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Abstract. This paper presents various semantics in the branching-time spectrum

of discrete-time and continuous-time Markov chains (DTMCs and CTMCs). Strong

and weak bisimulation equivalence and simulation pre-orders are covered and are

logically characterised in terms of the temporal logics PCTL and CSL. Apart from

presenting various existing branching-time relations in a uniform manner, our con-

tributions are: (i) weak simulation for DTMCs is defined, (ii) weak bisimulation

equivalence is shown to coincide with weak simulation equivalence, (iii) logical

characterisation of weak (bi)simulations are provided, and (iv) a classification of

branching-time relations is presented, elucidating the semantics of DTMCs, CTMCs

and their interrelation.

1 Introduction

Equivalences and pre-orders are important means to compare the behaviour of transition

systems. Prominent branching-time relations are bisimulation and simulation. Bisimula-

tions [36] are equivalences requiring related states to exhibit identical stepwise behaviour.

Simulations [30] are preorders requiring state s0 to mimic s in a stepwise manner, but

not necessarily the reverse, i.e., s0 may perform steps that cannot be matched by s. Typi-

cally, strong and weak relations are distinguished. Whereas in strong (bi)simulations, each

individual step needs to be mimicked, in weak (bi)simulations this is only required for ob-

servable steps but not for internal computations. Weak relations thus allow for stuttering.

A plethora of strong and weak (bi)simulations for labelled transition systems has been

defined in the literature, and their relationship has been studied by process algebraists,

most notably by van Glabbeek [22, 23]. These “comparative” semantics have been ex-

tended with logical characterisations. Strong bisimulation, for instance, coincides with

CTL-equivalence [13], whereas strong simulation agrees with a “preorder” on the uni-

versal (or existential) fragment of CTL [15]. Similar results hold for weak (bi)simulation

where typically the next operator is omitted, which is not compatible with stuttering.

For probabilistic systems, a similar situation exists. Based on the seminal works of

[31, 35], notions of (bi)simulation (see, e.g., [2, 7, 8, 11, 12, 24, 27, 28, 32, 38, 40, 41]) for

models with and without nondeterminism have been defined during the last decade, and



various logics to reason about such systems have been proposed (see e.g., [1, 4, 10, 26]).

This holds for both discrete probabilistic systems and variants thereof, as well as systems

that describe continuous-time stochastic phenomena. In particular, in the discrete setting

several slight variants of (bi)simulations have been defined, and their logical characterisa-

tions studied, e.g., [3, 17, 21, 19, 40]. Although the relationship between (bi)simulations is

fragmentarily known, a clear, concise classification is – in our opinion – lacking. Moreover,

continuous-time and discrete-time semantics have largely been developed in isolation, and

their connection has received scant attention, if at all.

This paper attempts to study the comparative semantics of branching-time relations for

probabilistic systems that do not exhibit any nondeterminism. In particular, time-abstract

(or discrete-time) fully probabilistic systems (FPS) and continuous-time Markov chains

(CTMCs) are considered. Strong and weak (bi)simulation relations are covered together

with their characterisation in terms of the temporal logics PCTL [26] and CSL [4, 10] for

the discrete and continuous setting, respectively. Apart from presenting various existing

branching-time relations and their connection in a uniform manner, several new results are

provided. For FPSs, weak bisimulation [7] is shown to coincide with PCTLnX -equivalence,

weak simulation is introduced whose kernel agrees with weak bisimulation, and the pre-

order weakly preserves a safe (live) fragment of PCTLnX . In the continuous-time setting,

strong simulation is defined and is shown to coincide with a preorder on CSL. These re-

sults are pieced together with various results known from the literature, forming a uniform

characterisation of the semantic spectrum of FPSs, CTMCs and of their interrelation.

Organisation of the paper. Section 2 provides the necessary background. Section 3 de-

fines strong and weak (bi)simulations. Section 4 introduces PCTL and CSL and presents

the logical characterisations. Section 5 presents the branching-time spectrum. Section 6

concludes the paper. Some proofs are included in this paper; for remaining proofs, see [9].

2 Preliminaries

This section introduces the basic concepts of the Markov models considered within this

paper; for a more elaborate treatment see e.g., [25, 33, 34]. Let AP be a fixed, finite set of

atomic propositions.

Definition 1. A fully probabilistic system (FPS) is a tuple D = (S;P;L) where:

– S is a countable set of states

– P : S�S! [0;1℄ is a probability matrix satisfying ∑s02S P(s;s0) 2 [0;1℄ for all s 2 S

– L : S ! 2AP is a labelling function which assigns to each state s 2 S the set L(s) of

atomic propositions that are valid in s.

If ∑s02S P(s;s0) = 1, state s is called stochastic, if this sum equals zero, state s is called

absorbing; otherwise, s is called sub-stochastic.

Definition 2. A (labelled) DTMC is an FPS where any state is either stochastic or ab-

sorbing, i.e., ∑s02S P(s;s0) 2 f0;1g for all s 2 S.

For C � S, P(s;C) = ∑s02C P(s;s0) denotes the probability for s to move to a C-state. For

technical reasons, P(s;?) = 1� P(s;S): Intuitively, P(s;?) denotes the probability to
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stay forever in s without performing any transition; although ? is not a “real” state (i.e.,? =2 S), it may be regarded as a deadlock. In the context of simulation relations later on,? is treated as an auxiliary state that is simulated by any other state. Let S? = S [ f?g:Post(s) = fs0 j P(s;s0)> 0g denotes the set of direct successor states of s, and Post?(s) =fs0 2 S? j P(s;s0)> 0g, i.e., Post(s)[f? j P(s;?)> 0g:
We consider FPSs and therefore also DTMCs as time-abstract models. The name

DTMC has historical reasons. A (discrete-)timed interpretation is appropriate in settings

where all state changes occur at equidistant time points. For weak relations the time-

abstract view will be decisive. In contrast, CTMCs are considered as time-aware, as they

have an explicit reference to (real-)time, in the form of transition rates which determine

the stochastic evolution of the system in time.

Definition 3. A (labelled) CTMC is a tuple C = (S;R;L) with S and L as before, and rate

matrix R : S�S! IR>0 such that the exit rate E(s) = ∑s02S R(s;s0) is finite.

As in the discrete case, Post(s) = fs0 j R(s;s0) > 0g denotes the set of direct successor

states of s, and for C � S, R(s;C) = ∑s02C R(s;s0) denotes the rate of moving from state s

to C via a single transition.

The meaning of R(s;s0) = λ > 0 is that with probability 1� e�λ�t the transition s! s0
is enabled within the next t time units (provided that the current state is s). If R(s;s0) > 0

for more than one state s0, a race between the outgoing transitions from s exists. The

probability of s0 winning this race before time t is
R(s;s0)
E(s) � (1�e�E(s)�t). With t !∞ we get

the time-abstract behaviour by the so-called embedded DTMC:

Definition 4. The embedded DTMC of CTMC C =(S;R;L) is given by emb(C )= (S;P;L),
where P(s;s0) = R(s;s0)=E(s) if E(s)> 0 and P(s;s0) = 0 otherwise.

A CTMC is called uniformised if all states in C have the same exit rate. Each CTMC can

be transformed into a uniformised CTMCs by adding self-loops [39]:

Definition 5. Let C = (S;R;L) be a CTMC and let (uniformisation rate) E be a real such

that E > maxs2S E(s). Then, unif(C ) = (S;R;L) is a uniformised CTMC with R(s;s0) =
R(s;s0) for s 6= s0, and R(s;s) = R(s;s)+E�E(s).
In unif(C ) all rates of self-loops are “normalised” with respect to E , such that state transi-

tions occur with an average “pace” of E , uniform for all states of the chain. We will later

see that C and unif(C ) are related by weak bisimulation.

Paths and the probability measures on paths in FPSs and CTMCs are defined by a

standard construction, e.g., [25, 33, 34], and are omitted here.

3 Bisimulation and simulation

We will use the subscript “d” to identify relations defined in the discrete setting (FPSs or

DTMCs), and “c” for the continuous setting (CTMCs).

Definition 6. [33, 35, 32, 24] Let D = (S;P;L) be a FPS and R an equivalence relation on

S. R is a strong bisimulation on D if for s1 Rs2: L(s1) = L(s2) and P(s1;C) = P(s2;C) for

all C in S=R. s1 and s2 in D are strongly bisimilar, denoted s1 �d s2, if there exists a strong

bisimulation R on D with s1 Rs2.
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Definition 7. [14, 28] Let C = (S;R;L) be a CTMC and R an equivalence relation on S.

R is a strong bisimulation on C if for s1 Rs2: L(s1) = L(s2) and R(s1;C) = R(s2;C) for all

C in S=R. s1 and s2 in C are strongly bisimilar, denoted s1 �c s2, if there exists a strong

bisimulation R on C with s1 Rs2.

As R(s;C) = P(s;C) �E(s), the condition on the cumulative rates can be reformulated as

(i) P(s1;C) = P(s2;C) for all C 2 S=R and (ii) E(s1) = E(s2). Hence,�c agrees with�d in

the embedded DTMC provided that exit rates are treated as additional atomic propositions.

By the standard construction, it can be shown that �d and �c are the coarsest strong

bisimulations.

Proposition 1. For CTMC C = (S;R;L):
1. s1 �c s2 implies s1 �d s2 in emb(C ), for any state s1;s2 2 S.

2. if C is uniformised then �c coincides with �d in emb(C ).
Definition 8. A distribution on set S is a function µ : S! [0;1℄ with ∑s2S µ(s)6 1.

We put µ(?) = 1�∑s2S µ(s). Distr(S) denotes the set of all distributions on S. Distribution

µ on S is called stochastic if µ(?) = 0. For simulation relations, the concept of weight

functions is important.

Definition 9. [29, 31] Let S be a set, R� S�S, and µ;µ0 2Distr(S). A weight function for

µ and µ0 with respect to R is a function ∆ : S?�S?! [0;1℄ such that:

1. ∆(s;s0)> 0 implies sRs0 or s =?
2. µ(s) = ∑s02S? ∆(s;s0) for any s 2 S?
3. µ0(s0) = ∑s2S? ∆(s;s0) for any s0 2 S?

We write µ vR µ0 (or simply v, if R is clear from the context) iff there exists a weight

function for µ and µ0 with respect to R. vR is the lift of R to distributions.

Definition 10. [31] Let D = (S;P;L) be a FPS and R� S�S. R is a strong simulation on

D if for all s1 Rs2: L(s1) = L(s2) and P(s1; �) vR P(s2; �). s2 strongly simulates s1 in D,

denoted s1 -d s2, iff there exists a strong simulation R on D such that s1 Rs2.

It is not difficult to see that s1 �d s2 implies s1 -d s2. For a DTMC without absorbing

states, -d is symmetric and coincides with �d , see [31].

Proposition 2. [5, 16] For any FPS,-d \ -�1
d coincides with �d .

Definition 11. Let C = (S;R;L) be a CTMC and R� S�S. R is a strong simulation on C

if for all s1 Rs2: L(s1)= L(s2), P(s1; �)vR P(s2; �) and E(s1)6E(s2). s2 strongly simulates

s1 in C , denoted s1 -c s2, iff there exists a strong simulation R on C such that s1 Rs2.

Proposition 3. For any CTMC C :

1. s1 �c s2 implies s1 -c s2, for any state s1;s2 2 S.

2. s1 -c s2 implies s1 -d s2 in emb(C ), for any state s1;s2 2 S.

3. -c \ -�1
c coincides with �c.

4. if C is uniformised then -c is symmetric and coincides with �c.
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Weak bisimulation. In this paper, we only consider weak bisimulation which relies on

branching bisimulation in the style of van Glabbeek and Weijland and only abstracts from

stutter-steps inside the equivalence classes. While for ordinary transition systems branch-

ing bisimulation is strictly finer than Milner’s observational equivalence, they agree for

FPSs [7], and thus for CTMCs.

Let D = (S;P;L) be a DTMC and R � S� S an equivalence relation. Any transition

s ! s0 where s and s0 are R-equivalent is an R-silent move. Let SilentR denote the set of

states s 2 S for which P(s; [s℄R) = 1, i.e., all stochastic states that do not have a successor

state outside their R-equivalence class. For any state s 62 SilentR, s0 2 S with s0 =2 [s℄R:

P(s;s0 j no R-silent move) = P(s;s0)
1�P(s; [s℄R)

denotes the conditional probability to move from s to s0 via a single transition under the

condition that from s no transition inside [s℄R is taken. Thus, either a transition is taken to

another equivalence class under R or, for sub-stochastic states, the system deadlocks. For

C � S with C\ [s℄R =? let P(s;C j no R-silent move) = ∑s02C P(s;s0 j no R-silent move).
Definition 12. [7] Let D = (S;P;L) be a FPS and R an equivalence relation on S. R is a

weak bisimulation on D if for all s1 Rs2:

1. L(s1) = L(s2)
2. If s1, s2 =2 SilentR then: P(s1;C j no R-silent move) = P(s2;C j no R-silent move) for

all C 2 S=R, C 6= [s1℄R.

3. If s1 2 SilentR and s2 =2 SilentR then s1 can reach a state s0 2 [s1℄R n SilentR with

positive probability.

s1 and s2 in D are weakly bisimilar, denoted s1 �d s2, iff there exists a weak bisimulation

R on D such that s1 Rs2.

By the third condition, for any R-equivalence class C, either all states in C are R-silent

(i.e., P(s;C) = 1 for s 2C) or for s 2C there is a path fragment that ends in an equivalence

class that differs from C.

Example 1. For the following DTMC (where equally shaded states are equally labeled)

the reachability condition is needed to establish a weak bisimulation for states s1 and s2:

s2s1

1 11

u

We have s1 �d s2, and s1 is �d-silent while s2 is not. Here, the reachability condition

is obviously fulfilled. This condition can, however, not be dropped: otherwise s1 and s2

would be weakly bisimilar to an absorbing state with the same labeling.

Definition 13. [12] Let C = (S;R;L) be a CTMC and R an equivalence relation on S. R

is a weak bisimulation on C if for all s1 Rs2: L(s1) = L(s2) and R(s1;C) = R(s2;C) for

all C 2 S=R with C 6= [s1℄R. s1 and s2 in C are weakly bisimilar, denoted s1 �c s2, iff there

exists a weak bisimulation R on C such that s1 Rs2.
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Proposition 4. For any CTMC C :

1. �c is strictly finer than �c.

2. if C is uniformised then �c coincides with �c.

3. �c coincides with �c in unif(C ).
The last result can be strengthened as follows. Any state s in C is weakly bisimilar to s

considered as a state in unif(C ). (For this, consider the disjoint union of C and unif(C ) as

a single CTMC.)

Proposition 5. For CTMC C with s1;s2 2 S: s1 �c s2 implies s1 �d s2 in emb(C).

Proof. Let R be a weak bisimulation on C . We show that R is a weak bisimulation on emb(C )
as follows. First, observe that all R-equivalent states have the same labelling. Assume s1 Rs2 and

B = [s1℄R = [s2℄R. Distinguish two cases. (i) s1 is R-silent, i.e., P(s1;B)= 1. Hence, R(s1;B) = E(s1)
and therefore 0 = R(s1;C) = R(s2;C) for all C 2 S=R with C 6= B. So, P(s2;B) = 1. (ii) Neither s1

nor s2 is R-silent, i.e., P(si;B)< 1, for i=1;2. Note that:

E(si) = ∑
C2S=R

C 6=B

R(si;C) + R(si;B)
As s1 �c s2, R(s1;C) = R(s2;C) for all C 2 S=R with C 6= B. Hence, ∑C2S=R;C 6=B R(s1;C) =
∑C2S=R;C 6=B R(s2;C) and therefore E(s1)�R(s1;B) = E(s2)�R(s2;B) (*). For any C 2 S=R with

C 6= B we derive:

P(s1;C j no R-silent move) def= P(s1;C)
1�P(s1;B) = E(s1) �P(s1;C)

E(s1)�E(s1) �P(s1;B)
def :R= R(s1;C)

E(s1)�R(s1;B) (�);s1�cs2= R(s2;C)
E(s2)�R(s2;B) = P(s2;C)

1�P(s2;B)
which, by definition, equals P(s2;C j no R-silent move). So, s1 �d s2.

Remark 1. Prop. 1.2 states that for a uniformised CTMC, �c coincides with �d on the

embedded DTMC. The analogue for �c does not hold, as, e.g., in the uniformised CTMC

of Example 1 we have s1 �d s2 but s1 6�c s2 as R(s1; [u℄) 6= R(s2; [u℄). Intuitively, although

s1 and s2 have the same time-abstract behaviour (up to stuttering) they have distinct timing

behaviour. s1 is “slower than” s2 as it has to perform a stutter step prior to an observable

step (from s2 to u) while s2 can immediately perform the latter step. Note that by Prop 4.2

and Prop. 1.2, �c coincides with �d for uniformised CTMCs. In fact, Prop. 5 can be

strengthened in the following way: �c is the coarsest equivalence finer than �d such that

s1 �c s2 implies R(s1;Sn [s1℄) = R(s2;Sn [s2℄).
Weak simulation. Weak simulation on FPSs is inspired by our work on CTMCs [8].

Roughly speaking, s1 w s2 if the successor states of s1 and s2 can be grouped into sub-

sets Ui and Vi (assume, for simplicity, Ui\Vi =?). All transitions from si to Vi are viewed

as stutter-steps, i.e., internal transitions that do not change the labelling and respect w. To

that end, any state in V1 is required to be simulated by s2 and, symmetrically, any state

in V2 simulates s1. Transitions from si to Ui are regarded as visible steps. Accordingly,

we require that the distributions for the conditional probabilities u1 7! P(s1;u1)=K1 and

u2 7! P(s2;u2)=K2 to move from si to Ui are related via a weight function (as for -d). Ki

denotes the total probability to move from si to a state in Ui in a single step. For technical

reasons, we allow ?2Ui and ?2Vi.
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  K2

U1 U2

K11-K1 1-K2

 

simulated by s2 weight function 
condition

simulating s1

s1 s2

V1
V2

Definition 14. Let D = (S;P;L) be a FPS and R � S� S. R is a weak simulation on D

iff for s1 Rs2: L(s1) = L(s2) and there exist functions δi : S? ! [0;1℄ and sets Ui;Vi � S?
(i=1;2) with

Ui = fui 2 Post?(si) j δi(ui)> 0g and Vi = fvi 2 Post?(si) j δi(vi)< 1g
such that:

1. (a) v1 Rs2 for all v1 2V1, v1 6=?, and (b) s1 Rv2 for all v2 2V2, v2 6=?
2. there exists a function ∆ : S?�S?! [0;1℄ such that:

(a) ∆(u1;u2)> 0 implies u1 2U1, u2 2U2 and either u1 Ru2 or u1 =?,

(b) if K1 > 0 and K2 > 0 then for all states w 2 S:

K1� ∑
u22U2

∆(w;u2) = δ1(w)�P(s1;w); K2� ∑
u12U1

∆(u1;w) = δ2(w)�P(s2;w)
where Ki = ∑ui2Ui

δi(ui) �P(si;ui) for i=1;2
3. for u1 2 U1, u1 6= ? there exists a path fragment s2;w1; : : : ;wn;u2 such that n > 0,

s1 Rw j , 0 < j 6 n, and u1 Ru2.

s2 weakly simulates s1 in D, denoted s1 wd s2, iff there exists a weak simulation R on D

such that s1 Rs2.

Note the correspondence to �d (cf. Def. 12), where [s1℄R plays the role of V1, while the

successors outside [s1℄R play the role of U1, and the same for s2, V2 and U2.

Example 2. In the following FPS we have s1 wd s2:

1/4

1/6

1/8 1/8

1/3

1/4 1/4

u1 u2

s1 s2

w1 w2

1/3

q1
r2 q2

First, observe that w1 wd w2 since R = f(q1;q2);(w1;w2)g is a weak simulation, as we

may deal with
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– δ1 the characteristic function of U1 = fq1;?g (and, thus, V1 =? and K1 = 1)

– δ2 the characteristic function of U2 = fr2;q2;?g (and V2 =? and K2 = 1)

and the weight function ∆(q1;q2) = ∆(?;q2) = 1
6
;∆(?;r2) = ∆(?;?) = 1

3
: To establish a

weak simulation for (s1;s2) consider the relation:

R = f(s1;s2); (u1;u2); (w1;w2); (q1;q2)g
and put V1 = f?;s1 g and V2 = ? while Ui = fui;wi;?g where δ1(?) = 1=2, δi(ui) =
δi(wi) = δ2(?) = 1: Then, K1 = 1

8
+ 1

8
+ 1

2
� 1

2
= 1

2
; K2 = 1

4
+ 1

4
+ 1

2
= 1: This yields the

following distribution for the U-successors of s1 and s2: u1 : 1
4
, w1 : 1

4
, ? : 1

2
, u2 : 1

4
, w2 : 1

4
,

and ? : 1
2
. Note that, e.g.,

δ1(u1)�P(s1;u1)
K1

= 1
4

and
δ1(?)�P(s1;?)

K1
= 1

2
. Hence, an appropriate

weight function is: ∆(u1;u2)=∆(w1;w2)= 1
4
, ∆(?;?)= 1

2
, and ∆(�)= 0 for the remaining

cases. Thus, according to Def. 14, R is a weak simulation.

Proposition 6. For any FPS D: s1 �d s2 implies s1 wd s2, and s1 -d s2 implies s1 wd s2:
Definition 15. [8] Let C = (S;R;L) be a CTMC and R � S� S. R is a weak simulation

on C iff for s1 Rs2: L(s1) = L(s2) and there exist δi : S ! [0;1℄ and Ui;Vi � S (i=1;2)
satisfying conditions 1. and 2. of Def. 14 (ignoring ?) and the rate condition:

∑
u12U1

δ1(u1) �R(s1;u1) 6 ∑
u22U2

δ2(u2) �R(s2;u2)
s2 weakly simulates s1 in C , denoted s1 wc s2, iff there exists a weak simulation R on C

such that s1 Rs2.

The condition on the rates which replaces the reachability condition in FPSs states that s2

is “faster than” s1 in the sense that the total rate to move from s2 to (the δ2-part of) the

U2-states is at least the total rate to move from s1 to (the δ1-part of) the U1-states. Note

that Ki �E(si) = ∑ui2Ui
δi(ui) �R(si;ui). Hence, the condition in Def. 15 can be rewritten

as K1�E(s1) 6 K2�E(s2): In particular, K2 = 0 implies K1 = 0. Therefore, a reachability

condition as for weak simulation on FPSs is not needed here.

Proposition 7. For CTMC C and states s1;s2 2 S:

1. s1 wc s2 implies s1 wd s2 in emb(C ).
2. s1 �c s2 implies s1 wc s2.

3. wc coincides with wc in unif(C ).
A few remarks are in order. Although-c and-d coincide for uniformised CTMCs (as-c

agrees with �c, �c agrees with �d , and�d agrees with-d), this does not hold forwd andwc. For example, in:

  1

 u

2

1

s2s1

CTMC

1/2

 u

1

1/2

s2s1

embedded DTMC

11
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s2 wd s1 in the embedded DTMC (on the right), but s2 6wc s1 in the CTMC (on the left),

as the rate condition in Def. 15 is violated. Secondly, note that the analogue of Prop. 7.3

for-c does not hold. This can be seen by considering the above embedded DTMC (on the

right) as a uniformised CTMC. Finally, we note that although for uniformised CTMCs, �c

  1

 u

2

2

1

s2s1

and �c agree, a similar result for the simulation preorders

does not hold. An example CTMC for which s1 wc s2 but

s1 6-c s2 is depicted on the left. The fact that s1 6-c s2 follows

from the weight function condition in Def. 11. To see that

s1 wc s2, consider the reflexive closure R of f(s1;s2)g and

the partitioning V1 = fs2 g, V2 = fs1 g and U1 = U2 = fug
for which the conditions of a weak simulation are fulfilled.

Theorem 1.

1. For any FPS, weak simulation equivalencewd \w�1
d coincides with �d .

2. For any CTMC, weak simulation equivalencewc \w�1
c coincides with �c.

4 Logical characterisations

PCTL. In Probabilistic CTL (PCTL) [26], state-formulas are interpreted over states of a

FPS and path-formulas are interpreted over paths (i.e., sequences of states) in a FPS. The

syntax of PCTL is as follows1, where � 2 f6;>g:

Φ ::= tt

��� a

��� Φ^Φ
��� :Φ

��� P�p(XΦ) ��� P�p(ΦU Φ) ��� P�p(ΦW Φ)
where p 2 [0;1℄ and a 2 AP. The satisfaction relation j= is similar to CTL, where s j=
P�p(ϕ) iff Pr(s;ϕ)� p. Here, Pr(s;ϕ) denotes the probability measure of the set of paths

starting in state s fulfilling path-formula ϕ. As in CTL, X is the next-step operator, and

the path-formula ΦU Ψ asserts that Ψ will eventually be satisfied and that at all preceding

states Φ holds (strong until). W is its weak counterpart, and does not require Ψ to even-

tually become true. The until-operator and the weak until-operator are closely related. For

any PCTL-formula Φ and Ψ the following two formulae are equivalent:

P>p(ΦW Ψ) � P61�p((:Ψ)U :(Φ_Ψ)):
A similar equivalence holds when the weak until- and the until-operator are swapped.

CSL. Continuous Stochastic Logic (CSL) [10] is a variant of the (identically named)

logic by Aziz et al. [4] and extends PCTL by operators that reflect the real-time nature

of CTMCs: a time-bounded until-operator and a steady-state operator. We focus here on a

fragment of CSL where the time bounds of (weak) until are of the form “6 t”; other time

bounds can be handled by mappings on this case, cf. [6]. The syntax of CSL is, for real t,

or t = ∞:

Φ ::= tt

��� a

��� Φ^Φ
��� :Φ

��� P�p(X6tΦ) ��� P�p(ΦU6t Φ) ��� P�p(ΦW 6t Φ) ��� S�p(Φ)
1 The bounded until-operator [26] is omitted here as for weak relations, FPSs are viewed as be-

ing time-abstract. For the strong relations on FPSs, this operator could, however, be considered

without any problem.
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To have a well-defined steady-state operator it is assumed that the steady-state probabilities

in the CTMC do exist for any starting state. Intuitively, S�p(Φ) asserts that on the long run,

the probability for a Φ-state meets the bound �p. The path-formula ΦU6t Ψ asserts that

Ψ is satisfied at some time instant before t and that at all preceding time instants Φ holds

(strong until). The connection between the until-operator and the weak until-operator is as

in PCTL.

Logical characterisation of bisimulation. In both the discrete and the continuous setting,

strong bisimulation (�d and �c) coincides with logical equivalence (in PCTL and CSL,

respectively) [3, 6, 19]. For weak bisimulation, the next-step operator is ignored, as it is

not invariant with respect to stuttering. Let PCTLnX denote the fragment of PCTL without

the next-step operator; similarly, CSLnX is defined. PCTLnX -equivalence (denoted�PCTLnX
)

and CSLnX -equivalence (�CSLnX
) are defined in the obvious way.

Theorem 2. For any FPS: �d coincides with PCTLnX -equivalence.

Proof. By structural induction on the syntax of PCTLnX -formulae. We only consider the until opera-

tor. Let ϕ=Φ1 U Φ2. By the induction hypothesis we may assume that Sat(Φi) for i=1;2 is a disjoint

union of equivalence classes under �d . Let B = [s℄�d
. Then, B\Sat(Φi) =? or B� Sat(Φi). Only

the cases B� Sat(Φ1) and B\Sat(Φ2) =? are of interest; otherwise, Pr(s1;ϕ) = Pr(s2;ϕ)2 f0;1g
for all s1, s2 2 B. Let S0 be the set of states that reach a Φ2-state via a (non-empty) Φ1-path, i.e.,

S0 = fs 2 Sat(Φ1) nSat(Φ2) j Pr(s;ϕ) > 0g: It follows that S0 is the disjoint union of equivalence

classes under �d .

We first observe the following. For s 62 S0, Pr(s;ϕ)2 f0;1g. For s2 S0, the vector
�

Pr(s;ϕ)�
s2S0

is the unique solution of the equation system:

xs = P(s;Sat(Φ2)) + ∑
s02Sat(Φ1)nSat(Φ2) P(s;s0) � xs0 (1)

For any �d-equivalence class B � S0, select sB 2 B such that P(sB;B)< 1. Such state is guaranteed

to exist, since if P(s;B) would equal 1 for any s 2 B then none of the B-states can reach a Φ2-state,

contradicting being in S0. Now consider the unique solution (xB)B2S=�d ;B�S0 of the equation system:

xB = P(sB;Sat(Φ2)) + ∑
C2S=�d
C�S0 P(sB;C) � xC:

A calculation shows that the vector (xs)s2S0 where xs = xB if s 2 B is a solution to (1). Hence,

xB = Pr(s;ϕ) for all states s 2 B.

The fact that PCTLnX -equivalence implies �d is proven as follows. W.l.o.g. we assume S to

be finite and that any equivalence class C under �PCTLnX
is represented by a PCTLnX -formula ΦC.

(for infinite-state CTMCs approximations of master-formulae can be used). For PCTLnX equiva-

lence classes B and C with B 6=C, consider the path formulae ϕ = ΦB U ΦC and ψ = �:ΦB. Then,

Pr(s1;ϕ) = Pr(s2;ϕ) and Pr(s1;ψ) = Pr(s2;ψ) for any s1;s2 2 B. In particular, if P(s;B) < 1 for

some s 2 B then Pr(s;ψ) > 0. Hence, for any s0 2 B there exists a path leading from s0 to a state not

in B. Assume that s1, s2 2 B and that P(si;B)< 1 for i=1;2. Then:

Pr(si;ϕ) = P(si;C)
1�P(si;B) :

This is justified as follows. If Pr(si;ϕ) = 0, then obviously P(si;C) = 0. Otherwise, by instantiating

the equation system in (1) with S0 = B, Φ2 = ΦC , Φ1 = ΦB it can easily be verified that the vector

with the values xs = P(s;C)
1�P(s;B) (for s 2 B) is a solution.
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Proposition 8. For CTMC C , s in C , and CSLnX -formula Φ: s j= Φ iff s j= Φ in unif(C ).
Proof. By induction on the syntax of Φ. For the propositional fragment the result is obvious. For the

S - and P -operator, we exploit the fact that steady-state and transient distributions in C and unif(C )
are identical, and that the semantics of U6t and W6t agrees with transient distributions [6].

Proposition 9. For any uniformised CTMC: �CSL coincides with �CSLnX
.

Proof. The direction “)” is obvious. We prove the other direction. Assume CTMC C is uniformised

and s1;s2 be states in C . From Prop. 1.1 and the logical characterisations of �c and �d it follows:

s1 �CSL s2 iff s1 �c s2 iff s1 �d s2 iff s1 �PCTL s2:
Hence, it suffices to show that �CSLnX

implies �PCTLnX
(for uniformised CTMC). This is done by

structural induction on the syntax of PCTL-formulae. Clearly, only the next step operator is of inter-

est. Consider PCTL-path formula ϕ = XΦ. By induction hypothesis Sat(Φ) is a (countable) union

of equivalence classes of �CSLnX
. In the following, we establish for s1 �CSLnX

s2:

P(s1;Sat(Φ)) = P(s2;Sat(Φ)) that is Pr(s1;XΦ) = Pr(s2;XΦ):
Let B = [s1℄�CSLnX

= [s2℄�CSLnX
. First observe that P(s1;B) = P(s2;B); otherwise, if, e.g., P(s1;B)<

P(s2;B) one would have Pr(s1;36t:ΦB) < Pr(s2;36t:ΦB) for some sufficiently small t, con-

tradicting s1 �CSLnX
s2. As in the proof of Theorem 2 we assume a finite state space and that any�CSLnX

-equivalence class C can be characterised by CSLnX formula ΦC . Distinguish:

– P(s1;B) = P(s2;B)< 1. Using the same arguments as in the proof of Theorem 2 we obtain:

Pr(si;ΦB U Φ) = P(si;Sat(Φ))
1�P(s1;B) ; i = 1;2:

As s1 �CSLnX
s2 and ΦB U Φ is a CSLnX -path formula we get: Pr(s1;ΦB U Φ) = Pr(s2;ΦB U Φ):

Since P(s1;B) = P(s2;B), it follows P(s1;Sat(Φ)) = P(s2;Sat(Φ)).
– P(s1;B) = P(s2;B) = 1. As Sat(Φ) is the union of equivalence classes under �CSLnX

, the inter-

section with B is either empty or equals B. For i = 1;2: P(si;Sat(Φ)) = 1 if B� Sat(Φ) and 0 if

B\Sat(Φ) =?. Hence, P(s1;Sat(Φ) = P(s2;Sat(Φ)).
Thus, s1 �PCTL s2.

Theorem 3. For any CTMC: �c coincides with CSLnX -equivalence.

Proof. s1 �C
c s2

iff s1 �unif(C )
c s2 (by Prop. 4.3)

iff s1 �unif(C )
c s2 (by Prop. 4.2)

iff s1 �unif(C )
CSL s2 (since �c and CSL-equivalence coincide)

iff s1 �unif(C )
CSLnX

s2 (by Prop. 9)

iff s1 �C
CSLnX

s2 (by Prop. 8)
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Logical characterisation of simulation. -d for DTMCs without absorbing states equals�d [31], and hence, equals�PCTL. For FPS where-d is non-symmetric and strictly coarser

than �d , a logical characterisation is obtained by considering a fragment of PCTL in the

sense that s1 -d s2 iff all PCTL-safety properties that hold for s2 also hold for s1. A similar

result can be established for-c and a safe fragment of CSL.

Safe and live fragments of PCTL and CSL. In analogy to the universal and existential

fragments of CTL, safe and live fragments of PCTL and CSL are defined as follows. We

consider formulae in positive normal form, i.e., negations may only be attached to atomic

propositions. In addition, only a restriced class of probability bounds is allowed in the

probabilistic operator. The syntax of PCTL-safety formulae (denoted by ΦS) is as follows:

tt

��� ff

��� a

��� :a

��� ΦS ^ ΦS

��� ΦS _ ΦS

��� P6p(XΦL) ��� P>p(ΦS W ΦS) ��� P6p(ΦL U ΦL)
PCTL-liveness formulae (denoted by ΦL) are defined as follows:

tt

��� ff

��� a

��� :a

��� ΦL ^ ΦL

��� ΦL _ ΦL

��� P6p(XΦL) ��� P>p(ΦL W ΦL) ��� P6p(ΦS U ΦS)
As a result of the aforementioned relationship between U and W , there is a duality be-

tween safety and liveness properties for PCTL, i.e., for any formula ΦS there is a liveness

property equivalent to :ΦS, and the same applies to liveness property ΦL. Safe and live

fragments of CSL are defined in an analogous way, where the steady-state operator is not

considered, see [8].

Logical characterisation of simulation. Let s1 -safe

PCTL
s2 iff for all PCTL-safety formulae

ΦS: s2 j= ΦS implies s1 j= ΦS. Likewise, s1 wsafe

PCTLnX
s2 iff this implication holds for all

PCTLnX -safety formulae. The preorders -live

PCTL
and wlive

PCTLnX
are defined similarly, and the

same applies for the preorders corresponding to the safe and live fragments of CSL and

CSLnX . The first of the following results follows from a result by [17] for a variant of

Hennessy-Milner logic. The fourth result has been reported in [8]. The same proof strategy

can be used to prove the second and third result [9]. We conjecture that the converse of the

third and fourth result also holds.

Theorem 4.

1. For any FPS: -d coincides with -safe

PCTL
and with -live

PCTL
.

2. For any CTMC: -c coincides with -safe

CSL
and with -live

CSL
.

3. For any FPS: wd � wsafe

PCTLnX
andwd � wlive

PCTLnX
.

4. For any CTMC: wc � wsafe

CSLnX
andwc � wlive

CSLnX
.

5 The branching-time spectrum

Summarising the results obtained in the literature together with our results in this pa-

per yields the 3-dimensional spectrum of branching-time relations depicted in Fig. 1.

All strong bisimulation relations are clearly contained within their weak variants, i.e.,�d ��d and�c ��c. The plane in the “front” (black arrows) represents the continuous-

time setting, whereas the plane in the “back” (light blue or gray arrows) represents the
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Fig. 1. Spectrum of branching-time relations for CTMCs and DTMCs

discrete-time setting. Arrows connecting the two planes (red or dark gray) relate CTMCs

and their embedded DTMCs. R�! R0 means that R is finer than R0, while R 6�! R0 means

that R is not finer than R0. The dashed arrows in the continuous setting refer to uniformised

CTMCs, i.e., if there is a dashed arrow from R to R0, R is finer than R0 for uniformised

CTMCs. In the discrete-time setting the dashed arrows refer to DTMCs without absorbing

states. Note that these models are obtained as embeddings of uniformised CTMCs (except

for the pathological CTMC where all exit rates are 0, in which case all relations in the pic-

ture agree). If a solid arrow is labeled with a question mark, we claim the result, but have

no proof (yet). For negated dashed arrows with a question mark, we claim that the implica-

tion does not hold even for uniformised CTMCs (DTMCs without absorbing states). The

only difference between the discrete and continuous setting is that weak and strong bisim-

ulation equivalence agree for uniformised CTMCs, but not for DTMCs without absorbing

states.

The weak bisimulation proposed in [2] is strictly coarser than �d , and thus does not

preserve �PCTLnX
. The ordinary, non-probabilistic branching-time spectrum is more di-

verse, because there are many different weak bisimulation-style equivalences [23]. In the

setting considered here, the spectrum spanned by Milner-style observational equivalence

and branching bisimulation equivalence collapses to a single “weak bisimulation equiv-

alence” [7]. Another difference is that for ordinary transition systems, simulation equiv-

alence is strictly coarser than bisimulation equivalence. Further, in this non-probabilistic

setting weak relations have to be augmented with aspects of divergence to obtain a log-
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ical characterisation by CTLnX [37]. In the probabilistic setting, divergence occurs with

probability 0 or 1, and does not need any distinguished treatment.

6 Concluding remarks

This paper has explored the spectrum of strong and weak (bi)simulation relations for

countable fully probabilistic systems as well as continuous-time Markov chains. Based on

a cascade of definitions in a uniform style, we have studied strong and weak (bi)simulations,

and have provided logical characterisations in terms of fragments of PCTL and CSL. The

definitions have three ingredients: (1) a condition on the labelling of states with atomic

propositions, (2) a time-abstract condition on the probabilistic behaviour, and (3) a model-

dependent condition: a rate condition for CTMCs (on the exit rates in the strong case, and

on the total rates of “visible” moves in the weak case), and a reachability condition on

the “visible” moves in the weak FPS case. The strong FPS case does not require a third

condition.

As the rate conditions imply the corresponding reachability condition, the “continu-

ous” relations are finer than their “discrete” counterparts, and the continuous-time setting

excludes the possibility to abstract from stuttering occurring with probability 1.2 While

weak bisimulation in CTMCs (and FPSs) is a rather fine notion, it is the best abstraction

preserving all properties that can be specified in CSL (PCTL) without next-step.
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