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A comparative binding energy (COMBINE) analysis (Ortiz et al. J. Med. Chem. 1995, 38, 2681-
2691) has been performed on a training set of 33 HIV-1 protease inhibitors, and the resulting
regression models have been validated using an additional external set of 16 inhibitors. This
data set was originally reported by Holloway et al. (J. Med. Chem. 1995, 38, 305-317), who
showed the usefulness of molecular mechanics interaction energies for predicting the activity
of novel HIV-1 protease inhibitors within the framework of the MM2X force field and linear
regression techniques. We first used the AMBER force field on the same set of three-
dimensional structures to check up on any possible force-field dependencies. In agreement
with the previous findings, the calculated raw ligand-receptor interaction energies were highly
correlated with the inhibitory activities (r2 ) 0.81), and the linear regression model relating
both magnitudes had an acceptable predictive ability both in internal validation tests (q2 )
0.79, SDEPcv ) 0.61) and when applied to the external set of 16 different inhibitors (SDEPex
) 1.08). When the interaction energies were further analyzed using the COMBINE formalism,
the resulting PLS model showed improved fitting properties (r2 ) 0.89) and provided better
estimations for the activity of the compounds in the external data set (SDEPex ) 0.83).
Computation of the electrostatic part of the ligand-receptor interactions by numerically solving
the Poisson-Boltzmann equation did not improve the quality of the linear regression model.
On the contrary, incorporation of the solvent-screened residue-based electrostatic interactions
and two additional descriptors representing the electrostatic energy contributions to the partial
desolvation of both the ligands and the receptor resulted in a COMBINE model that achieved
a remarkable predictive ability, as assessed by both internal (q2 ) 0.73, SDEPcv ) 0.69) and
external validation tests (SDEPex ) 0.59). Finally, when all the inhibitors studied were merged
into a single expanded set, a new model was obtained that explained 91% of the variance in
biological activity (r2 ) 0.91), with very high predictive ability (q2 ) 0.81, SDEPcv ) 0.66). In
addition, the COMBINE analysis provided valuable information about the relative importance
of the contributions to the activity of individual residues that can be fruitfully used to design
better inhibitors. All in all, COMBINE analysis is validated as a powerful methodology for
predicting binding affinities and pharmacological activities of congeneric ligands that bind to
a common receptor.

Introduction

Structural information of biological macromolecules
and their complexes with ligands is increasingly being
used in modern medicinal chemistry research programs.
As a consequence, there is a pressing need for novel
computational methods that can utilize this structural
information about ligand-receptor complexes in a more
quantitative way, both to improve existing leads and
to design de novo compounds with accurately predicted
binding affinities. This information is often crucial, and
for practical use, it should be obtained at reasonable
computational expense. During the drug design cycle,
experimental structures for a target protein complexed
to one or more ligands can allow researchers to examine
the details of the binding site and to design new

analogues.1 Once the novel ligands have been docked
into the binding site, attempts are made to calculate
their binding affinities in advance of experiment, to
prioritize synthetic efforts.
A wide variety of methods exist for the calculation of

such binding affinities.2,3 A first category of methods
partition the free energy of binding and assume the
additivity of the different components. The way the free
energy is partitioned varies among the different meth-
ods, as does the formalism that is used to evaluate each
term. Hydrophobic, electrostatic, and entropic contribu-
tions are usually considered, but there are uncertainties
associated with the particular choice of parameters
employed.4 These methods are computationally fast and
are suitable at the beginning of a drug development
project in the search for new lead compounds.
A second class of commonly used methods rely on

molecular mechanics calculations.2,5-8 The binding
energy between ligand and receptor is approximated to
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the interaction enthalpy calculated by means of empiri-
cal energy functions that represent van der Waals
repulsion and dispersion interactions by a Lennard-
Jones term and electrostatic interactions in the form of
a Coulomb term that uses atom-centered point charges.2
In most cases, these molecular mechanics calculations
are performed on a structure that is taken to represent
the ensemble average of each complex. Entropy con-
tributions are usually ignored although solvation terms
are sometimes added to the scoring function by calculat-
ing changes in buried nonpolar surface area9 or differ-
ences in the ease of desolvation of both the ligands and
the binding site upon complex formation.10 In favorable
cases, most often involving the complexes of a given
target with a congeneric series of ligands, experimental
measures of activity (e.g. KI, IC50) or binding affinity
(e.g. Kd) can be correlated straightforwardly with these
plain molecular mechanics interaction energies making
use of simple linear regression techniques.5-8 But even
though the results of such quantitative structure-
activity relationship (QSAR) studies can be satisfactory
for the training set of compounds, the resulting regres-
sion models are seldom accurate enough for predicting
the potency of yet unsynthesized compounds that were
not included in the derivation of the model.
A third category of methods is in principle the most

rigorous but also the most computationally demanding
one: binding free energy differences can be obtained in
the context of molecular dynamics or Monte Carlo
simulations making use of free energy perturbation
(FEP) or thermodynamic integration (TI) methods11 that
involve nonphysical stepwise conversions between pairs
of rather similar ligands in the free and bound states.
These procedures are very time-consuming, and it is not
always clear that the results they yield are fully
converged.11 Recently, a more tractable variant of this
approach has been presented that makes use of linear
response theory12 and requires only simulations at the
endpoints of the mutations; the free energy of binding
is then determined from a linear combination of the
differences in the average inhibitor-environment in-
teraction energies between the bound and unbound
states.13 Overall, however, this last category of methods
is, with present computational resources, impractical for
the comparative study of even small series of receptor-
ligand complexes, although the methods have the
potential of providing great physical insight about the
reasons for the differences in binding affinities between
very similar ligands.14

We have shown that the predictive ability of a
molecular mechanics receptor-based QSAR model can
be considerably improved if the total interaction energy
for each complex is partitioned into a number of frag-
ment-based contributions and a subset of those energy
variables that account for most of the variance within
the series is selected and properly weighted. The
method, termed COMBINE (comparative binding en-
ergy) analysis,15 is formally similar to CoMFA (com-
parative molecular field analysis) in that a data matrix
is produced containing a large number of energy de-
scriptors. Both methodologies then make use of partial
least squares (PLS) analysis16 to generate a predictive
model, but whereas CoMFA only provides information
about the interaction properties of the ligands, COM-

BINE analysis produces a set of “weights” that repre-
sent the relative importance for activity of each residue-
ligand interaction. Implicit in COMBINE analysis is
the realization that experimental quantities directly
related to binding free energies only seldom exhibit a
good correlation with calculated binding energies. The
method also assumes that energy calculations are
usually “noisy” due to limited conformational sampling,
inaccuracies in the modeled structures, and/or inad-
equacies in current potential energy functions. In such
situations, the PLS method16 employed is especially
useful as it can balance the different interaction energy
contributions in such a way that the “signal” (character-
ized by showing a correlation with the dependent
variable) is increased whereas the “noise” (not showing
any more significant correlation with the biological
property than random numbers) is reduced. The result-
ing PLS regression model then establishes a relation
between the differences in activity or binding affinity
among the members of the series and differences in some
of the calculated energy contributions. The constant
term in the regression equation, which corresponds to
the average value of activity or binding affinity in the
series, contains all those contributions that are common
to all the compounds studied together with those that
are neglected (such as entropy).15

The first application of COMBINE analysis was on a
set of human phospholipase A2 inhibitors for which
linear regression techniques and plain molecular me-
chanics global interaction energies produced unaccept-
able QSAR models.15 The ability of PLS to increase the
signal-to-noise ratio was demonstrated by producing a
regression model with considerable predictive ability.
As a new test case for the COMBINE methodology, we
have now chosen a set of inhibitors of human immuno-
deficiency virus type I (HIV-1) protease developed at
Merck Research Laboratories (Table 1) for which a good
correlation between calculated intermolecular interac-
tion energies (using the molecular mechanics program
OPTIMOL and the MM2X force field) and enzyme
inhibition was initially obtained;6 the resulting linear
regression equation was subsequently used in a struc-
ture-based design program to predict the activity of new
candidate inhibitors in advance of their synthesis and
pharmacological evaluation. When the experimental
pIC50 values were determined, it was seen that, for a
set of 16 compounds, the average absolute error in the
predicted values was 1.01 log units across a range of
5.10 log units, with the most significant outlier being a
pseudo-symmetric inhibitor (36 ) L-700,417) whose
activity was overpredicted by 3 orders of magnitude. The
Merck study reported that no improvements in the
quality of their model could be achieved upon incorpora-
tion of solvation effects, via a continuum solvation
method,17 or use of the CHARMm force field.6

With this same set of enzyme-inhibitor complexes,
we have used the AMBER force field18 and ESP charges19
to further investigate any possible force field depend-
encies in the reported correlation and have attempted
to derive a more accurate QSAR model by introducing
a number of successive refinements which can be
summarized as follows:
(i) replacement in the linear regression model of the

electrostatic energies given by the Coulombic expression
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Table 1. HIV-1 Protease Inhibitors Included in both the Training Set (1-34) and the Prediction Set (35-50)6
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in AMBER with those derived by solving the Poisson-
Boltzmann equation according to classical continuum
electrostatic theory.
(ii) decomposition of the calculated intermolecular

interaction energies into a data matrix of per residue
van der Waals and electrostatic contributions to be used
as regressor variables in a PLS analysis following the
COMBINE strategy.
(iii) implementation of a new formalism that allows

the solvent-corrected electrostatic interaction energy
between ligand and receptor to be described in terms
of individual residue contributions plus two additional
regressor variables representing the cost in electrostatic
energy of desolvating the ligand and the receptor
binding site upon complex formation.

Methodology

(a) Model Building of the Complexes and Pa-
rametrization of the Inhibitors. The training set of
inhibitors contained a hydroxyethylene moiety as an
isosteric replacement of the tetrahedral transition state
of the hydrolyzing amide bond of the substrate polypep-
tides, whereas the set of candidate inhibitors (“predic-
tion set”) contained hydroxyethylene, hydroxyethyl-
amine, statine, and symmetrical diol isosteres. Both
sets of compounds included modifications in the P1′ and
P2′ substituents, that is, those that interact with binding
pockets S1′ and S2′ on one side of the enzyme (Table 1).
Coordinates for molecules 1, 3-34 in their complexes
with the enzyme have been previously reported6 and

Table 1 (Continued)
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were kindly provided to us by the Merck researchers.
They were modeled on the crystallographic structure of
the complex of HIV-1 protease with L-689,502 solved
at 2.25 Å resolution.20 All the complexes included the
water molecule that stabilizes the closed conformation
of the dimeric enzyme by bridging a â-hairpin from each
monomer to the inhibitors (WAT 199).21 In agreement
with the experimental evidence,22 the carboxyl of AspA25
was protonated whereas that of AspB25 was not.
Molecules 35-50 were model-built in Insight using
standard bond lengths and angles based on the struc-
ture of similar inhibitors, and they were manually
docked into the active site using the interactive graphics
program Insight II.23 Atom-centered charges for all the
inhibitors were derived by fitting the molecular elec-
trostatic potential calculated24 with the AM1 Hamilto-
nian25 to a monopole-monopole expression.19 The same
sets of charges and radii were used in programs
AMBER26 and DelPhi,27 described below. Covalent and
nonbonded parameters for the inhibitors were derived,
by analogy or through interpolation,28 from those al-
ready present in the AMBER database.18
(b) Molecular Mechanics Calculations. All-atom

AMBER force field parameters18 were used for the
inhibitors, the water molecule, and the protein. For
strict comparison of our results with those from the
Merck study, the protein atoms should have been kept
rigid, as they were in the original work.6 On the other
hand, we felt that the complexes refined with the MM2X
force field should be allowed to adapt to the AMBER
force field, especially in view of the different sets of van
der Waals radii used in the two force fields. A compro-
mise between these two alternatives was reached by
performing a mild and progressive refinement of the
docked conformation of each inhibitor in the bound
complex. In a first stage, only the hydrogen atoms of
each complex were allowed to reorient. Then the
geometry of the inhibitor was optimized while the atoms
of both the protein and the water molecule were held
fixed. Finally, the whole complex was energy minimized
but the protein atoms were restrained to their crystal-
lographic positions by means of a harmonic potential

with a force constant of 32 kcal mol-1 Å-2. Each of the
energy minimizations proceeded using the steepest
descent algorithm for 100 steps and then switching to
the conjugate gradient minimizer until the root-mean-
square value of the potential energy gradient was below
0.0001 kcal mol-1 Å-1. A cutoff of 10.0 Å and a distance-
dependent dielectric constant (ε ) rij) were used through-
out.
(c) Continuum Electrostatics Calculations. It is

not trivial to include the electrostatic free energy of
binding calculated using continuum methods in a way
appropriate for use in COMBINE analysis. If ligand-
receptor interactions, calculated in the presence of
solvent, are decomposed into residue-based contribu-
tions, and each pair of interactions is considered inde-
pendently, the approximations introduced can be con-
siderable. This is due to the fact that the electrostatic
energy, when expressed as a function of the electric
field, does not obey the superposition principle, the
reason being that the electrostatic energy is quadratic
in the fields. In linear dielectric media, the total work
(W), i.e. the electrostatic energy, of assembling a set of
charges is

where D is the electrostatic displacement (D ) εE in
linear dielectric media), and E is the electric field
produced by this set of charges. If the total set of
charges is divided into two subsystems, 1 and 2, and
the electrostatic energy of each subsystem in the
dielectric medium is calculated independently (W1 and
W2), we will find thatW * W1 + W2 because E2 ) (E1 +
E2)2 * E1

2 + E2
2. Thus, the sum of the reaction fields

created by each residue is not the same as the reaction
field created by all residues when taken together, i.e.,
there are cross-terms that must be taken into account
when a partitioning scheme is devised.
Following the classical approach, the overall electro-

static free energy change upon binding (∆Gele) can be
calculated from the total electrostatic energy of the
system by running three consecutive calculations on
the same grid:29 one for all the atoms in the complex
(Gele

LR), one for the ligand atoms alone (Gele
L ), and a third

one for the receptor atoms alone (Gele
R ). Since the grid

definition is the same in the three calculations, the
artifactual grid energy cancels out when the electro-
static contribution to the binding free energy is ex-
pressed as the difference in energy between the product
and the reactants:

This method, however, is unsuitable for our purposes
because it does not allow partitioning at the residue
level. An alternative is to consider a different descrip-
tion of the binding process (Figure 1) consisting of first
desolvating the apposing surfaces of both ligand and
receptor and then letting the charges of the two mol-
ecules interact. It is then possible to separate the
change in electrostatic free energy on molecular associa-
tion (∆Gele) into three components:29,30 (i) the ligand-
receptor interaction energy in the presence of the
surrounding solvent (Eele

LR), (ii) the change in solvation

Figure 1. Schematic representation for calculating the
electrostatic contribution to the free energy of binding (∆Gele).
The wavy pattern represents the high dielectric solvent
(εs ) 80) that surrounds the low dielectric solutes (εm ) 4).
Hatched or blank areas in the solutes denote the presence or
absence, respectively, of atomic charges in the calculation.
∆Gdesolv stands for the loss of electrostatic interaction be-
tween the solvent and either the receptor (∆Gdesolv

R ) or the
ligand (∆Gdesolv

L ) whereas Eele
LR represents the electrostatic

interaction between ligand and receptor in the presence of
surrounding solvent.

W ) 1
2∫D‚E dτ ) 1

2 ∫εE2 dτ

∆Gele ) Gele
LR - (Gele

L + Gele
R ) (1)
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energy of the ligand upon binding (∆Gdesolv
L ), and (iii)

the change in solvation energy of the receptor upon
binding (∆Gdesolv

R ):

This decomposition is exact, contains all cross-terms,
and can be profitably used in COMBINE analysis. The
first term in eq 2, that is, the electrostatic energy of
interaction between the group of R atoms in the receptor
and the group of L atoms in the ligand, can be described
(in kcal mol-1) by

where q represents the atomic point charges of the
receptor, and φi is the electrostatic potential at each of
the R atoms of the receptor created by the L atoms of
the ligand. Equation 3 can be recasted in the form of a
sum of N residue-based contributions (en), where N is
the number of residues in the receptor, each of these
containing K atoms:

This allows the total electrostatic free energy of ligand
binding to be expressed as a sum of residue-based
contributions plus two additional terms corresponding
to the electrostatic component of the desolvation free
energy of both the ligand and the receptor:

The electrostatic potentials used in eqs 3 and 4 can
be calculated either as

where ε is the relative permittivity of the homogeneous
dielectric medium and rij is the separation between
every pair of atoms, or to include the potential created
by the response of the surrounding solvent to the ligand
charges, by solving the linear form of the Poisson-
Boltzmann equation

where F is the fixed solute charge distribution, κj is the
modified Debye-Hückel constant that accounts for a
Boltzmann distribution of the ions in solution, and ε(rb)
and φ(rb) are the dielectric constant and the electrostatic
potential, respectively, as a function of position. The
solvent-corrected potential calculated by means of eq 7
can be either that generated by the charges on the
receptor at the positions of the uncharged ligand atoms
or, alternatively, that created by the charges on the
ligand at the location of each of the uncharged atoms
of the receptor (Figure 1). It is the latter that we have
computed for the purpose of calculating the residue-
based contributions to Eele

LR described in eq 4. Thus, the

only effect that is missed by this approach is the solvent
polarization created by the receptor charges and its
corresponding cross-terms. However, the consequence
of ignoring this effect is almost negligible when the
complexes of a common receptor with a series of
congeneric ligands are considered,10 as is demonstrated
below by the similar Eele

LR values computed by means of
eqs 1 and 5.
With regard to the latter two terms of eqs 2 and 5,

corresponding to the differences in electrostatic free
energies of solvation of ligand and receptor upon com-
plex formation, they were calculated by considering the
effects on the respective electrostatic free energies of
replacing the high dielectric medium of the solvent with
the low dielectric medium of the other molecule in those
regions that are occupied by the binding partner in the
complex (Figure 1).
Each of the components of eq 5, which describes the

electrostatic effects of ligand binding, enters the energy
matrix for COMBINE analysis as a different variable.
From the previous derivation, and as demonstrated
below in the Results section, it is clear that the total
electrostatic binding free energy is partitioned taking
into account the cross-terms in the reaction field and
no double counting is done, i.e. the sum of electrostatic
terms in the energy matrix yields the electrostatic free
energy of binding for that particular compound. This
is an important feature that allows an easier interpre-
tation of the regression models, avoiding convoluted
effects in the energetic description of the variables. It
is also worth noting that the formalism presented
creates an electrostatic block of similar variance to the
van der Waals block, making the direct use of PLS
analysis possible without invocation of scaling proce-
dures, which may produce spurious results in 3D
QSAR.31

The Poisson-Boltzmann equation was solved using
a finite difference method, as implemented in the
DelPhi27 module of Insight II. The atomic coordinates
employed were those of the AMBER-optimized com-
plexes. The interior of the protein, the ligands, and the
complexes was considered a low dielectric medium (ε )
4) whereas the surrounding solvent was treated as a
high dielectric medium (ε ) 80) with ionic strength of
0.145 M. Cubic grids with a resolution of 0.5 Å were
centered on the molecular systems considered, and the
charges were distributed onto the grid points.29 Solvent-
accessible surfaces,32 calculated with a spherical probe
of 1.4 Å radius,33 defined the solute boundaries, and a
minimum separation of 11 Å was left between any solute
atom and the borders of the box. The potentials at the
grid points delimiting the box were calculated analyti-
cally by treating each charge atom as a Debye-Hückel
sphere.29 Further definition of a finer grid (0.25 Å
spacing) and use of new boundary potentials linearly
interpolated from those calculated in the previous run
(focusing)34 were not justified as test calculations showed
that the electrostatic energies did not change signifi-
cantly.
For comparison purposes, the electrostatic contribu-

tion to the solvation free energy of each inhibitor
(∆Gele

solv) was also calculated. It was obtained by sub-
tracting the total electrostatic free energy in vacuo
(Gele

vac) from the total electrostatic free energy in water

∆Gele ) ELR
ele + (∆GL

desolv + ∆GR
desolv) (2)

Eele
LR ) ∑

i)1

R

qiφi (3)

Eele
LR ) ∑

n)1

N

∑
k)1

K

qnkφnk ) ∑
n)1

N

en (4)

∆Gele ) ∑
n)1

N

en + ∆Gdesolv
L + ∆Gdesolv

R (5)

φi ) 332 ∑
j)1

L qj

εrij
(6)

∇‚[ε(rb)∇φ(rb)] ) -4πF(rb) + κj2 φ(rb) (7)
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(Gele
wat).29 To this end, two calculations with identical

grid mappings and the same interior dielectric (ε ) 4)
were run for each inhibitor. The exterior dielectric was
set to either 1, to reproduce vacuum conditions, or to
80, to simulate the aqueous environment.
(d) Partitioning of the Intermolecular Interac-

tion Energy and Pretreatment of the Resulting
Energy Matrix. The calculated ligand-receptor in-
teraction energies in the refined complexes were parti-
tioned on a per residue basis using the ANAL module
in AMBER. A dielectric constant of 4 was used, and
all atom pairs were included in the calculation. Each
inhibitor was regarded as a single fragment and no
intramolecular energy terms were considered. Since
there are 2 protein subunits of 99 amino acids each plus
1 water molecule, and 2 energy contributions (van der
Waals and electrostatic) are considered for each residue,
398 variables were used to characterize each complex.
These energy descriptors were used as input for the
GOLPE program.35
Any positive energy values were truncated to 0.0 kcal

mol-1 as they were thought to arise from differences in
force field parameters between MM2X and AMBER.
Noise was reduced by zeroing those interaction energies
with absolute values lower than 0.1 kcal mol-1 and by
removing any variables with a standard deviation below
0.1 kcal mol-1. This pretreatment reduced the number
of variables that entered the PLS analysis from 398 to
around 50, making variable selection unnecessary. No
further scaling was carried out. Inspection of the
activity data, on the other hand, revealed that inclusion
of compound 30 in the analysis was not warranted as
this is a molecule with very low activity (IC50 ) ∼30
µM) and high leverage.
(e) Partial Least Squares (PLS) Analysis. The

PLS analysis of the pretreated data was carried out as
implemented in the GOLPE 3.0 program.36 The models
were validated using both internal and external valida-
tion tests. For internal validation, cross-validation was
used, assigning the compounds randomly to one of five
groups of approximately the same size, excluding from
the analysis each group in turn, and repeating the whole
procedure 20 times. This cross-validation procedure
provides a safer alternative to the more widely preferred
leave-one-out method and gives more conservative
results: a smaller cross-validated correlation coefficient
(q2) and a higher cross-validated standard deviation
error of predictions (SDEPcv).37 For external validation,
the PLS models obtained were used to predict the
biological activity of 16 compounds (prediction set) not
included in the training set. The quality of the predic-
tions was assessed by the value of the external SDEP
(SDEPex).
The optimal dimensionality of each model was deter-

mined from the evolution of the cross-validation indexes
as a function of the number of latent variables extracted.
All of the reported models contain two latent variables
(LV); further increase of the number of model dimen-
sions was not justified as it did not lead to any
improvement or the improvement achieved was not
significant.

Results
(a) Correlation of Inhibitory Potencies with

Calculated Binding Energies. The quality of the

correlation between the intermolecular interaction ener-
gies calculated with AMBER and the biological activities
of these inhibitors (r2 ) 0.81) was found to be slightly
better than that reported for the same series using the
MM2X force field (r2 ) 0.74; r2 ) 0.78 if compound 30
is not excluded).6 In cross-validation, the predictive
indices of our equivalent model (Lamber) were likewise
comparable (q2 ) 0.79, SDEPcv ) 0.61 vs q2 ) 0.75),
which is indicative that the good correlation first
reported by the Merck researchers6 is not exclusive to
the MM2X force field, at least according to these criteria.
When the regression equation obtained for the training
set was used to predict the activity of the external set,
the SDEPex was 1.08 log units. Figure 2a shows that
the model behaves remarkably well for the most active
compounds but predicts the less active molecules poorly,
some with an error in pIC50 of about 2 log units (e.g.
37, observed 6.25, predicted 3.92; 45, observed 5.17,
predicted 7.12).
(b) Calculation of Electrostatic Energies with

DelPhi and Replacement of the Coulombic Term.
A measure of the uncertainties introduced in the
continuum calculations when mapping the charges and
the dielectric constants onto a grid of finite size was
obtained by comparing the AMBER electrostatic inter-
action energies (ε ) 4) with those calculated by DelPhi
using a uniform dielectric of 4 for both the complex
interior and the surrounding medium. The average
difference amounted to about 0.2 kcal mol-1, and this
was also the degree of discrepancy in electrostatic
interaction energies calculated by means of eqs 1 or 5
(Table 1). These average errors were considered suf-
ficiently low to make us feel comfortable with the
conditions used in the continuum electrostatics calcula-
tions and reassured us about the correctness of the
partitioning scheme employed.
When the electrostatic term calculated with AMBER

was replaced with the overall electrostatic energy
change upon binding computed with DelPhi (∆Gele), a
new set of global interaction energies was obtained. The
quality of the correlation with the inhibitory activities
of this newmodel (Ldelphi), however, deteriorated slightly
(Figure 2b) with respect to the previous model (Table
2). This result is analogous to that reported by the
Merck researchers and corroborates their finding that
incorporation of solvation effects was not accompanied
by any improvement of the linear regression model.6
This lack of improvement may be somewhat surprising
at first sight as the DelPhi calculation now includes
desolvation effects and takes into account the reaction
field of the surrounding solvent around the complex.
Nevertheless, it should be borne in mind that continuum
calculations are very sensitive to small changes in
atomic coordinates, and for this reason the information
contained in the ∆Gele values is probably not devoid of
“noise”.
(c) Breakdown of the Ligand-Receptor Interac-

tion Energies and COMBINE Analysis of the En-
ergy Matrix. The partitioning scheme used in COM-
BINE analysis allows the dissection of the ligand-
receptor interaction energies into many individual van
der Waals and electrostatic contributions and provides
a wealth of information that can be easily comprehended
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from a simple plot. Thus, the visual inspection of the
energy values emanating from each protein residue and
the water molecule (Figure 3) highlights not only the
amino acids whose interaction with the ligand varies
more from complex to complex but also those parts of
the enzyme that give rise to unfavorable interaction
energies. The presence of these disturbing positive
energy values passed unnoticed in the previous analyses
that considered just a global interaction energy term
(Lamber and Ldelphi), and is most likely a consequence of

differences in the van der Waals radii between the two
force fields used for modeling and refining the complexes
(MM2X and AMBER). The suggestion that the rather
mild energy minimization performed using AMBER on
the MM2X geometries has not been able to refine the
complexes completely is supported by other work from
our laboratory on a different set of fully optimized
enzyme-inhibitor complexes for which no positive
energy values were observed.38 Further refinement of
the HIV-1 protease-inhibitor complexes with AMBER
was ruled out because the structural changes this
procedure was likely to introduce would have precluded
direct comparison of our results with the results of the
Merck study (the average rmsd for all protein non-
hydrogen atoms between initial and refined complexes
was 0.06 Å). Instead, and in order to avoid the undesir-
able effect of all those variables, a cutoff of 0.0 kcal mol-1
was applied (see Methodology).

Figure 2. Correlations between experimental and calculated activities (pIC50 values) according to the different regression models
for compounds in the training set (open squares) and the prediction set (filled triangles). (a) linear regression model (AMBER van
der Waals and electrostatic: Lamber), (b) linear regression model (AMBER van der Waals and DelPhi electrostatic: Ldelphi), (c)
COMBINE model (AMBER van der Waals and electrostatic: Camber), (d) COMBINE model (AMBER van der Waals and DelPhi
electrostatic: Cdelphi). See Methodology for details.

Table 2. Comparison of the Different Regression Models

model
no. of
objects

no. of
variables

no. of
LVs r2 q2 SDEPcv SDEPex

Lamber 32 1 1 0.81 0.79 0.61 1.08
Ldelphi 32 1 1 0.77 0.75 0.65 1.23
Camber 32 48 2 0.89 0.70 0.72 0.83
Cdelphi 32 47 2 0.90 0.73 0.69 0.59
Cexpanded 48 54 2 0.91 0.81 0.66
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The residue-based van der Waals and electrostatic
interactions calculated in AMBER, pretreated as de-
scribed in the Methodology section, were analyzed using
PLS. The experimental data fit to the resulting model
(Camber) better than to the linear regression model
(Lamber), as manifested by the higher correlation coef-
ficient (r2 ) 0.89) and, graphically, by the plot of
calculated vs experimental activities (Figure 2c). The
COMBINE model clearly outperforms the previous
model in fitting some of the former outliers and the
overall fit is slightly improved. The predictive ability
of the model is also increased, as assessed by the results
of the external validation (SDEPex ) 0.83). Figure 2c
clearly shows that the values of activity predicted for
the compounds in the external set are much closer to
experiment than those predicted by the previous model.
However, it is also clear from comparison of the SDEP
values that the standard error in prediction for the
compounds in the external set is somewhat larger than
that for the molecules belonging to the training set. This
can be taken as evidence that there is still room for
improvement in the model. The Camber model still
predicts the less active compounds poorly, and some

compounds are underpredicted by more than 1 log unit
(e.g. 41, observed 9.64, predicted 8.50; 40, observed 5.90,
predicted 4.29). Moreover, there appears to be a general
tendency to underpredict the activity of the compounds
in the external dataset: the predicted minus observed
residual is negative for 12 out of the 16 products, with
an average value of -0.45.
(d) Replacement of the Coulombic Term in the

Interaction Energy Matrix. The residue-based elec-
trostatic interaction energies computed with DelPhi, as
depicted in eq 4, were used to replace the corresponding
AMBER values in the COMBINE energy matrix. Be-
sides, to account for the change in the electrostatic
energy of solvation of the ligand and the enzyme binding
site upon complex formation (Figure 1), two new vari-
ables, ∆Gdesolv

R and ∆Gdesolv
L , were incorporated into the

analysis as additional regressors. Pretreatment of this
new data matrix as in the previous example reduced
the initial 400 variables per complex to only 47, which
were analyzed by PLS as before. The new COMBINE
model (Cdelphi) neatly outperforms the previous Camber
model (Table 2). The quality of the fit is marginally
better (r2 ) 0.90) than in the case of the Camber model
but, more importantly, the predictive ability is signifi-
cantly improved, as assessed by a higher cross-validated
correlation coefficient in internal validation (q2 ) 0.73)
and a smaller error in prediction (SDEPcv ) 0.69). The
external predictions are even better, and for the first
time the external SDEP falls below the cross-validated
SDEP, reaching the remarkable value of SDEPex ) 0.59.
Comparison between calculated and experimental ac-
tivities (Figure 2d) clearly shows that the accuracy of
this model is greatly improved, especially for the weaker
inhibitors. It can be seen that the residuals of the pre-
dictions are distributed more evenly although there per-
sists a certain tendency to underestimate the potency
of the compounds in the external set (the average pre-
dicted-minus-observed residual is -0.24). The most sig-
nificant outlier is compound 41 but its activity is under-
predicted by less than 1 order of magnitude (Table 1).
To obtain further insight into the correlation, the PLS

model Cdelphi was transformed into a pseudo-MLR
(multiple linear regression) model of the form

where each pseudo-coefficient ai summarizes the con-
tribution to the activity of variable Xi in each of the two
latent variables extracted. Since these pseudocoeffi-
cients are used mainly to compare the relative impor-
tance for activity of each variable, they are weighted so
as to make them independent of the scale and the vari-
ance of the original variables. Figures 4 and 5 provide
a visual representation of these weighted PLS pseudo-
coefficients and graphically highlight the protein resi-
dues whose van der Waals and/or electrostatic interac-
tions with the ligands are more important for describing
the variation in activity within the series. This should
allow the design of further structural modifications
within the series to be guided by focusing synthetic
efforts on the regions highlighted by the analysis.39 It
must be borne in mind that structural variation within
the series is primarily concentrated on the P1′ and P2′
substituents. Interactions with around 30 amino acids

Figure 3. Interaction energies (a) before and (b) after
pretreatment. These are the variables that enter the PLS
analysis leading to the Camber model. Each diamond represents
a value present in the energy matrix. On the horizontal axis,
the variables are ordered sequentially and correspond to van
der Waals (1-199) and electrostatic (200-398) interactions
between the ligands and either the protein residues (1-198
and 200-397) or the water molecule (199 and 398). See
Methodology for details.

pIC50 ) ∑
i

ai Xi + b (8)
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account for the differences in activity, and van der
Waals interactions outnumber electrostatic interactions.
With regard to the van der Waals coefficients, the more
significant fragments selected include the water mol-
ecule and a number of amino acids that are clustered
around the region containing the unprotonated catalytic
aspartic acid (GlyB27, AlaB28, AspB29, AspB30), the
flap region (GlyB48, GlyB49), the strand between resi-
dues 80-86 (ProA81, ValA82, IleA84), and the “bridge”
residues between binding pockets S1′ and S2′ at the
interface between subunits A and B (ArgA8, LeuA23).
The electrostatic coefficients, on the other hand, are
mostly contributed by the unprotonated AspB25, as the
most important protein residue, followed by GlyB27,
AlaB28, GlyA27, and finally GlyB48; the largest con-
tributions, by far, correspond to the electrostatic energy
of desolvation of both ligand and receptor. The hydrogen-
bonding potential of the ligands is fulfilled in a very
similar way with the only exception of an additional
polar group present in some inhibitors which is located

at the boundaries of the S1′ binding pocket. For this
reason many electrostatic interactions do not contribute
significantly to the differences in activity, and the PLS
coefficients arise from few residues. On the other hand,
the bulk of the P1′ and P2′ substituents is more
efficiently explored (Table 1).
The improvement observed in model Cdelphi with

respect to Camber can be seen as a direct consequence of
using a better method for describing the residue-based
intermolecular electrostatic energies (Eele

LR) but also as
a consequence of the new information added by the two
variables that represent the changes in the electrostatic
energy of solvation upon complex formation (∆Gdesolv

R

and ∆Gdesolv
L ). The influence of considering the solvent

reaction field in the calculation of Eele
LR using DelPhi

appears to be small since these interaction energy
values and those calculated using AMBER and a
uniform dielectric of 4 are very similar (data not shown).
This probably reflects the fact that the inhibitors are

Figure 4. Weighted PLS pseudocoefficients of model Cdelphi for each of the (a) van der Waals and (b) electrostatic interaction
energies studied. The last two variables in (b) represent the electrostatic contributions to the desolvation of the ligand
(∆Gdesolv

L ) and the receptor (∆Gdesolv
R ). Relevant residues have been labeled.
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mostly buried in the active site of the protease. To
assess the effect of including ∆Gdesolv

R and ∆Gdesolv
L on

the quality of the model, we calculated the changes that
take place in the coefficients of the Cdelphi model when
these energy descriptors are omitted from the analysis
(Figure 6). When the information provided by these two
variables is not present, the model does in fact resemble
the Camber model (virtually identical r2, q2, and SDEPcv;
slightly improved SDEPex ) 0.79). The change in
coefficients reported in Figure 6 reveals that the incor-
poration of these two new variables replaces some
information already contained in the previous model.
In its search for the best possible correlation with
activity, and in the absence of variables that account
for solvation effects, the PLS algorithm presumably
finds a solution in which the coefficients implicitly
include those effects. These coefficients encompass both
the effect on the activity of the measured binding
enthalpies and some other contributions (such as sol-
vation effects) that are collinear with the calculated
energy variables. Such collinearities, even if they
could be valid for the training set, are hardly general
enough to give accurate predictions for the external

compounds. As a consequence, upon incorporation of
the desolvation energies, the model becomes more
generally applicable and the quality of the external
predictions is improved.
(e) Expanded Data Set. True validation of COM-

BINE models, as of any other QSAR models, comes
when they show their value in predicting accurately the
activities of new compounds. We have already shown
how Cdelphi performs remarkably well in this respect.
However, elaboration of an existing drug lead is a cyclic
process involving repeated rounds of compound design,
synthesis and testing.1 QSAR models derived at one
stage need to be continually updated incorporating as
much new information as possible. In the present
example, once the molecules in the prediction set have
been synthesized and evaluated, it makes sense to
merge them into the training set to produce an ex-
panded set of inhibitors on which to test the method-
ology with a view to bringing the model up to date
(Figure 7).
With this aim, a new training set encompassing the

48 inhibitors studied was built and analyzed following
the same strategy that produced the Cdelphi model. The

Figure 5. View of a section of the active site of HIV-1 protease in a complex with compound 1 (C atoms in green). The Connolly
surface33 around the protein (C atoms in gray) and water (represented as ball and stick) atoms has been color-coded according to
the (top) van der Waals and (bottom) electrostatic weighted PLS pseudocoefficients reported in Figure 4. A scale is provided on
the right-hand corner of each picture.
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resulting COMBINE model (Cexpanded) proved excellent
both in fitting (r2 ) 0.91) and in predictive ability (q2 )
0.81, SDEPcv ) 0.66). Figure 8 shows how this updated
model provides more accurate estimations of activity for
the products in the former prediction set (standard
deviation error of calculation for these 16 compounds
) 0.42) than any of the previous models (e.g. SDEPex )
0.59 in Cdelphi). This must be seen as a direct conse-
quence of the incorporation into the expanded training
set of unique information contained in some of the

compounds of the former prediction set. The lack of this
information in the preceding models necessarily limited
the quality of the predictions that could be attained.

Discussion
Accurate prediction of ligand-receptor affinities is

handicapped by a limited understanding of the relative
importance and inter-relationships of the variables
which define the 3D QSAR.40 For binding to take place,
the interaction energy between the binding partners in
the complex must overcome their interaction energy
with the solvent, but the overall effect of these opposing
tendencies on binding affinity is hard to predict: the
desolvation penalty can increase by incorporation of
polar groups but may also improve binding if good
hydrogen bonds or favorable electrostatic interactions
are established with the protein target.14 On the other
hand, when congeneric series of ligands are studied, the
structural variations on the substituents associated with
one or more of the receptor’s binding pockets are likely
to cooperatively affect the binding of the rest of the
molecule. This makes comparisons of ligand compo-
nents meaningless unless they are restricted to varia-
tions in a single position of an otherwise identical
structure.40 The problem in medicinal chemistry is that
there can be many structural changes in a series, and
recognizing the relation between the change in structure
and the change in activity or binding affinity is difficult
due to the many variables involved. The rationale
behind a COMBINE analysis is to accurately translate
the distinct ligand-receptor interactions in a set of
complexes into a large number of informative variables
in order to find a correlation between these descriptors
and the biological activity. It is hoped that the data
matrix can capture the essence of all the structural
changes in the compounds studied (training set), and
that the resulting quantitative model will highlight

Figure 6. Differential plot showing the changes on the
weighted PLS pseudocoefficients of the (a) van der Waals and
(b) remaining electrostatic variables upon removal from model
Cdelphi of ∆Gdesolv

L and ∆Gdesolv
R . These values were calculated

by subtracting the coefficients provided by a model analogous
to Cdelphi but which does not include the desolvation energy
terms from those provided by Cdelphi. Note that the scale has
been changed with respect to that in Figure 4.

Figure 7. QSAR model building and updating in an iterative
cycle of drug design.

Figure 8. Plot of experimental vs calculated inhibitory
activities (pIC50 values) for a single expanded set of compounds
comprising those belonging to the former training set (open
squares) and the former prediction test (filled squares).
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those variables that are more important for improved
activity. Once this information is gained, it can be used
to advantage in the design of new structural changes.
The method of choice for extracting the relevant infor-
mation is PLS. PLS projects the original matrix of ener-
gy terms on to a small number of orthogonal latent vari-
ables and gives weights to the original energy contribu-
tions according to their importance in the model.
If the ratio between the really informative variables

and those that do not contribute to explaining the
differences in activity (noisy variables) is too low, the
PLS method may fail to obtain a valid model. In a
previous example with a set of human phospholipase
A2 inhibitors,15 intramolecular energy terms were in-
cluded and the rather large inhibitors were split into a
number of fragments. As a result, the number of
variables that entered the PLS analysis was very high,
and the use of variable selection methods37 was justified.
In the present case, our calculations have been limited
to a conformational substate of the protein, as found in
the crystal structure of HIV-1 protease complexed with
L-689,502,20 and a pretreatment of the data consisting
of setting very small values to zero and removing those
variables that take nearly constant values in the matrix
was enough to reduce the number of energy descriptors
down to around 50 (Table 2). This means that the
variation in activity along the series of HIV-1 protease
inhibitors studied can be explained by considering
interactions with no more than 30 amino acid residues
(Figure 4), which is about the number of unique residues
involved in all subsite interactions with a wide range
of inhibitors.21

The improvement in the accuracy of the external
predictions of the COMBINE models relative to the
linear regression models (Table 2) is remarkable, all the
more if we consider that Camber and Cdelphi are derived,
respectively, using the same data as Lamber and Ldelphi,
the only difference being in the tools used for the
analysis. Comparison of the cross-validation results,
however, should be interpreted with caution as the
regression method used to derive each type of model is
rather different. COMBINEmodels contain many more
variables and the method itself is more “flexible”. As a
consequence, when some of the objects are taken out
during the cross-validation procedure, the weights given
to the different variables change in order to improve the
fit, and a slightly poorer estimation is obtained com-
pared to the more “rigid” linear regression models.
Also indisputable is the beneficial effect in a COM-

BINE model (Cdelphi) of considering the reaction field
originated by the response of the solvent molecules and
ions to the field generated by the solute charges, as well
as the desolvation of the binding interface upon complex
formation. In this respect, it is worth noting that in
some published studies the electrostatic contributions
to the solvation free energies of the ligands (∆Gele

solv) are
included in the regression equation that attempts to
correlate biological activities with calculated binding
energies.6,8 This electrostatic free energy represents the
change in electrostatic energy in going from vacuum to
solvent but the really meaningful quantity that may
complement the calculated binding enthalpies is the
cost in electrostatic free energy of desolvating both the
ligand (∆Gdesolv

L ) and the binding site on the receptor

(∆Gdesolv
R ) (Figure 1). Nevertheless, using data from

Table 1, it can be seen that in this particular case the
∆Gele

solv values calculated for the inhibitors show a clear
correlation (r2 ) 0.80) with the ∆Gdesolv

L values, prob-
ably due to the fact that most of the variation in polarity
occurs on groups that contact the protein and the
ligands are almost completely buried within the receptor
in the complex. Also noteworthy is the fact that the sign
of the weighted PLS pseudo-coefficients assigned by the
Cdelphi model to ∆Gdesolv

L and ∆Gdesolv
R is inverted with

respect to that of the majority of the remaining contri-
butions (Figure 4). Since the sign of these terms is
positive (Table 1), this result implies that the larger the
desolvation energy the better the binding. There is no
discrepancy between this finding and the notion that
desolvation of both the ligands and the receptor site
opposes binding.29 Desolvation and binding are inex-
tricably linked (Figure 1), and the analysis simply
highlights the fact that the substituents present in the
best inhibitors lead to improved binding but also incur
a greater penalty in terms of desolvation energies.
The weights given by the PLS analysis to the original

variables used in a COMBINE study are valuable per
se because they can be used to highlight those residues
whose interactions with the ligand are more correlated
with the biological activity in the series studied. These
weights can be studied “dimensionwise” for each latent
variable considered, or “modelwise”, condensed in the
weighted PLS pseudocoefficients (Figures 4 and 5). In
either case, they can be used similarly to the grid plots
of PLS weights or pseudocoefficients provided by a
CoMFA study to show the key regions for the ligand-
receptor interaction. One obvious advantage of their
use is that they pinpoint not only those regions of
interest in three-dimensional space but also the actual
ligand-receptor interactions involved. Independently
of the quality of the model obtained, the simpler linear
correlation models lack all this information. Interest-
ingly, the structural mapping of the different contribu-
tions to the activity resulting from our analysis is very
similar to that reported for the binding energetics of a
series of 13 HIV-1 protease inhibitors using a very
different approach.41

The target functions used to estimate the properties
related to the binding free energies are very sensitive
to inevitable errors in the atomic coordinates.42 These
inaccuracies are probably exacerbated in modeled com-
plexes and require careful analysis. Unpaired buried
polar groups in the protein ligand interface, for example,
are strongly adverse to binding but can pass unnoticed
when only global intermolecular energies are consid-
ered. The COMBINE methodology can be a useful tool
to unveil deficiencies such as these. A simple graphical
overview of the energy matrix, such as that shown in
Figure 3, can easily highlight sources of docking errors.
The lack of improvement in going from the Lamber

model to Ldelphi probably reflects the fact that electro-
static free energy contributions calculated using con-
tinuummethods are especially sensitive to small changes
in atomic coordinates as well as to the way the molec-
ular surfaces are calculated, so that a certain amount
of noise is introduced in the global electrostatic interac-
tion energy term. On the other hand, the performance
of Cdelphi is notably improved over that of Camber because
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COMBINE analysis filters out this noise by changing
the weights given to those residues whose interaction
energies with the ligands fluctuate but do not contribute
to explaining differences in activity. At the same time,
Cdelphi benefits from the better description of the binding
electrostatics, which include solvation effects, and a
highly predictive regression model is produced.
Mutagenesis experiments suggest that ligand-recep-

tor interactions can be analyzed in terms of a limited
set of discrete interactions rather than as the sum of a
larger set of independent weak interactions.43 For
different HIV-1 protease inhibitors, distinctly different
patterns of resistance arise, with mutations at different
sites.40 Given that the number of structures of mutant
enzymes with different inhibitors is continually increas-
ing,44 the methodology presented in this paper can make
it possible to study the interrelationships among the
different binding energy contributions and address the
issue of resistance in molecular design.

Conclusions

The good correlation found between calculated mo-
lecular mechanics interaction energies and experimental
inhibitory potencies for a series of HIV-1 protease
inhibitors using the MM2X force field has been cor-
roborated using the AMBER force field. A more ac-
curate QSAR model was derived when the ligand-
receptor interaction energies were decomposed into
residue-based van der Waals and electrostatic contribu-
tions, and a PLS analysis was done to fit the activity
data (COMBINE analysis). The use of a continuum
method to calculate the electrostatic contributions to the
binding energy taking into account the desolvation of
the binding interface provided an alternate set of
electrostatic energy descriptors. When they were in-
corporated into the analysis in place of the Coulombic
energy interactions, the model improved even further.
On the basis of our results from a study involving

trypsin and a short series of flavonoid inhibitors,10 we
concluded that the good correlations obtained by differ-
ent authors for congeneric series using only force field
calculations5-8 could be accounted for, at least in part,
by the fact that solvation effects tend to be of similar
magnitude within the series. Thus, when these effects
are ignored, reasonable correlations can be derived
although a closer agreement between calculated and
experimental free energy differences can be obtained
when desolvation is explicitly included.10 Our observa-
tions from the considerably larger series of congeneric
HIV-1 protease inhibitors studied here confirm our
previous findings and, at the same time, demonstrate
that molecular mechanics-based QSAR studies on
ligand-receptor complexes can benefit greatly from
proper incorporation of solvation effects into a COM-
BINE framework based on residue-based interaction
energy decomposition.

Note. Coordinates of all the complexes, atomic charges,
AMBER parameters, and interaction energy matrixes are
available from the authors upon request (e-mail: fgago@
fisfar.alcala.es).
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