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Abstract

The unexpected failure of wind turbine components leads to significant downtime and loss of revenue. To prevent this, super-

visory control and data acquisition (SCADA) based condition monitoring is considered as a cost-effective approach. In several 

studies, the wind turbine power curve has been used as a critical indicator for power performance assessment. In contrast, 

the application of the blade pitch angle curve has hardly been explored for wind turbine condition monitoring purposes. The 

blade pitch angle curve describes the nonlinear relationship between pitch angle and hub height wind speed and can be used 

for the detection of faults. A support vector machine (SVM) is an improved version of an artificial neural networks (ANN) and 

is widely used for classification- and regression-related problems. Support vector regression is a data-driven approach based 

on statistical learning theory and a structural risk minimization principle which provides useful nonlinear system modeling. 

In this paper, a support vector regression (a nonparametric machine learning approach)-based pitch curve is presented and its 

application to anomaly detection explored for wind turbine condition monitoring. A radial basis function (RBF) was used as 

the kernel function for effective SVR blade pitch curve modeling. This approach is then compared with a binned pitch curve 

in the identification of operational anomalies. The paper will outline the advantages and limitations of these techniques.

Keywords Condition monitoring · Support vector regression · Performance monitoring · Performance curves · Wind 

turbines

Introduction

Increased demand for clean energy has led to the impressive 

expansion of global wind power installed capacity over the 

past decade. The newly installed wind turbines requires less 

maintenance cost but as it get old and out of warranty, then 

turbines maintenance cost increases significantly. Author of [1] 

pointed that of the total of 433 GW of wind capacity in 2015, 

the bulk of this was out of warranty which suggest a massive 

requirement for operation and maintenance (O&M). It is also 

well known that such costs are considerably higher for offshore 

wind turbines and in Ref. [1] it was found that improvement 

of O&M practice could lead to a reduction of 21% and 11% 

of the life-cycle costs of offshore and onshore wind farms, 

respectively. Furthermore, it is expected that the global wind 

O&M market will reach 20.6 billion US dollars by 2023. With 

the increase in age of wind turbines and the move to less acces-

sible offshore sites, the O&M cost is expected to grow sig-

nificantly, which reinforces the drive towards condition-based 

maintenance [2]. It is imperative to detect failures at an early 

stage to minimize downtime and maximize productivity, and 

condition-based maintenance has a crucial role to play in this.

Wind farms equipped with supervisory control and data 

acquisition (SCADA) systems provide data essential for reli-

able performance optimization [3]. Performance monitoring 

based on the available SCADA data is also a cost-effective 

approach to turbine condition appraisal, as confirmed by 

various literature reviews [4, 5] that highlight the feasibility 

of identifying turbine health status using SCADA data, and 

the vast potential of further enhancing the health monitoring 

function through sophisticated data analysis. SCADA-based 

monitoring of the condition of internal components of a 

wind turbine can be used to optimize maintenance activities 
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and thus reduce O&M costs and increase reliability and pro-

duction time; see [6–9].

The power curve is widely used to assess the performance 

of a wind turbine; it signifies the nonlinear relationship 

between power production and hub height wind speed [10]. 

IEC-61400-12-2 [11] prescribes the method known as ‘bin-

ning’ to calculate the power curve. The “method of bins” is 

a data reduction technique used to normalize the data to con-

struct the measured power curve. This binned power curve 

includes the effect of the site turbulence and all other effects 

reflecting onsite conditions [12].

Nonparametric models are data driven, and their structure 

is not specified a priori but is obtained exclusively from the 

data [13]. Commonly used nonparametric models in wind tur-

bine condition monitoring are support vector machine (SVM), 

copulas, Gaussian process (GP) and other data derived mod-

els; see [13–15]. SCADA data record a large number of meas-

urements which make nonparametric models appropriate.

In the last decade, support vector machine (SVM), a novel 

and potent machine learning technique, has been success-

fully used for classification- and regression-related problems. 

Support vector machine (SVM) based on the applications 

is categorized into support vector classification (SVC) and 

support vector regression (SVR). The SVM method uses a 

technique called ‘kernel trick’ to solve linear and nonlinear 

classification-related problems where its ability to deal with 

high dimensional data for a relatively small training set is 

satisfactory [16]. This allows replacement of the inner prod-

uct (<x, y>) in an algorithm with a kernel (k (x, y)) and this 

approach is particularly valuable in a condition where it is 

more convenient to compute the kernel than the feature vector 

itself. Comparative studies [17] show that generalization of 

SVM to complex models is better than that for artificial neu-

ral network (ANN), though it suffers from a more extended 

training time for large datasets. To deal with this, the least 

squares support vector machine (LSSVM) approach proposed 

transforming complex quadratic programming into a linear 

problem; see [18]. SVM has demonstrated satisfactory per-

formance on regression and time-series prediction by solving 

the nonlinear relationship efficiently and stable across a range 

of applications; see examples [19–21]. The SVM model has 

been reported for short-term wind speed forecasting and 

yielded accurate results; see [22]. Comparative performance 

of SVM and multilayer perceptron (MLP) neural networks 

for wind speed prediction have been studied in [23], and the 

results suggest that the SVM approach outperforms the MLP 

model with respect to the root mean squared error (RMSE). 

Furthermore, SVM and neural network developed for short-

term wind forecasting [24] indicate that SVM performance is 

superior. Li et al. [25] proposed a model based on SVM clas-

sification to diagnose gearbox faults with promising results. 

In another paper [26], an SCADA-based SVM model was 

constructed for diagnosing and predicting wind turbine faults.

Recently, the wind turbine condition monitoring stud-

ies have mostly focused on the power curve for evaluating 

performance. However, this cannot reflect the complete tur-

bine operation since the operational behavior of the wind 

turbines is profoundly influenced by a parameter such as a 

rotor power, torque, and pitch angle. Valid assessments of 

these parameters improve the power performance of a wind 

turbine. In this study, the blade pitch angle impact on wind 

turbine performance is analyzed using the blade pitch curve 

that reveals the nonlinear relationship between pitch angle 

and the hub height wind speed that can be useful for analyz-

ing wind turbine performance and the detection of faults.

This paper proposed a novel support vector regression 

(SVR) approach to estimate wind turbine blade pitch curve 

and its application in anomaly detection for condition moni-

toring. The binning method is a benchmark data reduction 

approach for the wind industries, but its application is gen-

erally limited to the power curve. In this study, the binning 

method is applied to calculate the blade pitch curve. Finally, 

a comparative analysis of the binned blade pitch curve and 

support vector regression blade pitch curve is undertaken 

regarding fitting uncertainty and identifies the advantages 

and disadvantages of the SVR model.

This paper is structured as follows: The introduction is the 

first section. The next section describes the wind turbine per-

formance curves and air density corrections. The following 

section describes the SCADA dataset and its pre-processing. 

The next section outlines the methodologies and this section 

is further divided into subsections explaining support vector 

regression (SVR) and the binning approach to wind turbine 

blade pitch curve modeling. The next section presents the 

comparative analysis of proposed models and the last section 

concludes the paper.

Wind turbine performance curves

The power curve used to describes the strong dependency 

of power output of wind turbines on wind speed (Fig. 1) and 

widely used for power performance, warranty formulations, 

energy assessment, and fault detection applications. The 

power curve represents the nonlinear relationship between 

hub height wind speed and turbine output power and math-

ematically expressed as [27]:

where ρ is the air density (kg/m3), A is the swept area  (m2), 

Cp is the power coefficient of wind turbine and v is the hub 

height wind speed (m/s). The tip speed ratio (λ) and pitch 

angle (β) affect the power coefficient and thus affect the 

power production of a wind turbine.

(1)P = 0.5�ACp(�, �)v3
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Following the IEC standard (61400-12-1) [11], air den-

sity correction should be applied to a pitch-regulated wind 

turbine in which a corrected wind speed VC is calculated 

using Eqs. (2) and (3) as shown below

and 

where VC and VM are the corrected and measured wind speed 

in m/s and the corrected air density is calculated by Eq. (2) 

where B is atmospheric pressure in mbar and T the tem-

perature in Kelvin for which 10 min average values obtained 

from SCADA data are used. The corrected wind speed (VC) 

from Eq. (3) is then used to calculate the power curve nor-

mally by binning.

A typical blade pitch curve described the nonlinear rela-

tionship between turbine pitch angle and wind speed and 

shown in Fig. 2. Below the rated wind speed, the blade 

pitch angle is set to maximize power production. Beyond 

(2)� = 1.225
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the rated wind speed, to limit power generation to rated 

power, the blade pitch angle is continuously adjusted.

SCADA data for wind turbine performance 
curves

Supervisory control and data acquisition (SCADA) sys-

tems record the operational status of wind turbines and are 

essential for reliable performance optimization. Perfor-

mance monitoring based on available SCADA data is also 

a cost-effective approach to turbine condition appraisal, as 

confirmed by various literature reviews that highlight the 

feasibility of identifying turbine health status using SCADA 

data, and the high potential of further enhancing the health 

monitoring function through sophisticated data analysis.

SCADA data sets used in this research are from a wind 

farm located in Scotland, UK, and cover a full year of oper-

ation with 10-min resolution. SCADA data reflect many 

aspects of a wind farm, from power output and wind speed 

to any error registered within the system, without any extra 

cost [28]. Furthermore, SCADA data analysis is essential 

for failure prognostics and the calculation of remaining 

life, along with diagnostic applications. However, SCADA 

data systems are not perfect; they can be affected by sen-

sor error and data logging faults, and thus need careful pre-

processing. The SCADA data used in this research are from 

a 2.3 MW Siemens turbine. Monthly data used for model 

training and testing purposes contain 4464 data points begin-

ning with time stamp ‘‘1/7/2012 00:00 AM’’ and ending 

at time stamp ‘‘31/7/2012 23:50 PM’’. Using these data 

points, measured power and blade pitch curves are shown 

in Figs. 1 and 2 respectively. Filtering criteria described in 

[29], including timestamp mismatches, out of range values, 

negative power values, and turbine power curtailment have 

been applied to minimize misleading data. Using this filtra-

tion approach, measured SCADA data sets were reduced by 

626 from 4464 and used to develop a blade pitch curve using 

SVR and binning technique. The filtered and air density-

corrected power and blade pitch curve are shown in Figs. 3 

and 4. Figure 5 shows a visual comparison between meas-

ured and pre-processed wind turbine blade pitch curves and 

suggest that the filtering applied here minimizes SCADA 

data errors (Table 1).   

Methodologies to be compared

The two approaches, namely binning and support vector 

regression used to build effective blade pitch angle curves 

for wind turbine condition monitoring, are described as 

follows.

Fig. 1  Measured power curve

Fig. 2  Measured pitch angle curve



184 International Journal of Energy and Environmental Engineering (2019) 10:181–188

1 3

Support vector regression-based blade pitch curve

Support vector machine (SVM) is a nonparametric, machine 

learning approaches widely used in solvingcomplex and non-

linear relationships between a high number of parameters. 

The SVM was first identified by Vapnik and his colleagues in 

1992, [30], and gaining popularity due to its many attractive 

features, and promising results. Based on the applications, 

SVM is categorized into support vector classification (SVC) 

and support vector regression (SVR). The SVM regres-

sion theory is applied to model the blade pitch curve and is 

described below. A so-called dual SVR model deals better 

with high dimensions, in contrast to the standard approach 

and so will be considered here for blade pitch curve mod-

eling [31]. A Lagrangian function of the primal function was 

developed by introducing nonnegative multipliers and for cal-

culating the dual SVR, where the inner product of the pre-

dictors was replaced by its corresponding element from the 

Gram matrix for an effective nonlinear SVR algorithm. The 

Gram matrix is an n-by-n matrix which contains elements; 

gij = G(xi, xj), where xi, xj are the training SCADA data points. 

This Lagrange dual formulation complements the nonlinear 

system and hence used in this study. A nonlinear SVR calcu-

lates the optimal function f(x) in the transformed predictor 

space where the SVR looks for the coefficient that minimizes 

the Lagrangian function using the dual formula [32, 33]:

Under the following constraints:

The function f(x) used to fit the SVR model for blade 

pitch curve is given by

This specific SVR is called ɛ-SVR due to its scarcity rep-

resentation capability [34]. The ε-insensitive loss function 

is used to build the objective function of the ɛ SVR. The 

v-SVR is another type of regression where v parameters are 

used to control the number of support vectors; see [35, 36]. 

(4)
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Fig. 3  Pre-processed power curve

Fig. 4  Pre-processed pitch angle curve

Fig. 5  Measured and filtered pitch curve comparison

Table 1  SCADA dataset description

Start timestamp End timestamp Measured 

dataset

Filtered dataset

1/7/2012 00:00 

AM

31/7/2012 23:50 

PM

4464 626
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The Karush–Kuhn–Tucker (KKT) conditions play an impor-

tant role in dealing with constrained optimization and using 

KKT conditions [37]; of the quadratic programming, only 

a certain number of the coefficients (αn−αn
*) will assume 

nonzero values. The KKT complementarity conditions are 

optimization constraints required to obtain optimal solu-

tions, and for nonlinear SVM regression these conditions are

Parameter C determines the trade off between the model 

complexity (flatness) and the degree to which deviations 

larger than ɛ are tolerated in optimization formulation [31]. 

Parameter ɛ controls the width of the ɛ-insensitive zone, 

used to fit the training data sets. It also affects the number 

of support vectors and hence is important for an effective 

blade pitch curve SVR model. In short, both C and ɛ affect 

SVR model performance and hence it is necessary to find 

optimal values for these parameters using appropriate opti-

mization techniques. The calculation of ɛ and C is based 

on the nature of input datasets and choice of kernel. In this 

study, a Gaussian kernel was used and C and ɛ values were 

calculated as iqr(Y)/13.49 where iqr(Y) is the interquartile 

range of the response variable Y [33, 34]. The 13.349 is a 

rescaling factor (that quantifies the statistical dispersion in 

a set of numerical data) that reflects the change from inter-

quartile range to standard deviation. The calculated values 

of box constraint and epsilon are used in the wind turbine 

blade pitch curve modelling.

The bias ∊ is a part of the original primal formula of the 

SVR and is calculated from the following equation [31, 33]:

∀n ∶ �n

(
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xn
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where αn and αn
* are the nonnegative multipliers for each 

observation xn. The obtained biased value for this study is 

1.70 which is added into the SVR model to predict the blade 

pitch curve of wind turbine accurately.

The appropriate kernel makes SVR algorithm faster and 

involves computations in higher dimensional space. The 

Gaussian kernel is used in this study and mathematically 

is expressed as:

where γ is the kernel scale for given points x and x′.

The Gaussian kernel is also popularly known by radial 

basis function (RBF) kernel and widely used. For example, 

the authors of [38] demonstrated that the use of SVR in 

hydrological modeling and they highlighted the excellent 

performance of the RBF.

The cross-validation of five folds is used to find the best 

value for kernel scale and to prevent overfitting [35]. The 

SCADA datasets described in “SCADA data for wind tur-

bine performance curves” were randomly shuffled and split 

into training and testing datasets for training and SVR model 

validations purposes, respectively.

Based on the SVR theory outlined above, a blade pitch 

curve model is proposed using a Gaussian kernel function 

and then compared with the measured blade pitch curve and 

is shown in Fig. 6. Figure 6 suggest that the support vector 

regression can fit the wind turbine pitch curve smoothly, 

however at higher wind speed, its accuracy suffers because 

of unavailability of sufficient data points. Furthermore, the 

accuracy of a support vector regression model depends on 

the quantity and quality of the data as well as the appropriate 

(6)∈=

N
∑

n=1

(

�
n
− �

∗

n

)

(7)k
(
x, x

�
)
= exp

(
−�|x− x

�||
2
)

Fig. 6  Comparison between 

measured and SVM fitted blade 

pitch curve
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fitting method used. Furthermore, the estimated blade pitch 

angle as a function of time plotted and compared with the 

observed pitch angle, as in Fig. 7, suggests that SVR can 

estimate the pitch angle efficiently. Blade pitch failure may 

lead wind turbines to underperform, and an SVR model can 

help identify such failures through uncertainty analysis. 

Binned based blade pitch curve

The IEC 61400-12 standard describes the data reduction 

technique known as binning, typically using 0.5 m/s wide 

wind speed intervals. The power curve is a smooth curve 

drawn through these points, but in actuality is only defined 

precisely at the points themselves. In this study, binning 

methods are applied to calculate blade pitch curve using the 

following equations:

where Vi is the normalized and averaged wind speed in bin 

i, Vn,i,j is the normalized wind speed of data sets j in bin i, Bi 

is the normalized and averaged pitch angle in bin i, Bn,i,j is 

the normalized pitch angle of data set j in bin i, and Ni is the 

number of 10 min average data sets in bin i.

Figure 8 shows the reference binned blade pitch curve 

together with error bars. Type B uncertainties would be dif-

ficult to treat in a consistent manner without greater knowl-

edge of the instrumentation used. Therefore, in this paper, 

we used the statistical spread evident in the binned data. The 

two standard deviations (i.e., 95% confidence intervals) of 

(8)Vi =
1

Ni

Ni
∑

j=1

Vn,i,j

(9)Bi =
1

Ni

Ni
∑

j=1

Bn,i,j

measured power values are used to calculate the error bars 

which are used to measure the uncertainty associated with 

each bin of the blade pitch curve. However, binning is not 

necessarily the most effective way to generate a pitch angle 

curve from wind speed and pitch angle data, since there is 

compromise being made for accuracy while choosing a bin 

width of 0.5 m/Sec. Within each bin, the measured power 

will depend strongly and non-linearly on wind speed, and a 

wide bin would result in a systematic bias; on the other hand, 

in practice, there must be a sufficient number of data points 

in each bin to be statistical significance [39]. The compara-

tive analysis of binning and SVR models is described in the 

upcoming sections where the advantages and disadvantages 

of the individual methods are outlined.

Comparative analysis of binned pitch curve 
and SVR pitch curve

In this section, a comparative analysis of binned and SVR-

based pitch curves concludes that the support vector regres-

sion fits the data well between a cut in and rated wind speeds, 

Fig. 7  Comparison between 

measured pitch angle and SVM 

fitted pitch angle as a time 

series

Fig. 8  Wind turbine pitch curve with error bars
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but that the binned approach to fitting works well across the 

entire range of wind speed, as shown in Fig. 9. However, 

the binned pitch curve obtained from extensive measured 

data requires an extended measurement period to limit the 

uncertainty associated with the calculated pitch curve and 

is far too slow to be used directly for condition monitor-

ing where any changes in operation need to be identified 

quickly. Support vector regression is not limited in this way 

and hence can detect anomalies quickly. Thus, the support 

vector regression is preferred for detecting damage at an 

early stage.

Conclusion and discussion

This paper has proposed an SVM-based regression model for 

estimating the blade pitch angle curve. The estimated SVR 

pitch curve follows the standard variations, though due to the 

lack of data points in above rated wind speed, its accuracy 

suffers. This highlights how the quality and quantity of data 

points significantly affects the SVR model prediction accu-

racy. SVR is then compared with the conventional approach 

based on a binned pitch curve together with individual bin 

probability distributions to identify operational anomalies. 

This comparative study yielded significant results. The SVR 

blade pitch curve closely follows the binned pitch curve, but 

above rated wind speed, there are fewer SCADA data values 

available and, as a result, the SVR curve is less well deter-

mined with some mismatch with the binned pitch curve. The 

major issue associated with wind turbine condition monitor-

ing is to detect a fault or failure as soon as possible and with 

limited computational time and processing power so that 

catastrophic damage due to failure can be prevented with a 

cost-effective approach. The comparative analysis illustrates 

the strengths and weaknesses of these techniques in context 

to anomaly detection and model uncertainty. This should 

support a wind farm operator in selecting the best method 

for wind turbine condition monitoring.

The future work is to develop and appropriate uncertainty 

analysis for the SVR blade pitch curve and then use it for 

developing a practical fault detection SVR algorithm.
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