amount of time (typically 1 h or more)

can be saved on sample pre-processing compared to all

other methods (refer to [19, 27, 28] for an overview of

‘mapping’ times for some short-read aligners and

Table 1 Overview of surveyed methods

Name Reference sequencea Principle Released

BitSeq Transcripts Bayesian estimation of parameters of a model that explains the read-to-transcript alignment
data. Reads are assumed to be sampled independently, without positional bias from transcripts,
such that the probability of an alignment starting at a given position of a transcript is inversely
proportional to the transcript length. Sub-optimal alignments are used to estimate the
‘background’ of spurious alignments.

2012 [67, 68]

CEM Genome Component elimination expectation-maximization approach to estimating the parameters of
isoform abundance. For each gene it aims to find a ‘sparse’ solution, with few expressed
isoforms. Read sampling from isoforms is assumed to obey a quasi-multinomial distribution, in
which positional and other biases are modeled as an effective distribution which could be,
for example, uniform (no positional bias) or exponential (modeling the process of RNA
degradation).

2012 [69]

Cufflinks Genome Bayesian approach to estimating transcript abundances by explicitly modeling the length of
the fragments expected from RNA-seq. It assumes that for a given gene, reads are sampled
independently with uniform probability along transcripts and in proportion to the transcript
abundance between transcripts. Thus, if a read can be assigned to two transcripts of different
lengths, the transcript with a shorter effective length will have a higher probability of giving
rise to the read.

2010 [70]

eXpress Transcripts Similar to Cufflinks, but it includes modeling of errors and indels and it has a different model
for fragment length selection. Unlike Cufflinks and most other methods, eXpress processes
read alignments ‘on-line’ so that it can be integrated into real-time analysis pipelines.

2012 [32]

IsoEM Genome Expectation-maximization approach to inferring isoform abundances that are consistent with
the coverage of isoforms by reads. The coverage is assumed to be uniform along an isoform.
Base quality scores are taken into account in computing the probabilities of alignments. In
the E-step, the expected number of reads derived from a given isoform is computed and in
the M-step, the relative frequencies of isoforms are estimated.

2011 [71]

MMSeq Transcripts Models the read data as Poisson-distributed variables with rates that depend on the abundance
of the regions of the transcripts with which the reads are compatible and on the sequence-
dependent bias in capturing the sequences. Priors on transcript abundances are Gamma-
distributed. Sequencing errors are not modeled, there is only a filter on the minimal quality of
considered alignments.

2011 [73]

RSEM Transcripts Models the probability of observing a read as the sum of the relative abundance of the
transcript to which the reads maps times the probability of the read mapping to the
transcript, and infers transcript abundances by expectation maximization.

2009 [34, 35]

rSeq Transcripts Models read data as Poisson-distributed variables with rates that depend on the abundance
of the regions of the transcripts with which the reads are compatible.

2009 [75]

Sailfishb Transcripts Expectation-maximization method for explaining the abundance of k-mers inferred from the
reads in terms on the abundance of the transcripts with the associated k-mer abundances.

2014 [76]

Scripture Genome Transcript abundance is calculated as reads per kilobase of exonic sequence per million
aligned reads, given the alignments of the reads to the genome and the annotated/
reconstructed transcript.

2010 [77]

TIGAR2 Transcripts Models the read data in terms of a large number of parameters which include, beyond the
relative abundance of the transcripts, the read length distribution, the nucleotides, and
alignment state and quality at the first and second position of the read.

2013 [78, 85]

The columns are: method name, sequences to which reads are compared (transcripts or genome), principle of the method, year of release, and associated reference(s)
aFor methods operating on the genome sequence, genome annotation files (GTF/BED-formatted) were also provided
bIn contrast to other methods operating on transcripts, Sailfish uses k-mer statistics rather than aligning reads to transcripts
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conditions). Enabling multithreading had only a limited

impact on runtimes (Additional file 2: Figure S2A), with

several of the tools hardly benefiting at all (maximum ratio

between runtimes at 1 and 16 cores approximately two-

fold or less for CEM, eXpress, MMSEQ, rSeq, and Scrip-

ture). However, RSEM (approximately 5.9-fold speedup

for 30 million reads) and BitSeq (approximately 4.2-fold

speedup for 100 million reads), two methods with the

highest single-processor running times had the highest

speedup when multiple processors were provided. Mem-

ory footprints also spanned almost two orders of magni-

tude between tools, both when using a single or multiple

A B

C D

Fig. 1 Running time and memory requirements. Transcript isoform abundances were estimated with each of the indicated methods from in

silico-generated datasets of different ‘sequencing’ depths. The running times (a and b) and memory footprints (c and d) are shown as a function
of sequencing depth. Programs were run on either one (a and c) or 16 cores (b and d). Note that TIGAR2 is missing in (b) and (d), because the
method does not support the use of multiple cores
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cores (Fig. 1c, d). For approximately half of the tools

(CEM, eXpress, MMSEQ, Sailfish, Scripture, TIGAR2) the

memory footprint seems to be largely independent of the

sample size. For the remaining tools (BitSeq, Cufflinks,

IsoEM, RSEM, rSeq) the memory footprint increases with

the sample size. Although IsoEM seems to trade off a rela-

tively large memory footprint (from <10 to >30 GB) for

extremely short running times, we did not observe a gen-

eral inverse correlation between the running time and

memory usage of individual methods (rs = 0.13 and −0.13

at 100 million reads for 1 and 16 cores, respectively)

(Additional file 2: Figure S2B, C).

Most methods infer transcript abundances with good

accuracy even from sparse datasets

Our main objective was to evaluate the accuracy of iso-

form expression estimates produced by various methods.

Consistent with current expectations about the number

of expressed transcripts in a given cell type, the read

simulation software only assigned non-zero expression

to approximately 10.2 % of all transcripts supplied to it

as input (19,004 out of 187,176). To avoid the situation

that our results are dominated by how different methods

handle transcripts that are essentially not expressed, we

initially restricted our initial analysis to the set of

expressed transcripts. These were those for which the

simulation software assumed non-zero expression values.

When comparing the abundances of these transcripts as

inferred by each method with the ‘ground truth’ (Fig. 2a

and Additional file 3: Figure S3), we found that nine out

of 11 programs exhibit very good performance (Spearman

correlation coefficient rs >0.9 for ≥107 reads). As expected,

correlations generally improved with increasing library

sizes, in a monotonic fashion and asymptotically towards

saturation. For most methods, estimation accuracies

reached a plateau at or around a read depth of 30 million

reads, indicating that further increases in read depth are

unlikely to significantly improve their results. In particular,

Spearman correlation coefficients peaked at above 0.95 for

six of the methods (BitSeq, eXpress, IsoEM, RSEM, Sail-

fish, and TIGAR2) and above 0.9 for a further three

methods (CEM, MMSEQ, rSeq). Both Cufflinks and Scrip-

ture performed considerably worse than all other

methods, with the corresponding correlation coefficients

barely surpassing 0.75. The influence of the library size on

accuracy varied somewhat between methods, with the

total gain from the sparsest to the richest dataset ranging

from approximately 0.01 (Cufflinks) to approximately

0.08 (BitSeq). Out of the nine most accurate methods,

MMSEQ appears to be the least sensitive to the influ-

ence of read depth (approximately 0.04 gain in accur-

acy). In order to rule out that our chosen metric for

measuring accuracy is prone to producing idiosyncratic

results, we have compared it with both the Pearson

correlation coefficient and the root mean square error

(Additional file 4: Figure S4A). The relative performance

of the methods changed only little, indicating that the

results were robust with respect to the metric that we

chose. Thus, with few exceptions, all methods produce

highly accurate transcripts isoform abundance estimates

even at moderate read depths.

Explicit modeling of transcript isoforms leads to more

accurate estimation of gene expression levels than

count-based methods

Gene expression levels are typically derived from RNA-

seq-based data by intersecting the genome coordinates

of ‘uniquely-mapped’ reads with the loci of annotated

genes and taking into account the length of the tran-

script that is expressed from a given locus. As may be

immediately apparent, this procedure has several limita-

tions. The first is that it is generally unclear what tran-

script to consider for each locus, when correcting for

transcript length. What is typically used is the total

length of the ‘union exons’, which is clearly incorrect

when the gene expresses multiple isoforms with different

relative abundances and different sequences of exons. A

second drawback is that the proportion of reads that are

discarded depends on the repeat content of the gene

with an unknown impact on the accuracy of gene ex-

pression estimates. Finally, reads that map across splice

boundaries and are informative particularly for estimat-

ing the expression of individual isoforms, may be dis-

carded by the simple counting procedure. This problem

will preferentially affect expression estimates for genes

with a large number of exons and isoforms. Thus, one

expects that even gene-level estimates of abundance are

improved by the appropriate treatment of transcript iso-

forms. To test how accurately gene expression levels

could be estimated by the benchmarked methods com-

pared to count-based methods, we implemented two

variants of count-based gene expression level estimation

(‘union exon’ and ‘transcript’-based counting, see

Methods). The first method is both simple and widely

used, but it has the pitfalls mentioned above. The sec-

ond method tries to correct some of the inaccuracies of

the simple union exon counting method by taking

multi-mappers into account and avoiding artificial gene

structures. If a method provided gene-level estimates

(as is the case for Cufflinks, IsoEM, MMSEQ, RSEM,

and rSeq) by default we used these values, otherwise we

aggregated estimates of transcript abundances to obtain

such estimates. We then compared these gene expres-

sion estimates to the true gene expression levels, which

were also derived by aggregating the known isoform

abundances. When considering only the 12,925 expressed

genes (log2 TPM > −5; approximately 26.5 % of all genes),

the results (Fig. 2b and Additional file 5: Figure S5) were
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qualitatively very similar to those that we obtained at the

level of transcript expression (Fig. 2a and Additional file 3:

Figure S3): estimates of gene expression levels that were

produced by or derived from the output of most methods

are quite accurate and the accuracy increases with sequen-

cing depth towards saturation. Only BitSeq’s gene-level es-

timates were strongly sensitive to the size of the input

library, in the range of approximately 0.90 for 1 million

reads to approximately 0.99 for 30 million reads or more.

The same six methods that yielded the most accurate

transcript abundances (BitSeq, eXpress, IsoEM, RSEM,

Sailfish, and TIGAR2) gave the most accurate gene level

expression estimates: all achieved peak Spearman correl-

ation coefficients of 0.98 or higher. CEM, Cufflinks,

A B

C D

Fig. 2 Influence of sequencing depth and expression levels on the accuracy of expression estimates. Transcript isoform and gene expression
levels were estimated with each of the indicated methods from in silico-generated datasets of different ‘sequencing’ depths. The accuracy of a
method was assessed in terms of the Spearman correlation coefficient (rs) between the estimates and the known input levels (‘ground truth’) of
expressed transcripts (a) and genes (b). Based on their true abundances, transcripts (c) and genes (d) were distributed across four bins of
expression levels. Estimation accuracies as in (a) and (b) are indicated for each method and bin. The numbers of transcripts and genes in each
bin are indicated together with the expression ranges that they cover. Estimates are based on a sequencing depth of 30 million reads
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MMSEQ, and rSeq reached Spearman correlation coeffi-

cients of at least 0.95. Scripture, when provided with more

than 1 million reads, was also able to estimate gene ex-

pression with good (rs >0.9) accuracy. In contrast, the

count-based methods only achieved moderate accuracy

(maximum rs = 0.89 and rs = 0.86 for the ‘union exon’ and

‘transcript’ methods). As suggested by the scatter plots in

Additional file 5: Figure S5, the limited accuracy of either

method is largely due to the underestimation of true

expression and, as expected, this short-coming is more

pronounced in the ‘union exon’ method. As with the tran-

script estimates, choosing another metric has little impact

on the overall ranking/presentation of results (Additional

file 4: Figure S4B). Taken together, these results clearly

demonstrate that although the accuracy of count-based

methods may perhaps benefit from more elaborate proce-

dures for addressing ambiguities in the assignment of

reads to loci and transcripts, they still fall short of

methods that probabilistically model the generation of

RNA-seq data, taking into account transcript isoforms

and the sampling of reads from transcripts.

High expression levels are more accurately estimated

than low expression levels

Higher transcript coverage by reads is expected to in-

crease the accuracy with which transcript abundance is

estimated. The coverage depends on both the depth of

sequencing as well as on the transcript abundance, and

indeed we found that the size of the read library has a

positive influence on the accuracy of expression estimates.

To evaluate the extent to which ‘true’ abundance influ-

ences the accuracy of transcript abundance estimates, we

grouped both expressed transcripts and genes by their

‘ground truth’ expression into four equally sized bins: low

(log2 TPM <0 or 1.1), medium-low (0 or 1.1 < log2 TPM

<3 or 4.1), medium-high (3 or 4.1 < log2 TPM <5.5 or 6.2)

and high abundance (log2 TPM >5.5 or 6.2), with the first

and second numbers referring to the ranges for transcripts

and genes, respectively. The overall ranking of tools in

terms of their accuracy within expression level bins

(Fig. 2c, d) largely reflects what we observed when evaluat-

ing the performance on expressed transcripts or genes

(Fig. 2a, b). However, the accuracy of transcript expression

level estimates degrades progressively from high to low

expressed transcripts, with the most drastic drop between

the medium-low and low (less than one transcript in 1

million transcripts) abundance (correlation coefficients for

the most accurate tools change from approximately 0.75

to approximately 0.4/0.5, at 30 million reads, Fig. 2c).

Similarly, estimation accuracies on the gene level differ lit-

tle across the three bins of most highly expressed genes

(mean rs = approximately 0.92, 0.87, 0.85 for the ‘high’,

‘medium-high’, and ‘medium-low’ bins, respectively), but

drop most strongly for the bin with the least expressed

genes (mean rs = approximately 0.68). Thus, our analysis

confirms the expectation that low abundance and, con-

sequently, sparse transcript coverage leads to noisier

estimates of expression. However, for genes whose ex-

pression levels are in the top three quartiles, the esti-

mates provided by the tools agree very well with the

‘true’ expression levels.

Because different methods appear to handle quite dif-

ferently transcripts with very low abundance, we sought

to further investigate their accuracy in this expression

range in particular. More specifically, we determined the

rates at which: (1) transcripts or genes that are not

expressed are estimated to have non-zero expression

(false positive rate); and (2) transcripts or genes that are

expressed and are also inferred by a tool to have non-

zero expression levels (true positive rate). It should be

noted that when dealing with real rather than synthetic

datasets, one does not know whether a specific tran-

script truly had a copy number of 0 in the sample or

not. When no evidence of expression is found, some of

the Bayesian methods (BitSeq and MMSEQ) strictly assign

non-zero ‘prior’ expression probabilities to transcripts,

and thus they do not, strictly speaking, produce any ‘false

negatives’. Nevertheless, even for these methods it may be

relevant to determine how well very limited evidence of

expression is handled, and whether transcripts with no

such evidence really get assigned ‘prior’ expression values.

Thus, after consulting the developers, we have assigned

transcripts with an expression estimate which was essen-

tially the method-specific prior value an estimate of zero

(see Methods), and then determined the false and true

positive rates of all methods. In general, we found that the

surveyed methods vary quite considerably in their ability

to make accurate ‘present calls’ for transcripts and genes

and that tools that exhibit low false positive rates tend to

falsely assign zero estimates to a higher fraction of tran-

scripts or genes, as expected (Additional file 6: Figure S6).

In this category are IsoEM, RSEM, rSeq, Sailfish, TIGAR2,

MMSEQ (‘prior’ expression levels handled as described

above), as well as Cufflinks and Scripture (the latter two

only when considering gene level estimates). In contrast,

CEM, eXpress, BitSeq (zeroed ‘priors’ as described above),

Cufflinks, and Scripture (on the level of transcripts), and,

in an extreme manner, the unmodified estimates from

BitSeq and MMSEQ show the exact opposite behavior.

As expected, the rate of true positive calls increases with

increasing read depth, as does the rate of false positives.

The increase in true positive calls is particularly appar-

ent for lowly expressed genes and transcripts, for which

the true positive rate increases steeply up to 30 million

reads (Additional file 6: Figure S6E, F). Overall, deeper

datasets yield an increased fidelity of making present

calls. Consistent with these results, the Spearman

correlation coefficients, when calculated across all
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transcripts and genes (Additional file 7: Figure S7A, B),

are considerably lower than when only expressed fea-

tures are considered (Fig. 2a, b). Given that most of the

annotated transcripts were considered ‘not expressed’ in

our synthetic dataset, the tools that trade off specificity

for sensitivity (BitSeq, CEM, eXpress, MMSEQ) were

most affected by the inclusion of not expressed tran-

scripts. Taken together, these analyses indicate that the

amount of starting material, the features of interest, and

the obtained read depth are all among the factors that

influence the accuracy of expression estimates and may

play a role in the choice of the method that should ul-

timately be used for data analysis. Nevertheless, moder-

ate sequencing depth of a few tens of million reads

seems to be sufficient for an accurate estimation of most

except the very lowly expressed transcripts by many of

the available methods.

The alignment program and bias correction options have

little impact on the accuracy of abundance estimates

Some of the surveyed methods strongly recommend the

use of a specific short-read alignment program. By de-

fault, RSEM even calls such an aligner (Bowtie) intern-

ally. Thus, we asked whether the choice of alignment

program impacts the accuracy of isoform abundance es-

timates that are produced by these methods. Surpris-

ingly, we found that the aligner has a relatively small

impact on estimation accuracy, regardless of whether

one considers transcripts or genes, and only expressed

or all features (Additional file 8: Figure S8). If anything,

with the exception of CEM, all methods performed bet-

ter when supplied with read alignments prepared with

our custom pipeline that employs the segemehl aligner

than when alignments produced by either Bowtie1

(MMSEQ, RSEM) or TopHat2 (Cufflinks, Scripture)

were provided. RSEM had the highest gain in accuracy,

around rs = 0.05 or rs = 0.03 on the transcript- and

gene-level, respectively. On the other hand, CEM pro-

duced slightly more accurate results when supplied with

TopHat-aligned reads, particularly when considering all

features (gain of rs = approximately 0.08). Correspond-

ence with CEM’s developers revealed that the program

requires the TopHat-specific SAM/BAM tag ‘XA’, which

encodes information about the strand of the transcript

to which a read aligns, to correctly parse multi-fragment

reads. Because this tag was not supplied in our input

alignment files, CEM was unable to properly parse align-

ments that covered splice junctions and therefore pro-

duced less accurate estimates when supplied with our

alignments.

A subset of the methods (CEM, eXpress, IsoEM,

RSEM, and Sailfish) also attempt to correct various

biases that occur during sample preparation, such as

positional (non-uniform distribution of reads along

transcripts), sequencing (depending on the nucleotide

composition of the reads), or mapping (sequencing er-

rors and multi-mapping reads) biases (see Methods sec-

tion for details). While in general we have restricted

ourselves to executing each program with the default

parameter settings, we wanted to explore whether bias

correction had an impact on the abundance estimation

(Additional file 9: Figure S9). Surprisingly, only the tran-

script estimates produced by CEM and, to a lesser ex-

tent, IsoEM were affected. For CEM, the largest

difference was observed when considering expressed

transcripts, for which bias correction (default: disabled)

had a slight detrimental effect (rs loss = approximately

0.05). In contrast, the estimates produced by IsoEM

seemed to slightly improve upon enabling the bias cor-

rection, but only when all transcripts were considered

(rs gain = approximately 0.02). In all other cases, no ap-

preciable differences were observed when executing

programs with or without bias correction.

Gene/transcript structural features affect the estimates of

individual methods

Next, we aimed to assess the impact of gene structural

features on the accuracy of expression estimates. Specif-

ically, we sorted transcripts according to their length,

proportion of guanines and cytosines nucleotides (‘GC-

content’), and the number of exons of which they are

composed. Likewise, we sorted genes by the number of

annotated transcript isoforms. Reasoning that the influ-

ence of gene structural features on estimation accuracy

is likely to be small compared to that of expression level

differences, we concentrated on transcripts with mid-

range expression, where differences should be most

clearly apparent. For each of the structural features, we

then defined non-overlapping bins containing compar-

able numbers of transcripts or genes. Additional file 10:

Figure S10 shows the expression level distributions

across the different bins for each of the gene structural

features. For each bin we then calculated Spearman cor-

relation coefficients between the ‘ground truth’ expres-

sion and the estimates produced by each of the surveyed

methods when supplied with the 30 million read syn-

thetic dataset (Fig. 3). While none of the analyzed fea-

tures had a strong and consistent effect on estimation

accuracy, we have observed some general trends, as well

as method-specific exceptions. The shortest transcripts

are quantified with the least accuracy by all methods but

Scripture (Fig. 3a). This effect cannot be readily ex-

plained by differences in expression level distributions

across bins, since the smallest transcripts exhibit, in fact,

the highest median expression (Additional file 10: Figure

S10A). Moreover, the accuracy of isoform-level estimates

steadily increases with transcript length for five of the

surveyed methods, with eight methods reporting the
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most accurate estimates for the longest transcripts.

Nevertheless, differences in the correlation coefficients

are moderate, in the range of approximately 0.04

(BitSeq) to approximately 0.14 (Cufflinks). Similarly, high

GC content appears to have a slight, unfavorable influence

on the accuracy of isoform abundance estimates, with all

but CEM and Cufflinks producing the least and the

most accurate estimates for transcripts with high, and

low GC content, respectively, and with the differences

in the range of approximately 0.02 (BitSeq) and approxi-

mately 0.13 (Scripture) (Fig. 3b). An intriguing

phenomenon becomes apparent when analyzing tran-

scripts according to the number of exons that they con-

tain (Fig. 3c): single-exon transcripts are quantified with

the least accuracy by all but two methods (Scripture and

eXpress). The differences in accuracy relative to bin

A B

C D

Fig. 3 Impact of gene structural features on expression estimates. All transcripts or genes expressed at medium levels (0 < log2 TPM <5.5) were
distributed across bins according to transcript length (a), GC content (b), the number exons per transcript (c), and the number of transcripts per
gene (d). Ranges of the corresponding values covered by each bin are indicated in the legends above each chart. In all cases, expression levels
were estimated with each of the indicated methods based on in silico-generated sequencing data (read depth = 30 million). The accuracy of
estimates was measured in terms of how well they correlate with true expression levels, expressed as the Spearman correlation coefficient rs, and
is indicated for each bin and method
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with the second-lowest accurately are generally small

(in the range of approximately −0.01 for BitSeq to ap-

proximately −0.05 for CEM) and thus the effect may, at

least in part, be explained by the previously described

influence of transcript length. However, for Cufflinks

this difference is very high (approximately −0.64). In-

deed, Cufflinks fails to produce non-zero estimates for

the vast majority of single-exon transcripts (Additional

file 11: Figure S11A), but not for transcripts containing

at least two exons (Additional file 11: Figure S11B, C).

This is not due to an incompatibility between Cufflinks

and our read processing/alignment procedure, because

applying Cufflinks to TopHat2-generated alignments

recapitulates the effect (Additional file 11: Figure

S11D, E, F). Interestingly, Scripture exhibits the oppos-

ite effect, producing the most accurate estimates for

single-exon transcripts (difference to next-best bin ap-

proximately 0.11). When excluding single-exon tran-

scripts and apart from Scripture, the influence of exon

number is marginal, with differences in accuracy across

bins in the range of approximately 0.01 (BitSeq) to ap-

proximately 0.05 (rSeq).

Similar to single-exon transcripts, genes with a single

transcript isoform that generate just one transcript spe-

cies are least accurately quantified by most methods ex-

cept Scripture (Fig. 3d). This is to a large extent a

consequence of the fact that single-isoform genes are in

fact those giving rise to single-exon transcripts (621 of

1,322 genes, that is, approximately 47.0 %). Additionally,

genes that have only a small number of associated tran-

scripts also have low expression levels (Additional file

10: Figure S10D). Otherwise, the complexity of the locus

appears to have little impact on the accuracy of isoform

abundance estimation: maximum differences in accuracy

between bins are in the range of approximately <0.01

(Sailfish) to approximately 0.09 (rSeq), with seven

methods exhibiting differences below 0.01. Taken to-

gether, our results indicate that, apart from a few

method-specific exceptions, the influence of gene struc-

tural features on the accuracy of estimates is small. Bit-

Seq, CEM, eXpress, IsoEM, RSEM, Sailfish, and TIGAR2

produce the most robust estimates across the assessed

features, with the standard deviations of accuracies

across the bins analyzed for each feature being around

or below 0.025 (Additional file 12: Figure S12). As an add-

itional quantification of the impact of various structural

features, Additional file 13 shows the P values of the

Kolmogorov-Smirnov’s goodness of fit tests carried out

for the log-ratio of estimated and expected levels for

genes/transcripts in specific bins compared to the entire

set of genes/transcripts with moderate expression level

(0 < log2 TPM <5.5 and 1.1 < log2 TPM <6.2 for tran-

scripts and genes, respectively; compare categories in

Fig. 2c, d).

Isoform- and gene-level estimates are consistent across

biological replicates

A basic test for any inference method is whether they

produce similar results when supplied with similar data.

For isoform quantification, reproducibility was generally

tested on data that was generated synthetically. To in-

vestigate this aspect, here we have also prepared RNA-

seq libraries from two batches of cells of two cellular

systems, the murine fibroblast cell line NIH/3T3 and the

human T cell line Jurkat. We then supplied the tools for

inferring transcript isoform abundances with the result-

ing short reads (Sailfish) or alignments (all other tools).

The replicate agreement, defined as the Spearman cor-

relation coefficient rs between the estimated abundances

of (groups of ) transcripts in the two human or mouse

replicates, was generally high. At the gene level, rs
ranged from approximately 0.82 for both human (Cuf-

flinks) and mouse (MMSEQ) to approximately 0.91 (hu-

man; BitSeq) and 0.90 (mouse; Sailfish). In contrast, at

the transcript level, the agreement was much lower and

varied considerably between tools, in the range of ap-

proximately 0.62 (TIGAR2) and 0.60 (MMSEQ) to ap-

proximately 0.95 and 0.91 (both Scripture) for human

and mouse (Fig. 4a and Additional file 14: Figure S13A,

respectively). However, only the estimates produced by

Scripture and BitSeq showed agreements substantially

above rs = 0.7. Most methods produce estimates that are

indicative of stronger fluctuations on the transcript com-

pared to the gene level (mean difference in replicate

agreement approximately −0.14 and −0.15, for human

and mouse), likely because a large proportion of iso-

forms are expressed at low levels or not at all. In a few

cases, differences between replicate agreement on the

gene and transcript level exceed 0.2 in at least one spe-

cies (MMSEQ, RSEM, rSeq, Sailfish, TIGAR2). On the

other side of the spectrum, Scripture exhibits a slightly

higher agreement between its transcript than its gene

level estimates across both organisms (differences of ap-

proximately 0.09 and 0.06 for human and mouse, re-

spectively). These behaviors likely reflect differences in

the models underlying different methods, particularly

with regard to how they treat low abundance transcripts

and how readily they assign reads to the minor and

major isoforms of a given gene.

3′ end sequencing provides independent estimates of

isoform abundance

While the tools for inferring isoform abundance have

been quite extensively tested on simulated data, obtain-

ing independent and comprehensive experimental refer-

ence data is not trivial. Quantitative PCR (qPCR) is the

experimental method of choice for the quantification of

transcript abundance. However, despite recent techno-

logical advances allowing qPCR experiments on a large-
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scale level, these methods are still cost- and resource-

intensive. We therefore applied our A-seq-2 protocol

[25] to prepare 3′ end sequencing libraries from the

same RNA preparations that were used for RNA-seq

and sought to use 3′ end sequencing-based abundance

estimates as an independent experimental reference

dataset for assessing the accuracy of expression esti-

mates produced by the benchmarked methods.

To assess the quality of these data we first quantified

and compared the usage of annotated 3′ end processing

sites that overlap the ends of GENCODE-annotated

transcripts (see Methods) between biological replicates.

We carried out this analysis both at the level of individ-

ual 3′ end processing sites as well as at the gene level.

For the latter, we aggregated the abundance estimates of

all 3′ end processing sites associated with individual

A B

C D

Fig. 4 Agreement between expression estimates for replicates of Jurkat cells. a Transcript isoform and gene expression levels were estimated
with each of the indicated methods from two biological replicates of human Jurkat cell RNA-seq data. The agreement between expression
estimates of the two replicates are indicated as Spearman correlation coefficients rs, both at the level of transcripts and genes. b A-seq-2-based 3′
end processing site expression level estimates for the two replicates are plotted against each other. The Spearman correlation coefficient rs is
indicated. c As in (b), but gene level estimates are compared. d As in (a), but with the addition of 3′ end processing site abundances. For
computing expression estimates for either feature type (transcript, 3′ end processing site, and gene), only those transcripts are considered that
end in annotated 3′ end processing sites (see main text and Methods for details)
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genes. Figure 4b (human) and Additional file 14: Figure

S13B (mouse) depict the Spearman correlation coeffi-

cients between 3′ end processing site abundances across

biological replicates, whereas Fig. 4c (human) and S13C

(mouse) show the same on the gene-level. In all cases,

the agreement was very high (rs >0.97), suggesting that

gene expression and 3′ end processing site usage are

highly similar in the replicates that we obtained from

both human and mouse cells.

Because in constructing the catalog of 3′ end process-

ing sites from published data we applied stringent valid-

ation criteria, the set of ‘known’ sites is probably biased

towards those that are used in relatively abundant tran-

scripts. We therefore wondered whether the agreement

between biological replicates is higher when one focuses

only on the GENCODE transcripts that end in a ‘known’,

annotated 3′ end processing site and that are likely to be

polyadenylated. This was the case for 46,801 human and

26,821 mouse transcripts (corresponding to 25,393 and

17,183 3′ end processing sites, respectively; see Methods

section). We selected these transcripts from the output

of each method and computed again the correlation be-

tween the estimated levels of transcripts, 3′ end process-

ing sites, and genes (the latter two by aggregation; see

Methods section) in the two replicates. Figure 4d and

Additional file 14: Figure S13D show the results for the

human and the mouse datasets, respectively. As ex-

pected, the correlation coefficients computed based on

transcripts with annotated 3′ end processing sites were,

without exception, higher than those computed based

on all GENCODE-annotated transcripts (Fig. 4a and

Additional file 14: Figure S13A). On the transcript level,

Spearman correlation coefficients ranged from approxi-

mately 0.74 (TIGAR2) and 0.76 (MMSEQ) to approxi-

mately 0.96 and 0.94 (Scripture) for human and mouse,

respectively. For 3′ end processing sites and genes,

Spearman correlation coefficients of at least 0.88 were

reached by all methods for the human and mouse data-

sets, respectively. The gene expression level estimates

provided by the count-based methods also exhibited

high agreement (>0.9 for both organisms).

Finally, we further filtered the set of considered tran-

scripts by excluding those whose 3′ ends were not cap-

tured in our A-seq-2 dataset. However, in contrast to

synthetic data, where the omission of absent transcripts

led to a strong increase in estimation accuracy, this did

not lead to a further improvement of the correlation be-

tween replicate samples (Additional file 15: Figure S14A

and B for human and mouse data, respectively). The

reasons for this behavior are at the moment unclear.

Nevertheless, this analysis indicates that estimates of

isoform expression are more reproducible when anno-

tated, and probably more highly expressed poly(A) sites

are considered.

Having established that the RNA-seq data lead to

highly reproducible estimates of isoform expression, we

asked whether the computationally estimated expression

levels within individual replicates agree with those that

were measured experimentally with the A-seq-2 method.

As before, we have aggregated the isoform abundance

estimates for each 3′ end processing site and these, in

turn, for each gene. Moreover, by selecting 3′ end process-

ing sites that overlapped the end of exactly one transcript,

we were able to assess estimation accuracy on the level of

individual transcripts. As shown in Fig. 5a (human) and

5B (mouse), the expression estimates produced by the sur-

veyed methods are in strong agreement with those based

on A-seq-2 across all samples from both human and

mouse, with the Spearman correlations approaching those

obtained on synthetic data. Agreement between transcript

estimates ranges between approximately 0.67 (Cufflinks)

and 0.81 (BitSeq) for the human, and approximately 0.71

(Cufflinks) and 0.84 (BitSeq) for the mouse data. When

considering 3′ end processing sites that overlapped with

the ends of multiple transcripts, correlations further im-

prove, with Spearman correlation coefficients for human

and mouse data now in the range of approximately 0.77

(Cufflinks) to 0.86 (BitSeq), and approximately 0.85

(BitSeq) to 0.74 (Cufflinks) respectively. For reference, the

corresponding scatter plots for the first replicates of each

dataset are presented in Additional file 16: Figure S15

(human) and Additional file 17: Figure S16 (mouse). Fi-

nally, aggregation of 3′ end processing site estimates per

gene led to a further increase in agreement by approxi-

mately 0.04 to approximately 0.08 in both organisms.

Assuming the A-seq-2-based estimates of expression as

‘ground truth’, Scripture (rs = approximately 0.92) and

RSEM (rs = approximately 0.88) delivered the most ac-

curate estimates at the gene level for human and

mouse data, respectively. Importantly, we found that

even when estimating gene-level abundance from bio-

logical data, isoform-aware methods yield more accurate

results than the broadly used count-based methods.

Across all methods, level of coarse-graining, and organ-

isms, the second replicate yields estimates that are slightly

more accurate, likely reflecting a batch effect pertaining to

the preparation of RNA-seq and A-seq-2 sequencing li-

braries. On all levels, differences in accuracy between

most methods are rather small, similar to what we ob-

served on synthetic data. Also similarly, enabling or disab-

ling bias correction in those methods that provide such an

option also did not substantially alter the accuracy of esti-

mates on experimental datasets (Additional file 18: Figure

S17) and in the case of CEM, we have observed a consist-

ent detrimental effect of bias correction across transcripts,

3′ end sides, and genes, and in both organisms.

As a practical guideline for those researchers studying

non-coding genes, we also wondered how accurately the
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surveyed methods can quantify the expression of differ-

ent classes of genes. Therefore, we computed the agree-

ments of expression estimates with those inferred with

A-seq-2 on genes annotated as ‘protein coding’, ‘lincRNA’

(long intergenic non-coding RNAs), and ‘antisense’ in

both human and mouse. For human, the 12,513 protein

coding genes amenable to quantification by A-seq-2 are

considerably more accurately quantified than lincRNA

A B

C D

Fig. 5 Agreement between the expression level estimated computationally from RNA-seq data and those measured with an independent experimental
method. a and b Abundances of 3′ end processing sites in two independent samples (circles: replicate 1, triangles: replicate 2) of human Jurkat (a) or
murine NIH/3T3 cells (b) were quantified with A-seq-2. Based on RNA-seq data obtained the same cell cultures, the abundances of transcripts ending at
these processing sites were estimated with each of the indicated methods and aggregated per processing site. 3′ end processing site estimates were
further aggregated per gene. The agreement between A-seq-2- and RNA-seq-based expression estimates was computed as Spearman correlation
coefficients (rs) for 3′ end processing sites, genes, and transcripts (when processing sites were associated with exactly one transcript). Refer to the main
text and the Methods section for further details. c and d Similar to (a) and (b), but only gene expression level estimates were considered and
Spearman correlation coefficients were computed independently for different classes of gene biotypes, both for the human (c) and mouse (d) data.
Plotted data represent means of the Spearman correlation coefficients calculated for each of two replicates
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(739) and antisense genes (739), with Spearman correl-

ation coefficients reaching values of up to approximately

>0.85, 0.8, and 0.7, respectively, for the different gene

classes (Fig. 5c). The absolute difference in estimate ac-

curacy across these classes is particularly striking for

Cufflinks, where the Spearman correlation coefficients

are reduced by almost 0.4 when trying to estimate

lincRNA or antisense RNAs rather than protein coding

genes. This may reflect the issue that Cufflinks seem to

have with quantification of single-exon transcripts.

Given the differences in median A-seq-2-based expres-

sion levels across each gene class (log2 PPM = appro-

ximately 3.73, −0.63, and −0.49 for protein coding,

lincRNA, and antisense genes and considering both rep-

licates), it is likely that the observed differences in esti-

mation accuracy are, at least in part, a function of the

true expression levels of these genes. Although the gen-

eral trend is the same across the mouse samples, the dif-

ferences in estimation accuracies between the different

gene types are not as pronounced as in human, and for

some methods the quantification of lincRNA genes is ac-

tually more (rSeq, Scripture) or approximately equally

accurate (BitSeq, TIGAR2) as that of protein coding

genes (Fig. 5d). This may reflect the true abundance of

these genes because A-seq-2 estimates of the median ex-

pression of lincRNA and antisense gene classes were

somewhat higher for mouse (log2 PPM = approximately

0.00 and 0.10, respectively) while those for protein cod-

ing genes were about the same (median log2 PPM =

approximately 3.67). Taken together, the estimates of

isoform expression based on biological data and evalu-

ated against expression measurements obtained with an

independent experimental method validate and recapitu-

late the most important conclusions derived from the

synthetic data: many of the surveyed methods are able

to estimate isoform abundances with good accuracy, par-

ticularly when true expression levels are high. Further-

more, employing any of these tools improves the

accuracy of gene expression level estimates relative to

widely used count-based methods.

Discussion

Accurate quantification of gene expression is essential

for the understanding of gene regulatory processes in

health and disease. Due to its large dynamic range, high

reproducibility, and the ability to detect previously un-

known transcripts, RNA sequencing has become the

method of choice for global expression profiling. How-

ever, despite the digital nature of the resulting data,

technical limitations (limited read length and non-

uniform transcript coverage) render their analysis chal-

lenging, especially when large and complex genomes of

higher eukaryotes, with frequent repeats and overlapping

gene structures, are involved. Accurate computational

methods for RNA-seq data analysis therefore remain in

high demand. This is reflected in the large number of

computational methods for estimating transcript isoform

abundance that were developed over the course of the

last 6 years. Naturally, the question arises which method

should best be used in a particular context. Here we

have tried to address this question in depth, using not

only synthetic data, as is typically done when the compu-

tational methods are developed, but also using estimates

that were obtained with an independent experimental

method for a specific type of isoforms, namely those that

arise from alternative polyadenylation. This is because

methods for global quantification of 3′ end site usage dis-

tinct from RNA-seq are available [25, 29–31] and have

been used quite extensively to analyze changes of 3′ UTR

isoforms across conditions. A drawback of these methods

is that they cannot distinguish between transcripts that

are processed at the same poly(A) site. However, although

most mammalian genes have multiple poly(A) sites, cur-

rently, over 60 % of the poly(A) sites whose expression

we have been able to measure with A-seq-2 have only

one associated transcript annotated in the human or

mouse GENCODE datasets. Thus, we believe that A-seq

(or another method for quantifying the usage of 3′ end

processing sites) can offer a good alternative to qPCR as

a comprehensive approach to transcript isoform quanti-

fication. Nevertheless, as the 3′ end sequencing proto-

cols are relatively new, it is likely that the computational

analysis of these data can be further improved.

Expecting that most users would – at least initially –

run the methods ‘out-of-the-box’, we sought to apply the

surveyed methods with default settings, and departed

from this general rule only to test the influence of spe-

cific options that the developers of the methods pro-

posed. Although we found that neither the use of

recommended short read aligners nor the activation of

bias correction generally improved estimation accuracy,

it is likely that the developers of the individual methods

or experienced users would be able to improve the per-

formance of individual tools in specific settings. During

the course of this study we discovered a number of as-

sumptions that the programs tacitly made and that af-

fected the interpretation of the results. Therefore, a

specific recommendation that we can make to devel-

opers is to ensure that sufficiently detailed information

on input requirements, potential pitfalls and the implica-

tion of specific options (ideally including usage exam-

ples) is provided.

Encouragingly, we found that most of the methods

that are currently used to estimate transcript isoform

abundance produce quite comparable and accurate re-

sults, both on synthetic and experimental data. As a gen-

eral trend, methods such as Scripture and Cufflinks,

whose main objective is to assemble/reconstruct transcript
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isoforms but that have also been co-opted for estimating

isoform abundance, perform poorer than methods specif-

ically designed for the latter purpose. However, such

methods could be part of the initial assembly of a com-

prehensive set of transcripts whose expression can be

subsequently quantified with a different approach [17].

Cufflinks is part of the popular ‘Tuxedo Suite’ pipeline

(Bowtie-TopHat-Cufflinks) and for the purpose of infer-

ring isoform abundances from RNA-seq data is prob-

ably superseded by the eXpress method developed by

the same group [32]. Importantly, the gene level expres-

sion estimates obtained by cumulating the abundances

of transcript isoforms inferred with almost any of the

surveyed methods are more accurate than those pro-

duced by ‘count-based’ methods that are widely used in

the analysis of gene expression. This is likely because

count-based methods either disregard or mis-assign

reads whose origin (genomic locus or isoform) cannot

be unambiguously determined. We therefore strongly

advise to use methods for transcript isoform quantifica-

tion (such as those benchmarked here) even when only

quantification at the gene level is desired.

Next to a general assessment of the accuracy of ex-

pression estimates produced by the tools, we also stud-

ied the impact of several transcript properties on the

accuracy of expression estimation. We found that pa-

rameters that directly influence the coverage of a tran-

script or gene by reads, such as sequencing depth and

true expression level, have a positive influence on esti-

mation accuracy, as has been observed before [33]. On

synthetic data, disregarding features that are not

expressed led to a strong increase in the accuracy of ex-

pression estimates, particularly on the level of isoforms.

Thus, as may be expected, estimates of low-abundance

isoform expression are not very reliable. How isoforms

that are expressed at very low levels (or not at all) are

treated in practice, varies between methods. Most

methods report (or imply) cases of ‘zero’ expression and

some allow the user to specify a minimum level of ex-

pression for reported transcripts. On the other hand, Bit-

Seq and MMSEQ do not enforce such a threshold and

instead attempt to assign non-zero priors even to tran-

scripts that are not supported by any read, based on fac-

tors such as the library size and transcript length. These

solutions represent lower and upper bounds on the ex-

pression of low-abundance transcripts (in contrast to

higher-abundance transcripts, for which precise estimates

of expression are sought). In typical RNA-seq experi-

ments, where many transcripts are expected to be

expressed, how precisely absent transcripts are treated

may not be essential. However, in the case of, for example,

single cell sequencing, the proportion of annotated tran-

scripts that are not detected can be quite large and one

should be aware that the meaning of the expression values

that the programs report are not entirely the same for

expressed and not expressed transcripts. Next to

coverage-related factors, we found that the length and GC

content of transcripts as well as the complexity of the

gene locus (exons per transcript and transcripts per gene)

have a small impact on the accuracy of inferred expression

levels, which is probably of more interest to the developers

rather than to the average user.

To ensure the widest applicability of our findings, we

have based our study on single-end, short read (50 nt)

data. Illumina’s paired-end sequencing technology, which

has been employed in previous comparisons of isoform

abundance estimation methods [21, 33], provides add-

itional information that may be used by many of the

evaluated methods to improve the assignment of read

fragments to the correct isoform and thereby the accur-

acy of abundance estimates. As has been previously

demonstrated [33–35], increasing the read length should

also enhance the accuracy of abundance estimates, be-

cause it leads to a reduction in the fraction of reads that

cannot be unambiguously assigned to the correct iso-

form. Indeed, increasing the read length is a current

trend in the field of next generation sequencing. For ex-

ample, Pacific Biosystems technology now allows full-

length transcript sequencing [15], although at limited

throughput.

While most methods produce comparable and fairly

accurate estimates of transcript isoform abundance, they

differ more strongly in their computing needs. In some

cases, speed comes at the cost of increased memory re-

quirements, which is evident for example with IsoEM,

which is extremely fast, but uses tens of GB of memory.

Nonetheless, with the increase in the number and size of

the datasets that one typically analyzes, speed and scal-

ability of processing become very important consi-

derations for the utility of a program. The recently

developed Sailfish is of particular interest in this regard

because its running times scale well within the tested

range of sequencing depths, while the memory footprint

remains reasonable. Moreover, its alignment-free k-mer-

based approach disposes of the time-consuming step of

aligning reads to a reference genome or transcriptome.

For typical datasets of approximately 100 million reads,

most programs use 1–20 GB of memory and run for

1–2 h. An exception is TIGAR2, which produces highly

accurate expression estimates that come at the cost of

both high running times and high memory use.

One important aspect that was beyond the scope of

the current study is that in many studies, the interest is

the identification of transcript isoforms that are differ-

entially expressed between two conditions, rather than

the quantification of isoform abundance in a specific

condition. The estimates of isoform abundance inferred

with the methods that we tested here can in principle be
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used in subsequent statistical tests for differential ex-

pression, but the issue of the underlying model has not

been entirely addressed. If sufficient replicates are avail-

able, two-sample parametric or non-parametric tests

can be used. However, due to the high costs of RNA-seq

experiments, the availability of more than a few repli-

cates is very rare. Instead, when the number of repli-

cates is small, accurately accounting for the different

sources of variability in the data is important. Differen-

tial expression analysis based on RNA-seq data is fre-

quently done with programs such as baySeq [36],

DEGSeq [37], DESeq [38], or edgeR [39] (reviewed in

[40]). These programs work on (integer) count data and

use specific models for the number of reads that are ex-

pected from individual ‘features’ such as exons or genes.

Therefore, they are not appropriate for the estimate of

transcript abundances that are obtained with the pro-

grams that we analyzed here. Fortunately, some of the

evaluated programs have additional modules for differ-

ential expression analysis. BitSeq has a built-in function-

ality for differential expression analysis based on the

transcript expression levels estimated by the tool. The

developers of Cufflinks and eXpress suggest Cuffdiff

[41] for gene and transcript differential expression

based on their respective outputs. The developers of

IsoEM suggest the bootstrapping-based IsoDE [42] for

differential expression analysis, but this tool is restricted

to comparisons at the gene-level only. MMSEQ’s devel-

opers suggest MMDIFF [43] which performs model

comparisons and takes as input the posterior summaries

from the MMSEQ tables. Alternatively, they provide in-

structions to feed MMSEQ-estimated counts to count-

based differential expression analysis tools like DESeq

or edgeR [44]. eXpress and Sailfish developers also sug-

gest to feed the supplied (rounded) ‘effective counts’,

and ‘expected number of reads’, respectively, into one of

the count-based differential analysis tools mentioned

above. Finally, RSEM developers suggest EBSeq [45], a

Bayesian differential expression analysis method for

genes and isoforms across two or more biological condi-

tions. EBSeq is integrated into the RSEM suite [46].

Conclusions
In summary, several methods for the inference of tran-

script isoform abundance can accurately quantify

expressed transcripts even from relatively small short-

read libraries and should thus be adequate for the ana-

lysis of both past and present RNA-seq datasets. Their

performance is largely not affected by structural features

(number of exons, transcript length, GC content) of the

genes/transcripts, although, as expected, abundant tran-

scripts are quantified more accurately compared to rare

transcripts. Importantly, our analysis indicates that the ex-

plicit quantification of transcript isoforms leads to more

accurate estimates of gene expression levels compared to

the ‘count-based’ methods that are broadly used currently.

Given the wealth of tools available, the user can largely

base his choice of method on criteria related to usability,

available processing and memory capacities, compatibility

with pre-existing data processing pipelines, and the de-

sired downstream analyses (see Table 2). Especially prom-

ising is the most recently proposed approach that relies on

k-mer frequencies, bypassing entirely the read-to-genome/

transcriptome alignment and thereby enabling analysis of

very large collections of samples, such as those that have

started to emerge from patient studies. Developers may

profit from our study setup, particularly our efforts to pro-

vide compatible datasets to tools with quite different

requirements as well as our approach at validating estima-

tion accuracies of a particular type of isoform with an in-

dependent large-scale experimental method. We propose

that methods such as 3′ end sequencing and cap analysis

of gene expression (CAGE; [47]), which allow quantifi-

cation of alternative polyadenylation and transcription

start sites, respectively, could complement validation

schemes based on synthetic data and quantitative PCR

in future or ongoing assessments of RNA-seq analysis

methods, such as, for example, by the MAQC-III/RNA-

C consortium [48].

Methods

Genomes, gene annotations, and transcriptome

sequences

The hg19 (human) and mm10 (mouse) genome assem-

blies were obtained from UCSC Genome Bioinformatics,

University of California, Santa Cruz [49]. Haplotype

chromosome versions were discarded. Releases 19 and

M2 of the GENCODE gene annotation sets GENCODE

[50] were used for the analysis of human and mouse

data, respectively. Version numbers were stripped from

gene and transcript identifiers. In the human annotation

set, all features on the Y chromosome that are present,

in identical form, on the X chromosome have gene iden-

tifiers of the form ‘ENSGRx’ (with x being a 10-digit

number), and the corresponding features on the X chro-

mosomes have identifiers of the form ‘ENSG0x’. We dis-

carded the former to avoid essentially duplicate features.

Sequences of annotated transcripts (‘transcriptomes’)

were obtained from ENSEMBL (release 74, compatible

with GENCODE v19 and vM2) [51]. Genome and tran-

scriptome sequences in FASTA format were indexed

with segemehl [52].

Generation of synthetic sequencing data

To generate in silico reads, we have used the Flux Simula-

tor software [26], with the hg19 genome and GENCODE

v19 annotation set processed as described above. Because

we focused on the quantification of long RNAs, we further
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removed from the annotation set, all entries whose gene

or transcript type attributes matched either ‘miRNA’, ‘mis-

c_RNA’, ‘rRNA’, ‘snoRNA’, ‘snRNA’, ‘Mt_rRNA’, or ‘Mt_tRNA’.

Taking into account the annotated transcripts introduced

above as well as a target number of transcript molecules

(we chose 5 million), Flux Simulator randomly assigns

expression ranks to transcripts according to Zipf ’s

Law. The software then attempts to model the various

steps in a typical RNA-seq library preparation proto-

col, including fragmentation, reverse transcription, and

PCR amplification, to generate reads. We ran Flux

Simulator with the options --express, --library,

and --sequence. Additional parameters were supplied

in a parameter file (Additional file 19) as outlined in the

Flux Simulator manual [53]. Flux Simulator does not na-

tively support generation of directional single-end read li-

braries. To obtain these, we instead generated a pool of

692,414,670 paired-end reads from which we then dis-

carded all antisense mate sequences, as suggested by the

Flux Simulator developers. To facilitate downstream pro-

cessing, the identifiers of the remaining reads were simpli-

fied and their sequences capitalized. Identical read

sequences were collapsed with the fastx_collapser

[54]. Finally, poly(A)-tails - introduced in the simulation -

were removed with the cutadapt software [55] by speci-

fying a stretch of 50 adenines as the 3′ adapter and the

non-default options --overlap=1 and --minimum-

length=15. This resulted in a set of 298,435,172

poly(A)-free, directional, single-end reads. From this initial

set, we randomly selected, progressively, approximately

100 (100,001,950), 30 (30,004,152), 10 (10,000,760), 3

(2,998,971), and 1 (999,436) million reads to analyze the

scaling behavior of the programs.

Preparation of sequencing libraries

Human Jurkat T lymphocytes (ATCC TIB-152) [56] and

NIH/3T3 mouse embryonic fibroblasts (ATCC CRL-1658)

[57] were cultured in RPMI medium (Sigma) at 37°C and

5 % CO2. Cells were collected at approximately 70 % con-

fluency after trypsinization. 3′ end libraries were gener-

ated by the A-seq-2 protocol, which captures sequences

immediately upstream of mRNA 3′ end processing sites

and poly(A)-tails [58], and directional RNA-seq libraries

were prepared according to the Illumina-provided proto-

col. For both protocols, poly(A)-positive RNA was isolated

from the cells with the ‘Dynabeads mRNA DIRECT Kit’

(Ambion) and fragmented by alkaline hydrolysis to frag-

ment sizes of 150–300 nt. Following reverse transcription

and PCR amplification, the libraries were sequenced

single-end with a read length of 51 nucleotides on an Illu-

mina HiSeq-2000 platform.

Pre-processing of human and mouse RNA-seq data

Potential 3′ adapter and poly(A)-tail fragments were

sequentially removed from FASTQ-formatted short

reads sequences with two iterations of cutadapt [55],

Table 2 Features and performance summary of the surveyed methods

Method Extensive
documentation

Standard file
formats

Gene-level
estimates

Reconstruction
supported

DE analysis Efficient
multi-threading

Fast Small memory
footprint

BitSeq X X X X

CEM X X X X

Cufflinks X X X X X X

eXpress X X X X

IsoEM X X X X

MMSEQ X X X X X

RSEM X X X X

rSeq X X X

Sailfish X X X X X X

Scripture (X)* X X

TIGAR2 X X

To facilitate a user’s choice of method, we indicate which methods meet various criteria of usability, functionality, and performance, as follows: ‘Extensive

documentation’ - documentation that goes beyond the description of parameters is provided (document, web page, FAQ which allowed us to run a given

method confidently and without help from developers); ‘Standard file formats’ - the method exclusively operates on the indicated file formats for transcript

sequences (FASTA), gene/transcript annotations (GFF/GTF or BED12), read sequences (FASTA or FASTQ), and read alignments (SAM/BAM as defined in [65] and

produced by most modern aligners); ‘Gene-level estimates’ - estimates of expression on the gene level are provided in addition to those at transcript level;

‘Reconstruction supported’ - the method can also reconstruct transcript models based on the provided sequencing/alignment data; ‘DE analysis’ - the developers

make a general recommendation or provide an integrated solution for differential analysis of transcript/isoform expression; ‘Efficient multi-threading’ - the method

efficiently makes use of multiple cores (speedup of at least two-fold in at least three out of five datasets; see Additional file 2: Figure S2A); ‘Fast’ - processing of 100

million synthetic reads or their corresponding alignments completed in less than 1 h (16 cores and 64 gigabytes provided; see Fig. 1b); ‘Small memory footprint’ - all

synthetic datasets could be processed with less than 8 gigabytes of memory (independent of the number of cores used; see Fig. 1c, d). Additional details are provided

in the main text. *The documentation for the complete Scripture suite is extensive, but a detailed description of the archive ‘ScriptureScorer.jar’ that contains

only the RNA-seq quantification module which we used here is not available. Furthermore, the options for this module are different from those described for

the main program.
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specifying the 3′ adapter sequence and a stretch of 50

adenines, respectively, to the --adapter option. Other

non-default options were --overlap=1 and --mini-

mum-length=15. Identical sequences were collapsed

with the fastx_collapser [54].

Alignment of synthetic and experimentally obtained

reads to genomes and transcriptomes

The experimentally obtained sequence sets, as well as

the five in silico-generated read subsets (FASTA-format-

ted), were aligned to the genome and transcriptome of

the respective species with segemehl 0.1.7 [52], with

default parameters (minimum percentage of matches: 90

%) and without using the spliced alignment option.

Anti-sense alignments to transcripts were discarded

from further analysis. For the surveyed methods that re-

quire input alignments in ‘genome space’, transcriptome

alignments were converted to genomic coordinates with

custom scripts based on the gene models provided in

the GENCODE v19 annotation file. Directly and indir-

ectly obtained genome alignments in SAM format were

merged, duplicate alignments resulting from the conver-

sion between transcript and genome coordinates were

discarded, and the remaining alignments were filtered

such that for each read only the alignments with the

smallest edit distance were kept. For methods requiring

input alignments in ‘transcriptome space’, the transcrip-

tome alignments of each reads that had an edit distance

larger than the minimum distance obtained in aligning

the read to the genome were discarded.

During the course of the study, we have noticed that

the transcript isoform quantification methods that we

evaluated make certain assumptions about the format of

the input alignment files and that in some cases these

assumptions only hold for certain short read aligners or

for outdated file formats. We therefore implemented

additional post-processing steps to ensure that the infor-

mation required by individual programs is present in the

alignment file is the appropriate form. (1) We ‘uncol-

lapsed’ the reads: across all alignment files, alignments

corresponding to collapsed reads were ‘cloned’, but a

randomized QNAME name was assigned to each indi-

vidual read that was only re-used for additional align-

ments of the same read. (2) To avoid misinterpretation

of tag fields, all custom segemehl tags were removed.

(3) Reads aligning to more than one reference locus are

reported by segemehl as individual alignment records

with identical read names (QNAME field). In accordance

with the SAM specifications [59], we have further added

a linked-list encoding for such reads. Specifically, we

have designated the first out of such a group of align-

ments as the primary (0x100 bit of the FLAG field un-

set) and introduced CC and CP tags, pointing,

respectively, to the reference sequence name and the

starting position of the following alignment. All

remaining alignments were designated secondary (0x100

bit set), and CC and CP tags were added to all align-

ments but the last in the list. Moreover, the HI (0-based

‘hit index’) tag was added to all alignments of ‘multi-

mapping’ reads. The NH (‘number of hits’) tag was re-

computed for all reads in a given alignment file. (4)

segemehl reports a default mapping quality (MAPQ)

of 255 for each alignment record. Following the example

of TopHat2 [60], we have reset the mapping quality

values based on the number of alignments reported for a

given read. Specifically, we have assigned mapping qual-

ities of 50 (NH = 1), 3 (NH = 2), 1 (NH = 3 or 4), and 0

(NH = 5 or more). (5) We introduced sequencing quality

strings (QUAL field). For in silico-generated reads,

which did not have such scores associated, strings of ‘I’

characters that match the length of the read sequence

(SEQ field) were used to denote maximum quality scores

(according to the Sanger FASTQ format). In the case of

the experimental RNA-seq libraries, we used the quality

scores that were provided in the initial FASTQ files that

were obtained from the sequencing facility. The data

processing was automated with the help of the Anduril

[61] data analysis framework. To test the influence of

the alignment program, we have also generated align-

ments of in silico generated reads with Bowtie (version

1.0.0) [62] and TopHat2 (version 2.0.10) [60]. The out-

put of these programs were used without further

processing.

Analysis of 3′ end sequencing data

The reads obtained with the A-seq-2 protocol for 3′ end

sequencing have a particular structure: they are the re-

verse complement of 3′ end RNA fragments and further

have the sequence AAANNNN downstream of the actual

3′ end [58] for details). To recover the mRNA 3′ ends

from these sequenced reads, we therefore first trimmed

the expected NNNNTTT sequences from the 5’ ends of

the reads, removed the 3′ adapter with the removeA-

daptor.pl function of the CLIPZ server [63] and kept

only sequences longer than 15 nt. We reversed comple-

mented the sequences and mapped them to the corre-

sponding genome and transcriptome with segemehl

v0.1.7 [52] and default parameters. Next, we trans-

formed transcriptome alignments to genomic coordi-

nates, merged them with the genome alignments,

discarded duplicates and kept for each read only those

alignments with the smallest edit distance (see above).

Finally, we collapsed the 3′ ends of the aligned short

reads and produced a BED file recording the exact gen-

omic positions of 3′ end cleavage together with the ag-

gregated read counts. For reads that mapped to multiple

loci in the genome, counts were equally distributed

across loci. As we and others observed before, 3′ end
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formation appears to occur with a certain degree of mi-

croheterogeneity, that is, prominent 3′ end sites are

usually being flanked by less frequently used 3′ end

sites. Because these latter sites may not reflect func-

tional biological variation, closely spaced 3′ end sites

are typically clustered into 3′ end processing regions

[25]. Many 3′ end sequencing protocols capture se-

quences that result from priming at internal adenosine

stretches rather than poly(A)-tails at the step of cDNA

synthesis. To exclude a protocol-specific bias in 3′ end

quantification, we only analyzed 3′ end processing sites

that are supported by at least two independent 3′ end

sequencing protocols. These are annotated in our in-

house polyAsite database (manuscript in preparation)

[64]. For each 3′ end processing region, we determined

the number of overlapping A-seq-2-inferred 3′ end

reads, which we used as a measure of the expression of

the corresponding 3′ end processing region. In total, we

quantified the expression of 90,128 and 61,457 3′ end

processing regions in human and mouse, respectively.

Estimation of transcript isoform abundance

With the exception of Sailfish (see below), all of the

programs compared in this study use alignments of

reads to either the transcriptome or the genome. We

used the samtools [65] suite to sort or interconvert

the SAM/BAM alignment files obtained from mapping

reads to genomes/transcriptomes. To detect and quan-

tify ‘multi-mapping’ reads, several methods require that

the alignment files are ordered such that the align-

ments of a given read occur one after the other. Add-

itionally, some methods further require that reads that

are similar in sequence (and their associated align-

ments) are randomly distributed in the input file. This

is of clear relevance for eXpress, which processes align-

ments ‘on-line’ and trains its parameters from the data.

In such cases, ‘non-random’ occurrence of the read

alignments may lead to biased parameters and output.

Typically, both of these conditions (reads occur in ran-

dom order while all alignments of a given read are

grouped together) are met when alignments are sorted

by the names of the reads, which is recommended in

the documentation of these methods. But if the pre-

processing pipeline includes sorting and renaming

steps (for example, collapsing and uncollapsing of reads

with identical sequences), sorting the alignment file by

read names may lead to a situation in which neither

condition is fulfilled. Unfortunately, the precise as-

sumptions about the order in which read alignments

should appear in the input file are not typically men-

tioned in detail in the documentation of the programs.

We thus recommend that users ensure that the order

in which reads appear in the alignment file that is

used as input to an isoform quantification method is

‘randomized’ whenever the quantification method rec-

ommends sorting alignments by read name.

Scripture and CEM require annotation files in a BED-

based format which supports multiple fragments (that is,

exons) per entry and is known as BED12 or BED12+3.

These were generated from the GENCODE-provided GTF

annotation files with the help of the R/Bioconductor pack-

age rtracklayer [66]. Because some methods required

the mean and standard deviation of the fragment/read

length distribution, we calculated these from the align-

ment files with a custom script. In the following, the steps

taken to execute each surveyed program are outlined.

BitSeq [67, 68] uses as input transcript sequences in

FASTA format and alignments of reads to the transcrip-

tome in SAM or BAM format, sorted by read name

(randomized). We have used the command-line version

of BitSeq (version 0.7.5), but an R/Bioconductor version

is also available.

The first step in BitSeq is to parse the alignment file to

calculate probabilities of individual reads originating from

individual transcripts:

parseAlignment \

<alignments_transcriptome> --trSeqFile \

<sequences.fa> --outFile \

<out_prefix.prob> --trInfoFile \

<out_prefix.trx> --uniform \

Then the mean transcript expression is estimated with

a Variational Bayes inference algorithm:

estimateVBExpression <out_prefix.prob> \

--outPrefix <out_prefix> \

--outType RPKM –trInfoFile \

<out_prefix.trx> --samples 1000 --seed 1 \

By default, when no read alignments are assigned to a

given transcript, BitSeq sets the expression estimate of

the transcript to a ‘prior’ that depends on the effective

transcript length and the sequencing depth. When indi-

cated and in communication with the developers, we

have identified these cases by finding transcripts for

which the expected read count (alpha parameter of the

Dirichlet distribution) equals exactly 1 and replaced their

RPKM estimates with zeros.

CEM [69] takes as input a BED12 file of transcripts

and a SAM or BAM file of genomic alignments, sorted

by genomic coordinates. We ran CEM (processsam

version 2.5.2) as follows:

python runcem.py --annotation \

<annotations.bed12> --forceref \

--prefix <out_prefix> \

<alignments_genome.bam> \
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Where indicated, we have set the --usebias option

to evaluate CEM’s built-in bias correction functionality,

which attempts to correct for positional, sequencing,

and mappability biases.

Cufflinks [70] takes as input an annotation file in

GTF format and a SAM or BAM file of read align-

ments to the genome, sorted by genomic coordinates.

We ran Cufflinks version 2.1.1. with the following

command:

cufflinks --GTF <annotations.gtf> \

--library-type fr-secondstrand \

--frag-len-mean <fragment_length_mean> \

--frag-len-std-dev \

<fragment_length_sd> --multi-read-

correct --output-dir <out_dir> \

<alignments_genome.bam> \

Only expression estimates with ‘fpkm_status’ ‘OK’

were considered. All other estimates were set to zero.

eXpress [32] takes as input a FASTA file of transcript

sequences and a SAM or BAM file of transcriptome

alignments, sorted by read name (randomized). We ran

eXpress version 1.5.1. with the following command:

express --no-update-check --f-stranded \

--frag-len-mean \

<fragment_length_mean> –frag-len-stddev

<fragment_length_sd> \

--output-dir <out_dir> <sequences.fa> \

<alignments_transcriptome.bam> \

As eXpress is correcting for biases introduced during

library preparation (specifically, fragmentation and prim-

ing) by default, we have set the --no-bias-correct

option when evaluating the performance of methods

without bias correction.

IsoEM [71] takes as input a GTF file with transcript

annotations and a SAM file of genomic alignments,

sorted by read name (randomized). We obtained instruc-

tions for running IsoEM from [72] and ran the program

(version 1.1.1) as follows:

isoem –GTF <annotations.gtf>--\

fragment-mean \

<fragment_length_mean> --fragment-std-

dev \

<fragment_length_standard_deviation> \

--directional -o <out_file> \

<alignments_genome.sam> \

IsoEM also attempts to correct for fragment sampling

biases resulting from random hexamer priming during

reverse transcription and to evaluate this functionality,

we have generated isoform abundance estimates with

the -b option.

MMSEQ [73] (version 1.0.8) takes as input a file with

transcript sequences in FASTA format as well as a BAM

file with read alignments to the transcriptome, sorted by

read name (randomized). We ran MMSEQ based on the

provided instructions [74]. In particular, we first mapped

reads to transcripts:

bam2hits <sequences.fa> \

<alignments_transcriptome.bam> > <hits> \

and then obtained expression level estimates via:

mmseq <hits> <out_prefix>

Note that unlike all other methods, MMSEQ does not

report RPKM values, but rather the means μ of the

posterior isoform expression distributions. As these

are reported as log (base e) values, we first exponen-

tiated them for our analyses. Similar to BitSeq,

MMSEQ defaults to assigning ‘prior’ expression esti-

mates to those transcripts for which no read/align-

ment evidence can be found. Where indicated, and in

communication with the developers, we have identi-

fied such cases by substituting in MMSEQ’s output

the log μ estimates for all transcripts or genes with a

‘unique_hits’ count of 0 with ‘NA’.

RSEM [34, 35] (version 1.2.18) works on alignments of

reads to transcripts (sorted by read name/randomized in

SAM or BAM format). Based on GENCODE annota-

tions, we first generated a tab-delimited lookup table be-

tween ENSEMBL gene (first field) and transcript IDs

(second field). For each organism (human or mouse), we

then generated RSEM-specific indices of the correspond-

ing ENSEMBL transcript sequences (FASTA) with the

following command:

rsem-prepare-reference --no-polyA

--transcript-to-gene-map

<gene_id_transcript_id_table>

<sequences.fa> <index_prefix> \

RSEM requires read alignments to the transcrip-

tome. However, because the tool cannot process align-

ments that contain insertions or deletions (indels), we

purged the alignment file of any entries that contained

disallowed characters in their CIGAR string fields (D,

H, I, N, P, S). After recalculating read length distribu-

tions across the resulting alignment files, we estimated

maximum likelihood expression levels as follows:

rsem-calculate-expression --sam --strand-

specific --no-qualities \
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--seed-length 15 --fragment-length-mean

<fragment_length_mean> \

--fragment-length-sd

<fragment_length_sd> \

<alignments_transcriptome.sam>

<index_prefix> <out_dir>

To evaluate RSEM’s built-in bias correction functional-

ity, which attempts to correct protocol-specific 5′ or 3′

positional biases, we have set the --estimate-rspd

(read start position distribution) option where indicated.

rSeq [75] takes as input a FASTA file of transcript se-

quences and a SAM file with read-to-transcript align-

ments, sorted by transcript names and coordinates.

Because the header for each transcript in the sequence

file is expected to be of the form ‘gene_id$$transcript_id’,

we used custom scripts to construct these identifiers and

substitute the reference sequences in the sequence dic-

tionary and alignment entries of the transcriptome align-

ment file accordingly. We then obtained rSeq-based

(version 0.2.0) isoform expression levels with the follow-

ing command:

rseq expression_analysis <sequences.fa> \

<alignments_transcriptome.sam>

Sailfish [76] (version 0.6.3) takes as input transcript se-

quences in FASTA format and sequenced reads in

FASTQ (or FASTA) format. Sailfish does not required

reads to be ordered in a specific manner. The first step

in running Sailfish is to index the transcriptome

sequences:

sailfish index -t <sequences.fa> -o \

<index> -k 20 \

and then the isoform abundance estimates are obtained

with the following command:

sailfish quant -i <index> -l T=SE:S=S -r \

<reads> -o <output_prefix> \

Sailfish considers transcript length, GC content, and

dinucleotide frequencies as possible sources of bias and

uses a regression model to correct for them. By default,

Sailfish reports its output both with and without these

‘bias correction’ settings. Unless otherwise noted, we

have used the estimates without bias correction.

Scripture [77] (archive ScriptureScorer.jar provided by

the developers on 6 March 2014) is a tool that was de-

signed for reconstructing and estimating the relative

likelihoods of different isoforms. Scripture takes as input

a file of transcript annotations (in BED12 format) and a

SAM or BAM file with read-to-genome alignments,

indexed and sorted by coordinates. We ran Scripture

based on instructions provided to us by its developers as

follows:

java -Xmx<XX>g -jar ScriptureScorer.jar \

-annotations \

<annotations.bed> -alignments \

<alignments_genome.bam> -strand \

<first> -singleEnd -minMappingQuality \

5 -out <out_file> \

TIGAR2 [78] (update from 6 March 2014) takes as

input a FASTA file of transcript sequences and a SAM

or BAM genome alignments file, sorted by read name

(randomized). We used the following command to run

TIGAR2:

java -Xms<XX>g -Xmx<XX>g -jar Tigar2.jar \

<sequences.fa> <alignments_genome.bam> \

--alpha_zero 0.1 <out_file> \

Normalization and stratification of expression ‘ground

truths’ and estimates

In order to assess the accuracy of expression level esti-

mates, we first converted the ‘ground truth’ transcript

abundances provided in the Flux Simulator output for

the simulated data and the by the A-seq-2 data (proc-

essed as described above) for the human and mouse

samples to a standard library size of 1 million reads. We

refer to these measures as transcripts per million tran-

scripts (TPM) and processing regions per million process-

ing regions (PPM), respectively. Since the benchmarked

methods already supplied estimates in normalized expres-

sion units, no further processing of these values was re-

quired. In particular, we have used the reads/fragments

per kilobase of exon model per million mapped reads

(RPKM/FPKM) units wherever available, thus accounting

not only for differences in library sizes but also for differ-

ences in transcript lengths. The latter is necessary because

the number of fragments obtained from a given RNA dur-

ing library preparation, and thus the read count for that

transcript, is proportional to its length [79]. Only in the

case of MMSEQ we have used the exponential of the re-

ported means of the posterior distributions μ instead of

RPKM (see above). However, these units are largely

equivalent as they both control for sample size and fea-

ture length [73]. In cases where estimates were absent

for individual transcripts, these were set to zero. For the

comparisons of RPKM estimates with A-seq-2-based

estimates (human and mouse), only those poly(A)-pro-

cessing regions were considered that correspond to the

ends of transcripts annotated in the GENCODE annota-

tion sets (and vice versa). However, to account for

the fact that only poly(A)-containing transcripts are
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efficiently captured by our sequencing library prepar-

ation protocols, we only considered transcripts which

we presume could have been polyadenylated (annotated

as either ‘antisense’, ‘lincRNA’, ‘nonsense_mediated_

decay’, ‘processed_pseudogene’, ‘processed_transcript’,

‘protein_coding’, or ‘retained_intron’). RPKM estimates

for the remaining processing sites (25,393 and 17,183

for v19 human assembly version and M2 mouse assem-

bly version, respectively) were then obtained by sum-

ming the RKPM values of the transcripts ending at

individual poly(A)-processing regions. Similarly, we cal-

culated gene-level expression estimates by summing the

RPKM values of all transcripts (simulated data) or the

TPM values of all processing regions (human and

mouse data) annotated for each gene. Some of the

benchmarked methods (Cufflinks, IsoEM, MMSEQ,

RSEM, and rSeq) already provide gene-level estimates.

However, for Cufflinks and MMSEQ these are not fully

equivalent to the sums computed as described above. In

the case of Cufflinks, this is apparently because of re-

sidual counts that could not be confidently assigned to

any of the isoforms of a gene, since in the transcript out-

put for that method (‘isoforms.fpkm_tracking’) there is

reported for each gene an estimate that accounts for the

difference between the sum of transcript isoform esti-

mates and the gene expression estimates reported in a

separate file (‘genes.fpkm_tracking’). For MMSEQ, gene

level estimates are produced by aggregating the Markov

chain Monte Carlo traces for the transcripts originating

from a gene locus. Whenever gene-level estimates of ex-

pression were directly reported by a method, we have

used these. As with transcripts, missing gene expression

estimates were set to zero.

Count-based gene-level estimates of expression

Although our primary interest was to assess the accuracy

of methods for isoform expression profiling, a lot of stud-

ies rather limit themselves to gene-level estimates of gene

expression. The question then arises of how the methods

that are used for obtaining gene-level estimates compare

with those that are specifically designed for estimating iso-

form abundance but can be co-opted for the estimation of

gene-level expression levels as well. One method for esti-

mating gene-level expression is ‘union exon’-based count-

ing. To implement this method we have selected the exon

entries from the GENCODE annotation files, grouped

them by the ENSEMBL gene identifier, and merged over-

lapping exons for each gene. When analyzing human or

mouse data, we have discarded the exons of transcripts

that do not end in annotated poly(A)-processing regions

or that are unlikely to be polyadenylated, analogous to the

filtering that we applied to transcripts used in the bench-

marking (see above). We then generated per-gene counts

by intersecting the genomic alignments of the different

datasets with the resulting ‘pseudoexons’, using the

function summarizeOverlaps of the R/Bioconduc-

tor package GenomicAlignments [80] with options

--ignoreStrand=FALSE, --mode=‘Intersec-

tionStrict’ and --interFeature=TRUE. While

this procedure prevents double-counting of reads and is

frequently applied in the context of gene counting in

RNA-seq experiments, reads aligning to multiple gen-

omic loci as well as those aligning to loci for which

more than one feature is annotated are not considered.

Additionally, many read alignments covering exon-

exon-junctions are discarded because these exon-exon

junctions are not part of the set of junctions between

pseudo-exons. To appropriately handle such cases we

implemented also a ‘transcript’-based counting method

as follows: We used the R/Bioconductor package

rtracklayer [66] to convert the GENCODE-

annotated exons of either all (in silico-generated data)

or the filtered set of transcripts (human and mouse data;

see above) to the BED12 / BED12+3 format, a tabular

format able to encode gaps. We then intersected the

genomic alignments for each dataset with the corre-

sponding annotation file using bedtools mode

intersect [81] such that overlaps were only reported

if the entire read alignments, including the gaps that

could correspond to introns, matched the transcript

alignments on the sense strand (options -s and -f 1).

The resulting overlaps were summarized, further dis-

tributing reads equally to all (possibly overlapping) an-

notated loci to which they aligned with the same edit

distance. Thus, we first determined the number of gen-

omic loci l for which overlaps were reported for a given

read. For each of these, we then added 1
Σi¼1 ::lgi

to the total

count of all genes that give rise to one or more tran-

scripts from a locus i. For each library, the counts pro-

duced by each of these counting methods were then

converted to RPKM by dividing by (1) the total number

of reads that could be successfully aligned to the gen-

ome and (2) the total length (in nucleotides) of the

‘union exons’ (see above) of the considered transcripts,

followed by multiplication by 1 billion.

Evaluating the accuracy of gene/isoform abundance

estimates

We assessed the accuracy of the methods in terms of

Spearman correlation coefficients between the known

(simulated data) or independently estimated abun-

dances (A-seq-2) and the abundances inferred with the

individual methods. Depending on the type of data and

analysis, we applied this procedure on the level of tran-

scripts, poly(A)-processing regions, and/or genes, either

considering all features or subsets thereof, grouped

by common features (for example, expression ranges,
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structural). Where indicated, we have further computed

the Pearson correlation coefficient and the root mean

square error. In these cases, we have first set all expres-

sion levels (true or estimated) below 0.03125 (the log2

of which is −5) to that value and log2-transformed the

resulting ‘pseudocount’-adjusted values.

Availability of supporting data

Raw sequencing (RNA-seq and A-seq-2) and in silico-gen-

erated read files are available in the Sequence Read Arch-

ive (SRA) [82] repository under accession SRP051039

[83]. As the SRA currently only supports the deposition of

read alignments to genomic sequences, we have hosted

the processed transcriptome alignment files, correspond-

ing to the simulated/synthetic and experimental (RNA-

seq) read libraries, on our companion website [84]. The

page further includes information on where to find the

benchmarked methods, all source code - organized in well

documented convenient wrappers that allow easy recre-

ation of either the whole study or parts thereof - and an

online analysis service where users can upload expression

estimates inferred from the datasets used in this study and

compare them to the methods (or their specific versions)

assessed here.

Additional files

Additional file 1: Figure S1. Overview of the study design. Sequencing
data (blue boxes; 1) were generated synthetically (Flux Simulator; left
side) or experimentally (right side) from human or mouse cells, following
either a regular RNA-seq (blue arrows) or an A-seq-2 3′ end sequencing
protocol (red arrows). 3′ adapters (if present) and poly(A)-tails were
removed from read sequences (‘pre-processing’), and the trimmed reads
were then aligned against both the genome and the transcriptome (green
boxes; 2). Genome alignments were supplemented with read alignments
covering splice junctions by converting transcriptome alignments to
genome coordinates. Genome and transcriptome alignments were then
compared to ensure that only the best alignments were kept for each read.
Based on the remaining alignments (genome or transcriptome, depending
on requirements), expression estimates were computed (red boxes) either
with the surveyed, model-based methods (3a), or count-based methods
(RNA-seq: 3b, A-seq-2: 3c). Subsequently (‘post-processing’), the raw
numbers produced by the latter methods, as well as the true number of
expressed transcripts in the synthetic dataset (as provided by Flux Simulator;
gray arrow), were normalized, and the normalized expression estimates
were extracted from the outputs of the surveyed model-based inference
methods. Depending on the downstream analysis, expression estimates for
transcripts and 3′ end processing sites (‘Poly(A)’) were aggregated and fil-
tered (purple boxes; 4). To evaluate the performance of the surveyed
methods (magenta boxes; 5), the accuracy of the surveyed transcripts abun-
dance inference methods were analyzed by comparing the produced esti-
mates to either the ground truth expression (synthetic data) or the A-seq-2-
based estimates (experimental data). Additionally, runtime and memory
consumption was evaluated. Steps at which either transcript/gene annota-
tions (GENCODE) or transcript sequences (ENSEMBL) were used are marked
with white triangles at the upper left corners. Refer to the Methods section
and the main text for further details.

Additional file 2: Figure S2. Multithreading efficiency and running
time / memory footprint trade-off. Transcript isoform abundances were
estimated with each of the indicated methods based on in silico-generated
sequencing datasets. (A) The efficiency of multi-core use is indicated in

terms of the speedup factor (ratio of running times when using 1 compared
to 16 cores) for different sequencing depths. (B and C) Relationships
between running time and memory footprint when processing 100
million reads with either 1 (B) or 16 (C) cores. Note that data for TIGAR2
are unavailable for (A) and (C), because the method does not support
the use of multiple cores.

Additional file 3: Figure. S3. Accuracy of transcript isoform abundance
estimates inferred from in silico-generated sequencing data. For each
method, correlations between true and inferred transcript abundances
are shown as heat density plots. The corresponding Spearman correlation
coefficients (rs) are indicated. Estimates were produced based on the 30
million read dataset. (A) BitSeq. (B) CEM. (C) Cufflinks. (D) eXpress. (E)
IsoEM. (F) MMSEQ. (G) RSEM. (H) rSeq. (I) Sailfish. (J) Scripture. (K) TIGAR2.

Additional file 4: Figure S4. Comparison of different metrics for
quantifying the accuracy of isoform abundance estimates. The accuracy
of expression level estimates with respect to the ground truth was
assessed by the Spearman and Pearson correlation coefficients, as well as
the root mean square error (RMSE). The values obtained for expressed
transcripts (A) and expressed genes (B) are plotted. Color intensities have
been computed per column by scaling raw values such that the best
value (high for correlation coefficients, low for RMSE) corresponds to the
most intense and the worst to the least intense color.

Additional file 5: Figure S5. Accuracy of gene expression estimates
inferred from in silico-generated sequencing data. As in Additional file 3:
Fig. S3, but estimates were produced for genes instead of transcripts. (A)
BitSeq. (B) CEM. (C) Cufflinks. (D) eXpress. (E) IsoEM. (F) MMSEQ. (G) RSEM.
(H) rSeq. (I) Sailfish. (J) Scripture. (K) TIGAR2. (L) Counting method
‘transcript’. (M) Counting method ‘union exon’.

Additional file 6: Figure S6. Accuracy of ‘present calls’. The ability of
each method to accurately determine whether a given transcript or gene
is expressed was determined by calculating false positive (A and B) and
true positive (C through F) rates across different sequencing depths. A
transcript (A, C, and E) or gene (B, D, and F) was considered expressed, if
it has - according to the ground truth - a non-zero expression. In contrast
to A through D, where all features are considered, panels E and F show
the true positive rates only for lowly expressed transcripts and genes
(log2 TPM <0 and <1.1, respectively; compare expression bins in Fig. 2).
Note that by default, BitSeq and MMSEQ report small non-zero ‘priors’.
For these methods, we included modified estimates (‘priors’ to 0), in
which a portion of these small values were set to zero according to
simple algorithms (refer to the main text and the Methods section for
details).

Additional file 7: Figure S7. Accuracy of expression estimates across all
transcripts and genes. As in Fig. 2a and b, but including, respectively,
transcripts (A) and genes (B) that are not expressed according to the
ground truth.

Additional file 8: Figure S8. Effect of ‘native’ short-read aligners. For
methods strongly recommending the use of a specific short-read aligner
(CEM, Cufflinks, MMSEQ, Scripture) or using such an aligner internally by
default (RSEM), expression levels inferred based on alignments obtained
with the respective aligners were compared to the estimates produced
following our own processing and alignment pipeline. Accuracies were
calculated across different read depths as in Fig. 2, either for expressed
transcripts (A) or genes (B), or for all transcripts (C) or genes (D).

Additional file 9: Figure S9. Impact of bias correction settings on
simulated data. For methods where an optional sequencing/positional
bias correction setting is implemented, we have compared estimation
accuracies obtained when executing the programs with the respective
options set or unset. Accuracies were calculated for 30 million reads as in
Fig. 2, either for transcripts (A) or genes (B). Default settings (that were
also used throughout this study if not indicated otherwise) are indicated
in parentheses after the method name (circle: bias correction off, triangle:
bias correction on). Note that Cufflinks also has a bias correction option
(--frag-bias-correct; default: off). However, in our hands the
program crashed when this option was specified.

Additional file 10: Figure S10. Expression level distributions across
bins of transcripts and genes. All transcripts or genes expressed at levels
of 0 < log2 TPM <5.5 were distributed across bins according to transcript
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length (A), GC content (B), the number exons per transcript (C), and the
number of transcripts per gene (D). Ranges of the corresponding values
covered by each bin are indicated in the legends to each chart, together
with the number of features (transcripts or genes) they contain. The
expression level distributions of the features in each bin are depicted as
cumulative distribution functions.

Additional file 11: Figure S11. Cufflinks-based abundance estimates of
single-exon transcripts. Cufflinks was used to infer transcript isoform
expression levels from the alignments of 30 million in silico-generated reads.
Alignments were produced either following our own segemehl-based
pipeline (A to C) or by TopHat (D to F). Estimated abundances are plotted
against true abundances for transcripts expressed at 0 < log2 TPM <5.5 and
comprising either one exon (A and D), two exons (B and E), or 11 or more
exons (C and F). Heat map colors reflect the densities of data points and the
corresponding Spearman correlation coefficients (rs) are indicated. For all
single-exon transcripts expressed at 0 < log2 TPM <5.5, transcript
isoform abundances as estimated by Cufflinks are plotted against true
abundances.

Additional file 12: Figure S12. Impact of gene structural features on
expression estimates. Transcripts and genes have been distributed over
different bins according to the indicated structural features (see Fig. 3
and main text). The variation between estimation accuracies for these
bins are indicated in terms of the standard deviations σ of the Spearman
correlation coefficients between ground truth and estimates.

Additional file 13: List of the P values of the Kolmogorov-Smirnov

goodness of fit tests for the assessment of the impact of structural

properties (Fig. 3) and gene biotypes (Fig. 5c, d) on estimation

accuracy. Tests were performed on the log-ratios of estimated versus
‘ground truth’ (simulated or A-seq-2) expression for a given subset of
transcripts/genes and for the whole set of transcripts/genes used for a
given analysis (for structural properties and synthetic data the whole set
was composed of those transcripts expressed at 0 < log2 TPM <5.5 and
those genes expressed at 0 < log2 TPM <6.2; for gene biotypes, human
and mouse data: the full set contained all genes with 3′ end processing
sites for which read evidence was found in the analysis of our A-seq-2 data).

Additional file 14: Figure S13. Agreement between expression level
estimates for replicates of NIH/3T3 cells. Transcript isoform and gene
abundances were estimated with each of the indicated methods based
on RNA-seq data obtained from two biological replicates of murine
NIH/3T3 cells. (A) The agreement between expression estimates for the
two replicates are indicated as Spearman correlation coefficients rs, both
at the level of transcripts and genes. (B) A-seq-2-based 3′ end processing
site expression level estimates for the two replicates are plotted against
each other. The Spearman correlation coefficient rs is indicated. (C) As in
(B), but estimates are compared at the level of gene expression. (D) As in
(A), but with the addition of 3′ end processing site abundances. For
computing expression estimates for either feature type (transcript, 3′ end
processing site, and gene), only those transcripts are considered that end
in annotated 3′ end processing sites (see main text and Methods for details).

Additional file 15: Figure S14. Replicate agreement between
abundance estimates for features corresponding to expressed 3′ end
processing sites. As in Figs. 4d and Additional file 14: Fig. S13D, but with
the further requirement that the considered transcripts need to end in
annotated 3′ end processing sites that show evidence of expression,
according to the A-seq-2 analysis. Results are shown for replicates of (A)
human Jurkat cells and (B) murine NIH/3T3 cells.

Additional file 16: Figure S15. Accuracy of 3′ end processing site
abundance estimates inferred from Jurkat sequencing data. Transcript
abundances inferred by the surveyed methods from RNA-seq libraries
prepared from human Jurkat cells (replicate 1) were aggregated by 3′
end processing sites and plotted against the corresponding estimates
obtained by the analysis of A-seq-2 sequencing data. Heat map colors
represent data point densities and Spearman correlation coefficients (rs)
are indicated. (A) BitSeq. (B) CEM. (C) Cufflinks. (D) eXpress. (E) IsoEM. (F)
MMSEQ. (G) RSEM. (H) rSeq. (I) Sailfish. (J) Scripture. (K) TIGAR2.

Additional file 17: Figure S16. Accuracy of 3′ end processing site
abundance estimates inferred from NIH/3T3 sequencing data. As in
Additional file 16: Fig. S15, but data were from murine NIH/3T3 cells.

Additional file 18: Figure S17. Impact of bias correction settings on
abundance estimates from experimental data. As in Additional file 9: Fig.
S9, but expression estimates were obtained for human (A and B) or
mouse (C and D) cells and also include estimation accuracies on the level
of 3′ end processing sites. Spearman correlation coefficients were
calculated by comparison to A-seq-2 estimates (see Fig. 5) rather than
the simulation ground truth. (A) Jurkat data, replicate 1. (B) Jurkat data,
replicate 2. (C) NIH/3T3 data, replicate 1. (D) NIH/3T3 data, replicate 2.

Additional file 19: Parameter file in CSV format for use with the

Flux Simulator software [26].
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PPM: processing regions per million processing regions; RPKM/FPKM: reads/
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TPM: transcripts per million transcripts.
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