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Plant and animal lectins bind and cross-link certain mul-
tiantennary oligosaccharides, glycopeptides, and glycopro-
teins. This can lead to the formation of homogeneous cross-
linked complexes, which may differ in their stoichiometry
depending on the nature of the sugar receptor involved. As
a precisely defined ligand, we have employed bovine asi-
alofetuin (ASF), a glycoprotein that possesses three aspara-
gine-linked triantennary complex carbohydrate chains
with terminal LacNAc residues. In the present study, we
have compared the carbohydrate cross-linking properties
of two Lac-specific plant lectins, an animal lectin and a
naturally occurring Lac-binding polyclonal immunoglobu-
lin G subtraction from human serum with the ligand.
Quantitative precipitation studies of the Lac-specific plant
lectins, Viscum album agglutinin and Ricinus communis ag-
glutinin, and the Lac-specific 16 kDa dimeric galectin from
chicken liver demonstrate that these lectins form specific,
stoichiometric cross-linked complexes with ASF. At low
concentrations of ASF, 1:9 ASF/lectin (monomer) com-
plexes formed with both plant lectins and the chicken lec-
tin. With increasing concentrations of ASF, 1:3 ASF/lectin
(monomer) complexes formed with the lectins irrespective
of their source or size. The naturally occurring polyclonal
antibodies, however, revealed a different cross-linking be-
havior. They show the formation of 1:3 ASF/antibody (per
Fab moiety) cross-linked complexes at all concentrations of
ASF. These studies demonstrate that Lac-specific plant and
animal lectins as well as the Lac-binding immunoglobulin
subtraction form specific stoichiometric cross-linked com-
plexes with ASF. These results are discussed in terms of the
structure-function properties of multivalent lectins and an-
tibodies.
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Introduction

Lectins are carbohydrate-binding proteins that are widely dis-
tributed in nature, including in plants and animals (Gabius and
Gabius, 1996). They can serve various functions, including
receptor-mediated endocytosis of glycoproteins or in cellular

recognition processes with clinical relevance (Sharon and Lis,
1989; Gabius, 1991, 1996; Drickamer and Taylor, 1993; Mody
et al., 1995; Gabius and Gabius, 1996). The cellular ligands for
plant and animal lectins, in many cases, are the carbohydrate
chains of glycoproteins and glycolipids. Lectin binding to cell
surface glycoproteins and glycolipids can result in the forma-
tion of cross-linked complexes which are often associated with
the biological responses of cells. For example, cross-linking of
animal cell surface glycoconjugates has been implicated in the
mitogenic activities of lectins (Nicolson, 1976) and in the ar-
rest of bulk transport in ganglion cell axons (Edmonds and
Koenig, 1990). Lectin-carbohydrate cross-linking interactions
have also been implicated in triggering apoptosis of activated
human T-cells (Perillo et al., 1995). Thus, understanding the
nature of these cross-linking interactions is required to gain
insight into the structure-function properties of lectins and
their glycoconjugate ligands.

We have observed that many asparagine-linked (N-linked1),
serine- and threonine-linked (O-linked), and glycolipid-derived
oligosaccharides are multivalent and can cross-link and pre-
cipitate with lectins (Bhattacharyya et al., 1987a,b, 1988a,b,
1989; Bhattacharyya and Brewer, 1989). These interactions
lead to a new dimension of specificity in carbohydrate-protein
interactions, namely, the formation of homogeneous cross-
linked lattices between specific multivalent carbohydrates and
certain lectins, even in the presence of mixtures of the mol-
ecules. For example, quantitative precipitation studies of the
Man/Glc-specific lectin concanavalin A (ConA) in the pres-
ence of binary mixtures of a series of closely related divalent,
N-linked oligomannose type glycopeptides and a bisected hy-
brid glycopeptide suggest that each glycopeptide forms its own
unique cross-linked lattice with the lectin (Bhattacharyya et al.,
1988b). Similar studies have shown that multivalent complex
oligosaccharides possessing terminal LacNAc residues bind to
multivalent Gal-specific lectins and form homogeneous cross-
linked complexes (Bhattacharyya and Brewer, 1992).

Recent studies have suggested that lectins also form homo-
geneous cross-linked complexes with specific glycoproteins.
For example, quantitative precipitation studies have provided
evidence that the Man/Glc-specific lectin concanavalin A
forms homogeneous cross-linked complexes with five different
glycoproteins, even in the presence of mixtures of the mol-
ecules (Mandal and Brewer, 1992b). Similar studies have sug-
gested that the Lac-specific 14 kDa lectin from calf spleen
(galectin-1) forms homogeneous cross-linked lattices with asi-
alofetuin (ASF), a bovine plasma glycoprotein possessing three
N-linked complex triantennary carbohydrates with terminal
LacNAc residues (Gupta and Brewer, 1994). Thus, evidence
suggests that, in principle, both plant and animal lectins with
different specificities are able to form homogeneous cross-
linked complexes with specific glycoproteins.
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In the present study, we have investigated whether lectins
from different sources and naturally occurring heterogeneous
IgG antibodies with the same nominal monosaccharide speci-
ficity display similar quantitative cross-linking activities with a
common ligand. We have thus compared the cross-linking ac-
tivities of two Lac-specific plant lectins, the mistletoe (Viscum
album L.) agglutinin (VAA) and the agglutinin from Ricinus
communis (RCA-I), the Lac-specific 16 kDa dimeric galectin
from chicken liver (16 kDa lectin), and a human natural Lac-
binding immunoglobulin G subfraction (Lac-IgG) with ASF.
The results indicate differences in the formation of specific
stoichiometric cross-linked complexes of the plant and animal
lectins in relation to the Lac-binding antibodies with the gly-
coprotein.

Results and discussion
Properties of the proteins
The Lac-specific mistletoe lectin from Viscum album (VAA)
belongs to the class of ribosome-inactivating proteins from
plants that are composed of a toxic A chain and a saccharide-
binding B chain (Gabius et aL, 1992; Barbieri et aL, 1993;
Read and Stein, 1993). The overall structure of VAA is com-
prised of two noncovalently associated pairs of AB dimers
which are held together by disulfide bonds. The biological
effects of the lectin include eliciting immunomodulatory re-
sponses in vitro and in vivo upon binding to cell surface gly-
coligands with positive cooperativity (Gabius et aL, 1992,
1995; Gabius, 1994). Studies of the binding specificity of VAA
indicate that it binds to both a- and B-galactosides with no
marked specificity for the preterminal sugar and its linkage
type to Gal (Lee et aL, 1992, 1994; Wu et aL, 1992).

RCA-I is a lectin isolated from Ricinus communis and pos-
sesses a molecular mass of 120 kDa. RCA-I is a heterote-
trameric lectin like VAA-1, consisting of two A- and two B-
chains with each heterodimer held together by a disulfide bond
(Barbieri et aL, 1993; Read and Stein, 1993). Each B-chain
possesses one carbohydrate-binding site specific for lactose
(Podder et aL, 1974), and therefore the lectin is a dimeric
carbohydrate binding protein.

The 16 kDa Lac-specific lectin from chicken liver is a di-
meric lectin with a monomer molecular mass of 14,976 Da as
determined by mass spectrometry analysis, as expected by cal-
culations on the basis of the sequence (Sakakura et aL, 1990;
Schneller et aL, 1995). It is a member of the family of Gal/
Lac-specific lectins (galectins) that have been widely con-
served throughout evolution (Barondes et aL, 1994; Kasai and
Hirabayashi, 1996). The binding specificity of galectins ap-
pears to be generally directed toward LacNAc and polylactos-
amine chains (Barondes et aL, 1994; Kasai and Hirabayashi,
1996).

ASF is a monomeric bovine plasma glycoprotein possessing
a molecular mass of 48 kDa. ASF displays three triantennary
N-linked oligosaccharide chains with terminal LacNAc resi-
dues (74%) (Figure 1A), a small amount of isomer (9%) with
a GalB(l,3) linkage in the outer Mana(l,3) arm, a biantennary
chain with terminal LacNAc residues (17%) (Green et aL,
1988) and three O- l inked d i s accha r ide cha ins
(GalB(l,3)GalNAca-) (Figure IB) (Nilsson et aL, 1979). The
physiological function of ASF is not known.

Precipitation of VAA with ASF
VAA was previously shown to bind to the major N-linked
triantennary complex glycopeptide of ASF shown in Figure 1A

B

CM

Fig. 1. Structures of the (A) major N-linked triantennary complex
glycopeptide of ASF and (B) O-linked glycopeptide of ASF.

(Lee et aL, 1992). The lectin also binds to the triantennary
chains of intact ASF as determined by quantitative precipita-
tion experiments. The quantitative precipitation profile of
VAA (175 (xM) in the presence of increasing concentrations of
3H-ASF is shown in Figure 2A. The A280 profile for total
protein precipitated is the sum of the two profiles of the lectin
and ASF. The precipitation profile of 3H-ASF in c.p.m. is also
shown. From the specific activity of 3H-ASF, the concentration
of ASF precipitated was calculated. Knowing the contribution
of ASF to the total A280 profile allowed calculation of the
contribution of VAA to the profile and hence its concentration
in the precipitate which is also shown in Figure 2A. Thus, the
mole ratios of precipitated VAA and ASF could be determined
in the profile.

Figure 2B shows the ASF/VAA mole ratio (per monomer) in
the precipitates with increasing concentration of ASF. Up to a
concentration of 30 u.M of ASF, the ASF/VAA mole ratio is
1:9. Increasing the concentration of ASF leads to a decrease in
the ratio to 1:3 up to an ASF concentration of 80 JJLM, after
which it remains constant. These results indicate that, at rela-
tively low concentrations of ASF, VAA forms a 1:9 ASF/VAA
cross-linked complex in which each of the individual carbo-
hydrate chains of the three N-linked oligosaccharide of ASF
bind to VAA. A schematic diagram of this complex is shown
in Figure 3A. Under these conditions, each N-linked carbohy-
drate of ASF is trivalent, and ASF is functionally nonavalent
for VAA binding. At higher concentrations of ASF, a 1:3 ASF/
VAA cross-linked complex forms. This indicates that each
N-linked oligosaccharide chain is bound by one VAA mol-
ecule, as shown in Figure 3B. Under these conditions, each
N-linked triantennary carbohydrate is univalent for VAA bind-
ing, and ASF is functionally trivalent for VAA binding. VAA
is divalent for ASF binding under all conditions, indicating, as
expected, that each B-chain of VAA is univalent for carbohy-
drate binding.

Precipitation of RCA-I with ASF

RCA-1 has also been shown to bind to the major triantennary
complex glycopeptide of ASF (cf. Bhattacharyya et aL, 1988).
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Fig. 2. Quantitative precipitation profile of VAA with ASF at 22°C. (A) A ^ of total protein precipitated (•), A ^ of VAA precipitated (O) and c.p.m of
3H-ASF in the precipitates (A), (B) ratio of moles of ASF precipitated per mole of VAA monomer (•). The concentration of VAA was 175 JJLM. The specific
activity of 3H-ASF was 1.5 x If/ c.p.mVnmol. The buffer was 0.1 M Hepes at pH 7.2, containing 0.9 M NaCl, 1 mM CaCl2, and 1 mM MnCl2

The quantitative precipitation profile of RCA-I (86 u-M) in the
presence of increasing concentrations of 3H-ASF is shown in
Figure 4A. The A2g0 profile for total protein precipitated is the
sum of the two profiles of RCA-I and ASF. The precipitation
profile of 3H-ASF in c.p.m. is also shown. From the specific
activity of 3H-ASF, the concentration of ASF precipitated was
calculated, and from the total A280 profile of the two proteins
in the precipitate the A28o profile of RCA-I was determined
and is shown in Figure 4A. Thus, the mole ratio of precipitated
RCA-I and ASF could be determined in the profile.

Figure 4B shows the ASF/RCA-I mole ratio (per monomer)
in the precipitates with increasing concentration of ASF. Up to
an ASF concentration of 12 (xM, a 1:9 ASF/RCA-I cross-
linked complex forms. With increasing ASF concentrations, a
1:3 ASF/RCA-I cross-linked complex spontaneously forms,
similar to that observed with VAA. In the 1:9 complex, nine
molecules of RCA-I bind to the three N-linked triantennary
chains of ASF (Figure 3A). In the 1:3 complex, three RCA-I
molecules bind to the three N-linked triantennary chains (Fig-
ure 3B). These results indicate that ASF possesses a valency of
nine for RCA-I in the 1:9 complex, and that ASF possesses a
valency of three for RCA-I in the 1:3 complex. RCA-I is di-
valent in both complexes, as expected from the number of
B-chains in the molecule.

RCA-I has previously been shown to bind and form a cross-
linked complex involving all three arms of the N-linked trian-
tennary complex glycopeptide from ASF (Figure 1A) (Bhat-
tacharyya el al, 1988; Bhattacharyya and Brewer, 1992). The
present results indicate that RCA-I can also bind and cross-link
all three chains of each triantennary carbohydrate of ASF in the
1:9 cross-linked complex. Thus, the presence of the protein
moiety of ASF does not hinder the ability of RCA-I to bind to
all three arms of the triantennary carbohydrate.

Precipitation of the 16 kDa animal lectin with ASF

The precipitation profile of the 16 kDa 14C-lectin (200 u.M),
isolated from chicken liver, in the presence of increasing con-

centrations of 3H-ASF is shown in Figure 5A. The A280 profile
shows the sum of the total protein precipitated. The c.p.m. for
precipitated 16 kDa 14C-lectin and for precipitated 3H-ASF are
also shown in Figure 5A. From their respective specific activi-
ties the mole ratio of each protein precipitated was determined.

Figure 5B shows that the ASF/16 kDa lectin (monomer)
mole ratio is 1:9 up to an ASF concentration of 15 u,M, and
that the ratio decreases to 1:3 with further increases in the ASF
concentration up to 60 JJLM after which it remains constant.
(Similar results were obtained using lower salt concentrations
in the buffer, i.e., 0.02 M sodium phosphate containing 1 mM
DTT at pH 7.2.) The results indicate that the 16 kDa lectin, like
VAA and RCA-I, forms two different stoichiometric cross-
linked complexes with ASF depending on their relative con-
centrations. At lower concentrations of ASF, the 16 kDa lectin
forms a 1:9 cross-linked complex (Figure 3A), and at higher
concentrations of ASF, a 1:3 complex forms (Figure 3B). The
cross-linking properties of the 16 kDa lectin from chicken liver
with ASF are thus similar to the activities of the two plant
lectins, VAA and RCA-I. The cross-linking activity of the 16
kDa lectin from chicken liver with ASF is also similar to
galectin-1 from calf spleen with ASF (Mandal and Brewer,
1992a; Gupta and Brewer, 1994).

Precipitation of Lac-IgG with ASF
The quantitative precipitation profile of Lac-binding IgG (250
\tM) in the presence of increasing concentrations of 3H-ASF is
shown in Figure 6A. The AJSO for total protein precipitated is
shown in Figure 6A, as well as the A280 for immunoglobulin G
precipitated and c.p.m. for 3H-ASF precipitated. The profiles
for these parameters are different from those observed for the
two plant lectins and the chicken lectin. Two peaks are ob-
served in Figure 6A for all three parameters. These results
suggest that at least oligoclonal antibodies are composed of at
least two general populations with different affinities and pre-
cipitation activities to this glycoprotein. However, Figure 3B
shows that the mole ratio of ASF/Lac-binding IgG (monomer)
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B

Fig. 3. Schematic representation of the (A) 1:9 and (B) 1:3 ASF/VAA
cross-linked complex. The small circles marked with L represent lectin
monomer. In the 1:9 complex, each arm of the three triantennary complex
ohgosaccharides of ASF is cross-linked by a lectin dimer to another similar
oligosacchande of a neighboring ASF molecule.

is 1:3 at all concentrations of ASF. (Lower salt concentrations
also give the same results.) These results demonstrate that Lac-
binding IgG forms only one stoichiometric cross-linked com-
plex with ASF, independent of the relative concentrations of
the two proteins. In the 1:3 complex, three antibody molecules
bind to the three N-linked triantennary chains of" ASF. The
valency of each triantennary carbohydrate is one under these
conditions. The valency of the Lac-IgG antibodies is two in the
cross-linked complexes, as expected for IgG antibodies (Kabat,
1976).

These results differ from those for VAA, RCA-I, and the 16
kDa lectin in that the 1:9 cross-linked complexes observed for
the latter three lectins with ASF are absent in the ASF/Lac-
binding IgG cross-linked complexes. The absence of this cross-
linked complex but presence of the 1:3 cross-linked complex
has previously been observed for the soybean agglutinin (SBA)
cross-linked complex with ASF (Mandal and Brewer, 1992a;
Gupta and Brewer, 1994). In this case, a 1:3 ASF/SB A (mono-
mer) complex forms at all concentrations of ASF. The expla-
nation for the formation of only the 1:3 complex is the large
size of the SBA tetramer which has a molecular mass of -120
kDa. This can be compared to the lower molecular masses of
galectin-1 from calf spleen (-30 kDa), and the 16 kDa lectin
from chicken liver (-30 kDa) which both form 1:9 cross-linked

complexes as well as 1:3 cross-linked complexes with ASF.
Recombinant Erythrina corallodendron, which is a dimeric
Lac-specific lectin with a molecular mass of -60 kDa, also
forms 1:9 and 1:3 cross-linked complexes with ASF (Gupta et
aL, 1994). The fact that RCA-I and VAA have molecular
masses of -120 kDa, which are similar to that of SBA, indi-
cates that the shape of the proteins must also be a factor in their
ability to form the higher ratio complex with ASF. The absence
of the 1:9 cross-linked complex for Lac-IgG is likely to be due
to the large molecular mass (-180 kDa) of IgG antibodies.

Conclusions

The present study demonstrates that two plant lectins, RCA-I
and VAA, the 16 kDa dimeric chicken lectin and heteroge-
neous human Lac-binding IgG antibodies all form specific,
stoichiometric cross-linked complexes with the N-linked car-
bohydrate chains of the bovine plasma glycoprotein, ASF. The
formation of specific stoichiometry cross-linked complexes be-
tween several related plant lectins such as Erythrina indica,
Erythrina cristagalli and SBA, and galectin-1 from calf spleen,
with ASF has been shown to correlate with the ability of these
lectins to form homogeneous cross-linked complexes with the
glycoprotein, even in the presence of mixtures of the molecules
(Gupta et aL, 1994). The fact that natural polyclonal Lac-IgG
antibodies also form a specific, stoichiometric cross-linked
complex with ASF raises the question as to whether these
antibodies also form homogeneous cross-linked complexes
with the glycoprotein. Importantly, the cross-linking activities
of IgG antibodies with antigen are known to be important for
their immunological functions (cf. Kabat, 1976).

The present study thus demonstrates a conserved feature of
plant and animal lectins as well as polyclonal anti-carbohydrate
IgG antibodies. The formation of specific stoichiometry cross-
linked complexes with a certain glycoprotein appears to be a
common structure-function property of these multivalent pro-
teins, which, in turn, may be related to their biological activi-
ties, for example, in cell surface ligand aggregation-dependent
signaling.

Materials and methods
Materials

VAA and the 16 kDa lectin from chicken liver were prepared as previously
described (Beyer et al.. l980;Gabius, 1990: Schnelierera/., 1995). RCA-I was
purchased from Sigma Chemical Co. (St Louis, MO). Lac-IgG was obtained
from the serum of healthy donors. Approximately 400 ml was coagulated and
the supernatant, after centrifugation, passed over an unmodified Sepharose 4B
column to remove any protein with affinity for the matrix. The resulting
fraction was then passed through a lactose-Sepharose 4B column (1.8 x 20 cm;
50 ml bed volume), which was derived by divinyl sulphone activation (Gabius,
1990), at a flow rate of 25 ml/h. The Lac-binding immunoglobulin G fraction
was eluted with 20 mM phosphate buffer (pH 7.2) containing 0.9% NaCl and
0.3 M Lac, as described previously (Dong et al., 1995; Wawotzny et al., 1995).
This main fraction was further refined with respect to its anomenc selectivity
by passage through a melibiose—Sepharose 4B column. The resulting flow-
through fraction (approximately one-half of the applied amount of protein) is
the immunoglobulin G (primarily G J subfraction used in the analysis.

Protein concentration of RCA-I was determined spectrophotometrically at
280 nm using an extinction coefficient (A'*-lcnl) of 11.8 (Olsnes et al., 1974).
Concentration of VAA. Lac-IgG and 16 kDa lectin was calculated by Lowry
estimation using BSA as standard. Monomer molecular masses of the lectins
are 60 kDa for RCA-1, 60 kDa for VAA, 16 kDa for the chicken lectin, and
90 kDa for Lac-IgG.

ASF was prepared from fetuin obtained from Sigma Chemical Co. (St.
Louis, MO) and purified by FPLC on a Superdex G-75 column, as described
previously (Spiro and Bhoyroo, 1974) Its concentration was determined by
modification of the phenol-sulphunc acid method (Saha and Brewer, 1994)
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Fig. 4. Quantitative precipitation profile of RCA-I with ASF at 22°C (A) A ^ of total protein precipitated (A), A280 of RCA-I precipitated (•) and 3H-ASF
in the precipitates (O); (B) ratio of moles of ASF precipitated per mole of RCA-I monomer (•). The concentration of RCA-I was 86 u.M. The specific
activity of 3H-ASF was 2.7 x 103 c.p.mVnmol. The buffer was 0.1 M Hepes at pH 7.2, containing 0.9 M NaCl, 1 mM CaCl2, and 1 mM MnCl2.

with Man as standard using 21 mol of hexose (a mixture of 9 Man/12 Gal) per
mole of protein (Spiro, 1960, Nilsson et al, 1979). The structures of the
ohgosaccharides were confirmed by 500 MHz 'H NMR.

reductive methylation without loss of their activities. The specific activities of
the 16 kDa lectin and ASF are reported in the figure captions for each experi-
ment.

Radwlabeling of proteins

ASF was radiolabeled in 0.1 M sodium phosphate buffer, pH 7.2 with 3H-
formaldehyde. The 16 kDa lectin was radiolabeled with 14C by reductive
methylation in 0.1 M sodium phosphate buffer, pH 7.2, containing 1 mM DTT
and 0.1 M Lac, and labeled lectin was purified on an ASF-Sepharose column
(Mandal and Brewer, 1992a). VAA and RCA-I could not be radiolabeled by

Quantitative precipitation assay

Quantitative precipitation profiles were performed in 100 \i\ of 0.1 M Hepes
buffer, pH 7.2 containing 09 M NaCl, 1 mM CaCl2, and 1 mM of MnCl2 as
described previously (Mandal and Brewer, 1992a). Precipitates were inhibited
from forming or dissolved by addition of 0.1 M Lac. Nonspecific sugars such
as Glc or Fuc had no effect
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Fig. 5. Quantitative precipitation profile of the 16 kDa lectin with ASF at 22°C. (A) A ^ of total protein precipitated (•), c.p.m. of I4C-16 kDa lectin (O) and
c.p.m. of 3H-ASF (A) in the precipitates; (B) ratio of moles of ASF precipitated per mole of the 16 kDa lectin monomer (•) The concentration of the 16 kDa
lectin was 200 M-M. The specific activities of the 14C-16 kDa lectin and 3H-ASF were 3.0 x 103 and 6.5 x 103 c.p.minmol, respectively. The buffer was 0.02
M sodium phosphate containing 0.9 M NaCl and 1 mM DTT at pH 7.2.
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Fig. 6. Quantitative precipitation profile of the Lac-binding IgG polyclonal antibodies with ASF at 22°C: (A) A2W) of total protein precipitated (A), Ajgo of
total antibody precipitated (•) and c.p.m. of 3H-ASF in the precipitates (O); (B) ratio of moles of ASF precipitated per mole of monovalent antibody (•). The
concentration of Lac-binding IgG was 250 u.M. The specific activity of ASF was 7.0 x 103 c.p.minmol. The buffer was 0.02 M sodium phosphate containing
0.9 M NaCl and 1 mM DTT at pH 7.2.
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