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The DNA methylation landscape is dynamically patterned during development and

distinct methylation patterns distinguish healthy from diseased cells. However, whether

tissue-specific methylation patterns are conserved across species is not known. We

used comparative methylome analysis of base-resolution DNA methylation profiles from

the liver and brain of mouse and zebrafish generated by reduced representation bisulfite

sequencing to identify the conserved and divergent aspects of the methylome in these

commonly used vertebrate model organisms. On average, 24% of CpGs are methylated

in mouse livers and the pattern of methylation was highly concordant among four male

mice from two different strains. The same level of methylation (24.2%) was identified in

mouse brain. In striking contrast, zebrafish had 63 and 70% of CpG methylation in the

liver and brain, respectively. This is attributed, in part, to the higher percentage of the

zebrafish genome occupied by transposable elements (52% vs. 45% in mice). Thus,

the species identity was more significant in determining methylome patterning than was

the similarity in organ function. Conserved features of the methylome across tissues

and species was the exclusion of methylation from promoters and from CpG islands

near transcription start sites, and the clustering of methylated CpGs in gene bodies and

intragenic regions. These data suggest that DNA methylation reflects species-specific

genome structure, and supports the notion that DNA methylation in non-promoter

regions may contribute to genome evolution.

Keywords: DNA methylation, comparative epigenomics, mouse, zebrafish, liver, brain

INTRODUCTION

Cytosine methylation is a major epigenetic mark in many species, as it serves to significantly alter
the accessibility of CpG sites across the genome (Deaton and Bird, 2011). The methylome changes
dramatically during development (Singer et al., 2014; Zhao et al., 2014), and there are marked
differences in pattern of methylation across different cell types and in many pathologies, most
notably, cancer. Indeed, many studies using model organisms demonstrate a required role for
DNA methylation in regulating vertebrate development (Bird, 2002; Messerschmidt et al., 2014)
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and in causing cancer (Eden et al., 2003; Gaudet et al., 2003;
Howard et al., 2008; Mudbhary et al., 2014). The canonical
functions for DNA methylation are to promote genomic
imprinting (Li et al., 1993), X-chromosome inactivation (Boumil
and Lee, 2001), preservation of chromosome stability (Smith
and Crocitto, 1999) and transposon repression (Slotkin and
Martienssen, 2007; Zemach et al., 2010); these functions are
largely conserved across taxa. However, not all species methylate
their genomes, and those that do exhibit a wide range of DNA
methylation levels and patterns (Lee et al., 2010; Zemach et al.,
2010). Even when the same region of the brain is compared
between closely related species (humans and chimpanzees),
marked differences in methylation levels and the pattern of
methylation have been reported (Zeng et al., 2012). Whether
the species-specific methylome difference reflects functional
differences played by DNAmethylation in different organisms or,
instead, whether they mirror, and perhaps contribute to, genome
evolution remains an open and important question.

Many studies on DNA methylation are based on the
hypothesis that methylation serves to repress gene expression
(McGhee and Ginder, 1979). There are, however, many
exceptions to this pattern, and, indeed, it is now widely accepted
that differences in promoter methylation play a regulatory role
in only a few well publicized cases. In contrast, overwhelming
evidence shows that, across cell types and species, 1000s
of silenced genes have entirely unmethylated promoters and,
conversely, many highly expressed genes have high levels of
promoter methylation (Bestor et al., 2015). While CpG islands
(CpGi) exert regulatory function on gene expression, their
protection from DNA methylation is a conserved feature of
CpGis (Long et al., 2016). However, the picture is becoming more
complex, as recent work has shown that enhancer methylation
is correlated with gene expression in developing zebrafish and
other vertebrates (Lee et al., 2015; Bogdanović et al., 2016)
and other studies show that moderately expressed genes do
not have a strong correlation with methylation differences at
upstream regulatory regions, but instead these genes are highly
methylated throughout the gene body (Elliott et al., 2015).
Thus, the understanding of how DNA methylation impacts gene
expression is evolving.

Comparative methylome analysis across taxa has uncovered
widely divergent methylation patterns across species (Feng et al.,
2010; Lee et al., 2010; Zemach et al., 2010), supporting the
conclusion that methylation cannot be a universal mechanism of
repressing gene expression, or, perhaps, that DNA methylation
may serve different functions across the branches of the
phylogenetic tree. In contrast, the high level of methylation of
transposable elements (TEs) is a feature of DNA methylation
that is conserved from plants to animals (Zemach et al., 2010).
This is proposed to be a central mechanism to repress the
potentially catastrophic activation of these endogenous parasites
(Yoder et al., 1997). Comparative studies further supported
the hypothesis that DNA methylation function is nuanced and
variable. Moreover, the stark differences in DNA methylation
between vertebrates and invertebrates limit studies on the
functional consequences of methylome repatterning to vertebrate
models such as mouse and zebrafish.

We reasoned that if DNA methylation is a central mechanism
of regulating gene expression, then this should be reflected
in conserved methylation patterns of genes that have similar
expression patterns across species. The liver serves a fundamental
role in metabolic homeostasis in all vertebrates, and this is
reflected in a shared pattern of gene expression from humans
to fish (Lam et al., 2006; Mudbhary et al., 2014). We selected
this organ for comparative methylome analysis between mouse
and zebrafish because there are striking similarities in liver cell
composition and function (Goessling and Sadler, 2015). Studies
in zebrafish also show that accurate DNAmethylation is essential
for liver development and regeneration (Sadler et al., 2007; Jacob
et al., 2015) and that loss of methylation causes liver cancer
(Mirbahai et al., 2011).

Multiple approaches have been developed and used to
characterize genome-wide DNA methylation (Reid, 2010). Of
these, reduced representation bisulfite sequencing (RRBS) is a
cost-efficient method to survey CpG methylation genome wide
by sampling regions of the genome that are CpG rich for bisulfite
sequencing (Gu et al., 2011). A drawback to this approach is that
it mainly covers CpG islands at the expense of other genomic
regions, In order to represent more CpG sites and increase
the coverage of all genomic regions interrogated, a recently
published enhanced RRBS (ERRBS; Akalin et al., 2012; Garrett-
Bakelman et al., 2015) allows greater distribution across the
genome of the mapped reads from bisulfite converted genomic
DNA. Hepatic function and the population of hepatic cells is
similar between zebrafish and mammals (Goessling and Sadler,
2015) and we asked whether these similarities would be reflected
by conserved features of the methylome. We used ERRBS to
generate single-nucleotide resolution DNA methylation map of
the mouse liver and compared this to a previously described
methylome analysis of zebrafish liver generated by RRBS. We
report marked interspecies differences in methylation patterns,
and by comparing the methylation landscape between liver and
brain of mouse and zebrafish, we found that the difference
between species is much more significant than differences
between tissues of the same species. Our findings suggest that
genome structure is the primarily determinant of methylome
patterning.

MATERIALS AND METHODS

Sample Preparation
The four mouse samples (Mixed-1, Mixed-2, B6-1, and
B6-2) that were used for bisulfite sequencing are all males
and are from two different genetic backgrounds: B6-1 and
B6-2 are C57BL/6 mice, whereas the mixed mice are on an
undefined background including C57BL/6J and other strains.
Total livers were isolated from them between 6 and 8 weeks old
and frozen at −80◦C for DNA isolation. Genomic DNA was
extracted from each sample using the Qiagen DNA isolation
kit according to the manufacturer’s instruction. RNA was
purified using Qiagen RNAeasy columns. The animal work was
approved by Institutional Animal Care and Use Committee
(IACUC) at the Brigham andWomen’s Hospital (mixed samples)
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and the Memorial Sloan Kettering Cancer Center (C57BL/6
samples).

Enhanced Reduced Representation
Bisulfite Sequencing (ERRBS) Library
Preparation and Sequencing
Bisulfite-converted DNA sequencing libraries were generated for
each of the studied samples, which measure both 5hmC and 5mC
in methylated fraction and 5fC, 5caC, and C in unmethylated
fraction. In brief, 50 ng of high quality genomic DNA in 50 µl
of DNase-free water was used as starting material. The whole
library preparation includes enzyme digestion of genomic DNA
which enriched CpG rich regions, Phenol:chloroform clean up,
End-repair, A-tailing, adapter ligation, size selection, bisulfite
conversion, enrichment PCR, and quality control. Experimental
details can be referred to the published ERRBS protocol (Smith
et al., 2009; Garrett-Bakelman et al., 2015). These amplified
libraries were sequenced on the Hiseq2000 platform for 50
cycles single end read runs at the Epigenomics Core facility
in the Department of Medicine, Weill Cornell Medical College
(New York, NY, USA). Image capture, analysis and base calling
were performed using Illumina’s CASAVA 1.8. Data is available
in GEO, accession numbers are GSM2136660, GSM2136661,
GSM2136662, and GSM2136663.

RNA Sequencing Library Preparation and
Sequencing
For each of the mouse samples, Mixed-1, Mixed-2 and an
additional mixed background age-matched mouse from the
Brigham and Women’s facility (Mixed-3), RNAseq libraries
were prepared according to Illumina’s TruSeq RNA sample
preparation version2 protocol. The 3 samples were sequenced
using Illumina’s HiSeq 2500 platform (100bp paired-end
sequencing) generating∼64million reads,∼60million reads and
∼53 million reads for samples Mixed-1, Mixed-2, and Mixed-3,
respectively.

The sequencing quality was assessed using FASTQC (Andrew,
2010) and the reads were quality trimmed using Trimmomatic
(Bolger et al., 2014; for low Q-scores, adapter contamination and
systematic sequencing errors). After quality trimming, only the
fragments that retained the forward and reverse reads were kept,
any reads with a length less than 36 bp after quality trimming
were discarded. For all three samples, the quality trimming step
resulted in a ∼3% data loss.

The reads were then aligned to theMusMusculus GRCm38.p4
reference genome assembly using TopHat (Kim et al., 2013)
version 2.1.0. Overall alignment rates were 97% for Mixed-1, 98%
forMixed-2, and 97% forMixed-3. The resulting BAM alignment
files were then passed through Cufflinks (Trapnell et al., 2012)
version 2.2.1 in order to calculate gene level FPKM values.

Read Alignment and Methylation Calls
Enhanced reduced representation bisulfite sequencing reads were
mapped on the mouse genome (mm10) with the use of the
BSMAPmapping tool (Xi and Li, 2009). The percentages of DNA
methylation levels based on bisulfite conversation yield were

computed at the single-nucleotide scale. We simulated a range of
genome coverage from 5 to 20 and applied statistical analysis of
differential methylation which demonstrated that only positions
represented by at least 10× coverage (i.e., CpG10) yielded
a dataset that had sufficient statistical power for differential
methylation calls and allowed for a maximal number of CpG sites
to be analyzed, similar to analysis carried out by others (Akalin
et al., 2012). We were able to establish the DNAmethylation state
for 7,492,706 Cytosine positions, including 1,519,053 Cytosine
positions from CpG dinucleotides at CpG10 across all four mouse
liver samples. DNA methylation levels of the different genomic
elements were computed as a mean of percentages of DNA
methylation levels for all CpG dinucleotides, for which data were
available in these regions.

Methylation Comparison and Statistical
Analysis
Percent methylation values for CpG dinucleotides were
calculated by dividing the number of methylated Cs by
sequencing depth on that base. For representation as a histogram,
percentages were grouped within a 10-percentile range from 0
to 100% methylation. The methylation score for each of CpG
dinucleotides that were covered by at least 10 reads in all samples
(Mixed-1, Mixed-2, B6-1, and B6-2) was determined and then
we used Pearson correlation distance and Ward’s agglomeration
method to determine how similar methylation levels were
for each CpG across these samples. Hierarchical clustering of
the four samples was performed using the hclust function in
R-3.2.11. Locally weighted polynomial regression (Lowess) was
performed in methylation status scatterplots between each two
samples to check their relationships. RRBS datasets for zebrafish
brain (GSE59916), liver (GSM1456413; Chatterjee et al., 2014),
and mouse brain (GSM1069659) were obtained from Gene
Expression Omnibus (GEO). Fisher’s exact test was adopted
for testing the methylation pattern difference between mouse
and zebrafish. The mouse in the brain study is the C57BL/6
strain, brain tissue was collected at 11 weeks. The zebrafish
liver methylome was a pool of five male and five female liver
harvested from adult fish and the zebrafish brain methylome
was from a pool of two males and two females (Chatterjee et al.,
2014).

To annotate the genomic feature associate with each CpG10

site, both gene information (promoter, exon, intron, and
intergenic) and the list of CpG islands were retrieved from UCSC
table browser2. Specific loci were visualized using the epigenome
browser3 (Zhou et al., 2014). CpG shores were defined as 2,000 bp
flanking regions on both upstream and downstream of given CpG
islands (Irizarry et al., 2009). Regions >2 kb away from CpG
islands are defined as “open sea.” If a CpG shore overlapped
with another island, the shores were trucked. If multiple shores
were overlapping, they were merged into a single shore. Based
on refseq annotation, CpG dinucleotides were classified into
promoter, intron, exon, and intergenic regions. The statistical test

1http://www.r-project.org/
2https://genome.ucsc.edu/
3http://epigenomegateway.wustl.edu/browser/
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used for the distribution of different genetic elements was Fisher’s
exact test. TSS regions were defined as the 2,000 bp window
centered on the transcript start site (TSS) of genes. In practice,
the length of TSS regions is not equal. For global viewing, we
calculated the average methylation status (mCpG/CpG) and CpG
density within each subset of TSS regions and divided into 40 bins
equally in the TSS plot.

Integration of DNA Methylation and Gene
Expression
Each CpG10 site was categorized by its methylation status
as hypomethylated (<20% of reads are methylated) or
hypermethylated (>80% of reads were methylated). We
displayed the relative expression of genes with methylated and
unmethylated CpGs overlapping with promoter regions and gene
bodies in according to two common definitions: 5 kb upstream
of the TSS and the±2 kb of the TSS which includes CpGs in gene
bodies. Within each region, all methylated and unmethylated
CpG were counted to generate methylated and unmethylated
gene lists. Then, genes were ranked based on the number of
CpG sites. Gene expression was represented by FPKM values
and FPKM values were log transformed to display in the heat
map.

RESULTS

Mouse Liver Methylome Mapped by
ERRBS
Many studies in mice and humans have described widespread
methylome differences in the same organ under different
physiological and pathological states (Bird, 2002; Spiers et al.,
2015; Zhang et al., 2015). To determine whether differences
between background strains or housing conditions altered
the hepatic methylome, we compared ERRBS datasets from
two male mice on a mixed background (mixed-1, mixed-2)
and two males on a pure Black-6 (B6-1, B62) background.
Mice from different strains were housed in vivariums at
different institutions. As expected, ERRBS enriched for CpG
sites in the mouse liver methylome (Table 1). ERRBS does not
distinguish between 5mC and 5hmC, and thus we are unable
to differentiate the potential differential contribution of these
two modifications. However, given that previous studies found
a very low level of 5hmC in liver (0.03–0.06% of dG) compared
to the central nervous system and the spinal cord (0.3–0.7%)
in mouse (Globisch et al., 2010), we reasoned that 5hmC only
contributed a small proportion of all of our methylated C
calls.

A previous study simulated the size of reduced representation
genome in the mouse as 1.5 million CpG sites, which is around
1.4 percent of whole genome; this represents 7.0 percent of total
genomic CpG sites (Chatterjee et al., 2013). Here, CpG sites
covered were calculated as (total CpGs detected)/(average CpG
coverage) and thus the number of CpG sites ranged from 76.1
to 104.7 million reads which represents, on average, 10% of total
genomic CpG sites (Table 1). Of these, the number of CpG sites

covered by at least 10 reads (CpG10) ranged from 1.33 to 1.58
million (Table 1). The mean CpG coverage depth ranged from
44 to 64 across the four samples. Non-CpG cytosines (CpH)
were rarely methylated (0.2% compared with 28% methylation
for CpG cytosines,Table 1). Since our data confirmed that ERRBS
enriches for CpGs, non-CpG methylation was not considered
further. Thus, our dataset represents a sample of roughly 10% of
the CpGs in the genome, albeit non-randomly distributed across
the genome. Nevertheless, we consider this as a representative
sample for comparative methylome analysis and provide a
resource for investigation into changes in DNA methylation
patterns in liver disease, tumorigenesis, and regeneration in
mice.

DNA Methylation Pattern Is Consistent
across Mouse Strains
We found that total CpG methylation is strikingly similar
among the four mouse liver samples from two different genetic
backgrounds, ranging from 26.6% to 28.7% (p > 0.05 between
every two strains; Table 1). Analysis of all CpG10 sites showed
a bimodal distribution of methylation, with nearly 85% of
CpG10 categorized as either hyper-methylated, defined as >80%
of CpGs methylated, or hypo-methylated, defined as <20%
methylated.We found remarkable consistency in themethylation
patterns, with all samples having 25% of CpG10 defined
as hypermethylated and 60% as hypomethylated (Figure 1).
Between 10.4 and 11.4% of the CpG10 showed intermediate
methylation (>20% and <80% methylated; Figure 1).

Reduced representation bisulfite sequencing provides CpG
rich regions. In mammalian genomes, it has been shown that
CpGis are enriched in annotated gene promoters. Since these
CpGis largely unmethylated (Meissner et al., 2008; Illingworth
and Bird, 2009), it is expected that the percent methylation found
in an RRBS dataset is lower than the average methylation of the
whole genome. A methylome study on rat dorsal root ganglia
with RRBS, which analyzed 2.8 million CpG sites, demonstrated
hypomethylation (0–10% methylated) at more than half of the
CpG sites and hypermethylation (90–100% methylated) at about
20% of sites (Hartung et al., 2012). This pattern is similar to what
we found in mouse liver. RRBS in mouse embryonic stem cells
(mESC) covered 543,678 CpG10. These results also displayed a
similar methylation pattern to our data in that>40% of CpG sites
displayed hypomethylation (Meissner et al., 2008). Therefore, the
mouse livermethylome analyzed by ERRBS in our study is similar
to RRBS performed on other mouse samples.

A global chromosome scatter plot of CpG10 sites revealed
a high correlation between methylation levels at each CpG
analyzed across different mouse livers, with Pearson’s correlation
coefficient between 0.98 and 0.99 (Figure 2A). Subsequently,
we generated scatter plots comparing all detected CpG sites on
each chromosome between any two samples (Figure 2B and
Supplementary Figure S1). In this analysis, Mixed-1 and B6-1,
which represent two samples from different genetic backgrounds,
had the lowest Pearson’s coefficient (Figures 2A,B). Scatter
plots of paired CpGs from these two samples were displayed
by chromosome (Figure 2B), demonstrating their relationships
were highly positively correlated, which is, in part, attributed to
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TABLE 1 | The liver methylome is highly consistent across mouse strains.

Mixed_1 Mixed_2 B6_1 B6_2

Number of reads 36,624,797 32,664,237 50,483,884 49,082,208

Mapping efficiency 68.3% 67.4% 67.6% 67.7%

Conversion rate 99.86% 99.89% 99.88% 99.89%

Total # of Cytosine sequenced 336,286,562 303,362,122 473,186,484 450,385,315

Total # of CpG sequenced 76,066,210 70,835,055 104,716,169 98,093,922

# of CpGs covered >10× 1,372,559 (1.80%) 1,329,761 (1.88%) 1,557,387 (1.49%) 1,528,130 (1.56%)

Mean CpG coverage depth (10×) 44 49 64 60

CpG/total C 22.62% 23.35% 22.13% 21.78%

CpG methylation (mCpG/CpG) 28% 26.6% 27.4% 28.7%

Non-CpG methylation 0.3% 0.2% 0.2% 0.2%

The data describes, for each sample, the total number of reads and number of alignments with a unique best hit (rows 1–2). Average Conversion rate (row 3) refers to

the extent (in percent) of C > T conversion by bisulfite treatment. Rows 4 and 5 provide total number of Cytosine and the number of CpG sites covered by RRBS. Row 6

showed the number of CpG site whose coverage is at least 10. Average read coverage depth (row 7) of CpGs. Rows 8–9 provides the ratio of covered CpGs in total

cytosines and the ratio of methylated CpGs in covered CpG sites, there is no statistical significant difference (p > 0.5) between any two strains. That non-CpG methylation

is underrepresented in RRBS is indicated in row 10.

FIGURE 1 | CpG methylation patterns in mouse liver is consistent across different strains. The x-axis shows percent methylation for each CpG site. The

y-axis denotes the percentage of CpGs contained in the corresponding bins. Two male mice from either a Mixed or C57BL/6J (B6) are depicted as with red, purple,

green and brown, respectively.

the high depth of coverage of these samples (Table 1). On the
other hand, considering variance brought by different strains,
we also did further analysis of the regions that are variable
between different strains and found that some CpGs methylation
are indeed more correlated within strain than inter strains
(Supplementary Figure S1). But this kind of variable CpGs only
account less than 0.05% of total CpG10, which is too rare to
change the global pattern.

Scatter plots with this pattern were also formed between
comparisons of all the other samples (Supplementary

Figures S2A,B). This data demonstrates a remarkable similarity

in the methylation profile of male mice, regardless of strain and
housing differences.

The Intra Species CpG Methylation
Pattern Is Highly Conserved
In general, comparative transcriptome studies have found
that gene expression patterns are similar in the same
organs across different species and embryos at comparable
developmental stages have common gene expression profiles
which are, in part, thought to be mediated by methylation
patterns in enhancers (Bogdanović et al., 2016), whereas
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FIGURE 2 | Global chromosome scatter plots of CpG10 sites in mouse. (A) Scatter plot and correlation of CpG methylation across four mice. Numbers on the

upper right corner denote pair-wise Pearson’s correlation scores. Histograms on the diagonal denote distribution of methylation patterns of CpG sites for each stain.

(B) Scatter plots of paired CpGs by chromosome, which was aligned between Mixed-1 and B6-1. Differentiated CpGs in orange ellipse go for further analysis in

Supplementary Figure S1.

there are dramatic differences in gene expression between
different organs from the same species (Zheng-Bradley et al.,
2010; Gu et al., 2016). To test whether the same patterns
hold true for global CpG methylation, we retrieved and
analyzed RRBS data sets from GEO profiling methylomes

of zebrafish liver (GSM1456413) the brain from mouse
(GSM1069659) and zebrafish (GSE59916; Chatterjee et al.,
2014).

As in mouse liver and in many other species, the methylome
in zebrafish liver displayed a bimodal methylation distribution,
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with over 60% of CpGs categorized as methylated (>80%
methylation) and 15% of CpGs as unmethylated (<20%
methylation), however, with an opposite pattern: the zebrafish
liver showed much higher prevalence of hypermethylated CpG
than mouse liver (p < 0.01; Table 2), with over 50% and

less than 20% of hyper and hypo-methylated CpG sites,
respectively (Figure 3A, Table 2). This is consistent with the
finding of between 70 and 85% methylation in whole zebrafish
embryos (Potok et al., 2013; Bogdanović et al., 2016) and
over 70% methylation in adult muscle (Potok et al., 2013).

TABLE 2 | Methylation levels are more consistent across species than across organs.

Hypomethylated CpG (<20%) Hypermethylated CpG > 80%

Organ Liver Brain p-value Liver Brain p-value

Mouse 62.7% 61.1% 0.5 24.35% 24.2% 0.5805

Zebrafish 24.1% 14.78% 0.03 63.4% 68.9% 0.2692

p-value 2.35e − 09 2.32e − 14 2.35e − 09 2.34e − 11

Ratios are the percent of methylated CpGs out of all the CpG10 detected. The p-value on the right is between liver and brain in mouse and zebrafish. The p-value on the

bottom is between mouse and zebrafish in liver and brain.

FIGURE 3 | DNA Methylation patterns are more conserved intra species than the organs within a species. (A) CpG methylation pattern in zebrafish liver is

different from mouse liver. The x-axis shows percent methylation for each CpG sites. The y-axis denotes the percentage of CpGs contained in the corresponding

bins. Zebrafish liver is descripted with bars and four mouse strains are shown with dotted lines. (B) CpG methylation patterns of intra species are more consistent.

The x-axis shows percent methylation for each CpG sites. The y-axis denotes the percentage of CpGs contained in the corresponding bins. Brain samples are

descripted with bars and liver samples are shown with lines.
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Thus, the zebrafish liver is more highly methylated than the
mouse.

To determine whether high levels of methylation in zebrafish
could be related to physiological differences between these
species, we compared the liver methylomes of both species
to that of a very different organ (the brain) within the same
species. We found that the same pattern uncovered in the
liver was conserved in the brain of both species, with a
significantly increased percent of hypermethylated CpGs in
zebrafish tissues compared to mouse (p < 0.01, Figure 3B,
Table 2). Intraspecies comparison between brain and liver
revealed that the mouse brain displayed similar distribution
of methylation levels as the mouse liver (p > 0.05), with
61.1% of CpG10 are hypo-methylated and 24.2% of hyper-
methylated (Table 2). This same intraspecies conservation was
observed in zebrafish, where over 63.4% of the CpG10 sites
were hyper-methylated and less that 24.1% were hypomethylated
in both organs (Table 2). Although slightly higher levels of
hyper-methylated CpGs were observed in the zebrafish brain
(p > 0.01), global CpG methylation distributions are still highly
consistent between liver and brain of zebrafish (Figure 3A). Based
on methylome comparisons between different species, different
genetic backgrounds, and different organs, we concluded that
CpG methylation patterns are more conserved between different
organs within a species than between different species for the
same organ. Moreover, consistent with findings from other

species (Feng et al., 2010; Bogdanović et al., 2016), in both
mouse and zebrafish, CpG methylation conforms to a bimodal
patterns whereby cytosines are either entirely methylated or
unmethylated.

Hepatic Methylome Is Enriched in
Intragenic Regions and Introns
To determine if the landscape of methylated CpGs differed
between mouse and zebrafish, we compared their distribution
relative to the genomic features of hepatic methylomes in
both species. All analyzed CpG10 sites in both liver datasets
were classified into annotated regions. In the mouse, 52% of
the CpG10 dinucleotides were in promoter regions and 55%
were in CpGi (Figures 4A,C). This is consistent with the
observation that most CpGis are found near sites of transcription
initiation (Deaton and Bird, 2011). Other CpG sites are found
in exons, introns, and intergenic regions accounting for 10, 16,
and 22% of total CpGs levels, respectively (Figure 4A). We
categorized hypermethylated CpGs as those with >80% of the
reads as methylated and hypomethylated CpGs as <20% of reads
as unmethylated. Hypermethylated CpGs were intergenic and
intronic CpG10 (43 and 35%, respectively; p < 0.01; Figure 4A),
and excluded from promoters, and 78% of hypo-methylated
CpG10 were in annotated promoters (Figure 4A). This, in part,
is reflective of the distribution of the CpG10 in the mouse

FIGURE 4 | There are marked differences in the methylome landscapes between the zebrafish and mouse hepatic methylome. Total CpG10 is displayed

in the left pie of each panel. Methylated is defined as >80% CpGs methylated and non-methylated is defined as <20% methylated. P-value (Chi-square test) in

parentheses is to total CpG10. (A) Gene body for mouse. (B) Gene body for zebrafish. (C) CpG elements for mouse. (D) CpG elements for zebrafish.
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FIGURE 5 | Methylation of shared CpG islands in mouse and zebrafish genome are overall at a low level. Each detected CpG site is marked with gray bar

and methylation status is shown by blue bar ranging from 0 to 1. CpG islands are annotated based on reference genome mm10 (A) and danRer7 (B), respectively.

Pinked lines link corresponding CpG islands, two orthologous CpG islands are marked with brown and red squares.

TABLE 3 | There is a higher prevalence of repeats in the zebrafish genome

compared to the mouse.

Mouse (Mm10) Zebrafish (GRCz10)

Genome size 2,652,783,500 bp 1,464,443,456 bp

Total bp in TEs 1,201,953,154 bp

(45.3%)

756,790,665 bp

(51.8%)

TEs overlap with CpGi 413,896 (0.028%) 32,416 (0.004%)

TEs overlap with CpG10 274,594 (17.63%) 117,032 (53.21%)∗

TEs are the repeat sequence screened by RepeatMasker, the ratio is out of

corresponding genome. In zebrafish TEs is significantly higher prevalent that mouse

(p = 0.0323). CpGi is annotated from UCSC table browser, the ratio in bracket is

out of TEs in row 2. CpG10 are those analyzed in our datasets, ration accounts for

TEs in row 2. There are significant more TEs overlapping with CpG10 in zebrafish

than in mouse (marked with asterisk, p < 0.01).

dataset, of which 52% were mapped to annotated promoters
(Figure 4A).

The zebrafish hepatic methylation landscape was strikingly
different, with 63% of all CpG10 falling within intergenic
regions (compared to 22% in mouse) and only 12% within
promoter regions (compared to 52% in mouse; Figure 4B).
The methylated CpG10 in zebrafish largely mirrors the genomic
distribution of CpGs in this dataset: the majority are found
in intragenic regions and introns (69 and 21%, respectively).
Promoter regions are the exception to the pattern, as there
is a significant exclusion of methylated CpGs from zebrafish

promoters (p = 1.6 × 10−6; Figure 4B), similar to the pattern
in the mouse hepatic methylome (Figure 4A). Other similarities
between species include a relative low percent of methylated
CpG10 in CpGis (21% in zebrafish; 55% in mouse; Figures 4C,D)
and that the vast majority of methylated CpG10 were found
in shores and other regions (i.e., open sea), respectively
(Figures 4C,D). Therefore, although there are striking differences
in the methylome landscape between the same tissue in these two
species, the finding that CpGis are in general, not methylated (i.e.,
NMIs), is consistent with findings from other species (Irizarry,
2009; Zemach et al., 2010; Long et al., 2013). We examined
several orthologous CpG islands in mouse and zebrafish genome
to determine whether the level of methylation was conserved
across similar genomic regions. Given that methylation of CpGis
is, in general, very low, (Figures 4C,D), many orthologous CpGs
are unmethylated in the liver of both species. One example
is the orthologous CpGi on chromosome 11 in mice and
chromosome 7 in zebrafish, which was unmethylated in both
species (Figure 5).

We found a much higher percent of CpGs in intragenic
regions of the zebrafish genome are methylated in the liver
compared tomouse (82% vs. 60%, respectively). This is consistent
with the overall higher level of TEs in the zebrafish genome
(Table 3) and similar to the findings of others (Feng et al.,
2010; Potok et al., 2013). To determine whether the high level
of methylation in the zebrafish intragenic region was attributed
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FIGURE 6 | More methylated CpGs overlap with TEs in zebrafish liver methylome. All the methylated CpG10 covered are annotated with TEs in mouse and

zebrafish genome. TEs-methylated CpGs are displayed with blue and non-TEs methylated CpGs are shown with green. The number of CpG sites is under the bar.

to TE abundance, we examined where methylated CpGs reside
in mouse and zebrafish (Figure 6). We found that more than
half of the methylated CpGs in zebrafish are found in TEs,
while in the mouse only one third methylated CpGs are in
TEs.

It is widely observed that CpGis cluster in promoters and
the regions flanking TSS. We found a negative correlation
between methylation level and proximity to the TSS in adult
liver methylomes in both mouse (Figure 7A) and zebrafish
(Figure 7B). Notably, the TSS plot revealed a high correlation
between the methylation patterns of the four separate mouse liver
samples, confirming our finding that there is little variation in the
hepatic methylome within mice.

Correlation between DNA Methylation of
Gene Regulatory Regions and Gene
Expression
DNA methylation is proposed to repress gene expression. Given
that most promoters are not methylated (Figures 7A,B), it is
difficult to envision how methylation could be a fundamental
mechanism that regulates gene expression, except in cases that
depart from this pattern and have high methylation levels across
their promoters. To examine this further, we counted the number
of CpG10 within −5 kb upstream of the TSS and ±2 kb TSS
regions that were either methylated (>80% of reads methylated)
or unmethylated (<20% of reads as methylated), and those
with the highest number of methylated CpG10 were counted as
“hypermethylated” genes and those with the highest number of
unmethylated CpG10 were counted as “hypomethylated” genes
(Supplementary Table 1). Genes with no CpGs were excluded. In
both gene lists, we found CpGs are enriched in the TSS regions,
but methylation status is different. Examples of genes in both
categories are shown in Supplementary Figure S3. We noted that
there are far fewer CpGs in genes categorized as hypermethylated
compared to hypomethylated genes (Supplementary Tables S1

and S2). This indicates that regions with lower CpG content are
higher methylated than those with more CpGs, consistent with
the finding of others (Lee et al., 2015).

We carried out RNAseq analysis on samples from the Mix-1
andMix-2 livers used for ERRBS as well as of a third sample from
a third male mouse from the same background and queried the
expression of genes annotated as high and low methylated. We
showed the top 100 genes from the methylated and unmethylated
gene lists of −5 kb upstream of the TSS in Figure 8. To include
CpG methylation information in gene bodies, we also count
methylated and unmethylated genes based on ±2 kb TSS regions
(Supplementary Figure S4). Overall, we found in both categories
there are more genes in the unmethylated list that are expressed
at higher levels than those in the methylated category (Figure 8
and Supplementary Figure S4) However, there are numerous
exceptions, as many of the genes categorized as methylated were
expressed at high levels, and vise versa, many of the genes which
had very low methylation level were expressed also at relative
low levels. Together, these data are consistent with findings
across a range of species where there is a modest trend in the
correlation between promoter methylation and gene expression,
but clearly shows that methylation is neither necessary nor
sufficient to suppress expression of many genes in the mouse
liver.

DISCUSSION

Reduced representation bisulfite sequencing is a cost effective
approach to study global DNA methylation by enriching GC-
rich genomic regions. Although a significant number of non-CpG
loci can also be detected by RRBS, the overlap between RRBS
and whole genome bisulfite sequencing is much greater for CpG
loci than non-CpG loci. A study on human embryonic stem cells
(hESCs) by whole genome sequencing detected 830,000 CpG sites
(Ziller et al., 2011). On the other hand, whole genome bisulfite
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FIGURE 7 | TSS regions have higher CpG density and less methylation in both mouse and zebrafish livers. Composite profiles the regions are 2 kb around

TSS. Y-axis on the left denotes the average of methylated CpG, represented by a solid line. Y-axis on the right hand denotes the CpG density, represented by

dashed lines. (A) Livers from four mice strains. (B) Zebrafish liver.

sequencing across human cell types detected 250,000 non-CpG
loci while RRBS detected 213,000 non-CpG loci with an overlap
of 52,000 loci (<25%; Ziller et al., 2011). These observations
support the use of RRBS as an excellent method for measuring
CpG methylation.

This being said, RRBS has limited coverage of intergenic
regions and CpGi shores, which are important genomic features.
ERRBS is enhanced RRBS, which has been used to resolve DNA
methylation patterns in human and other animals (Garrett-
Bakelman et al., 2015). It is an optimized RRBS by two ways: (1)
biochemically, fragments size selection is optimized to capture
more CpG sites by the combination of two enzymes, TaqαI
and MspI, and (2) bioinformatically, alignment algorithm is
optimized to increase mapping efficiency (Akalin et al., 2012).
When compared to RRBS, ERRBS resulted in a higher number of
CpGs represented in the data generated and increased coverage
of all genomic regions interrogated (Lee et al., 2014). So
examining regions of the genome not covered by this method

could potentially yield a new perspective on the comparative
methylome. A caveat to all bisulfite based methylome approaches
is the end is the inability to discriminate between 5mC and 5hmC,
however, given that 5hmC represents only a small fraction of all
methylated CpGs, this is more of a concern when the direct role
of specific CpGs is under investigation. Additional consideration
for the ERRBS and RRBS datasets is that the distribution of
mapped reads is not entirely random. However, considering the
considerable advantage in sequencing depth compared to whole
genome bisulfite sequencing, (E)RRBS allows analysis of CpGs
methylation in each major genomic element and provides an
excellent approach for comparative analysis of the methylome
landscape.

The current study is among the first comparisons of the
methylome from the same tissue of mouse and zebrafish.
A previous study focusing on NMI distribution and function
among several vertebrates, including mouse and zebrafish,
identified more NMIs that were shared between liver and testis
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FIGURE 8 | More hypermethylated genes are expressed at lower levels than hypomethylated genes. Top 100 genes ranked in hypermethylated (>80%)

and hypomethylated (<20%) gene list were plotted with expression values. The gene list was based on the counting CpG in promoter regions (5 kb upstream of

TSS). Color scale was represented by the log transformed fpkm value from RNAseq.
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in zebrafish compared to mouse (18854 vs. 16680, respectively),
and an expanded number of unique NMIs in the zebrafish liver
compared to those that were unique to zebrafish testis (Long
et al., 2013). Interestingly, many genes marked as unique NMIs
in testis or liver were differentially expressed in these two tissues
in mouse, human chicken and platypus samples (Long et al.,
2013). Another study comparing the methylation profile of whole
zebrafish and mouse embryos found very high levels of CpG
methylation in both (74% in zebrafish and 80% in mouse; Feng
et al., 2010) and showed a similar pattern of methylated CpGs
across gene bodies, repeats and TEs (Feng et al., 2010). The
differences between our findings of greatly divergent methylation
levels between the mouse and fish hepatic and brain methylomes
could be attributed to a difference in tissue studied, as the mouse
embryo may have more CpG methylation than a differentiated
tissue, or in the method used to interrogate the methylome.
Indeed, a comparison between the methylation patterns in the
whole early zebrafish embryo to that of adult differentiated
muscle revealed that about 70% of CpGs were hypermethylated
in muscle, a slightly lower level than observed in pre-gastrula
embryos at the sphere and 256 cell stage (>90%; Potok et al.,
2013; Bogdanović et al., 2016). Thus, our finding that CpG
methylation in zebrafish liver and brain has ranges from 63
to 69% demonstrates that the zebrafish genome during both
embryonic development and in differentiated tissues is highly
methylated.

A second observation from our work is that the zebrafish
genome has a much higher level of CpG methylation compared
to the mouse genome. This is probably attributed to an
increased prevalence of intergenic regions in zebrafish than
that in mouse, as annotated intergenic regions tend to be
enriched for methylated CpGs in both mouse and zebrafish
(see Figures 4 and 6 and Table 3). This observation is also in
line with the presence of more TEs in intergenic regions, in
the zebrafish genome than that in the mouse genome (Kapusta
et al., 2013). Considering the genome size and repeat sequence
proportion individually, TEs comprise 51.8% of the zebrafish
genome and 45.3% in the mouse genome (Table 3). The finding
that the fraction of the genome occupied by TEs is higher
in zebrafish can be attributed to the huge amplification of
DNA transposons in zebrafish. In fact, the zebrafish is the only
vertebrate studied which displays such a dramatic and recent
amplification of TEs (Chalopin et al., 2015). It is likely that
the zebrafish genome is loaded with potentially active elements,
(Lam et al., 1996; Hagemann and Hammer, 2006) which can
rapidly amplify their population across the genome and DNA
methylation serves as a primary mechanism to silence these. We
propose that the high level of DNA methylation in zebrafish is
a consequence of this TE-enriched genome and CpG islands,
as a mechanism of limiting transposition. Indeed, we find that
most of the methylated CpGs in the intragenic region map
to the TEs in zebrafish (Figure 6). In contrast, the mouse
genome is dominated by L1 and SINEs, which are also active
but most of the progenitors have accumulated inactivating
mutations (Kapusta et al., 2013). Thus, it is very likely that the
difference in methylation results from the different evolutionary
dynamics of TEs in these two genomes (Chalopin et al., 2015).

These findings underscore the concept that the major role for
DNA methylation is not only to play prominent role of DNA
methylation in regulating gene expression, but also repress
expression of repetitive sequences.
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FIGURE S1 | Differentially methylated CpGs between mouse strains are

consistent within strains. Scatter plots of differentiated CpGs, which are

marked in Figure 2, between Mixed-1 and B6-1 (A), B6-1 and B6-2 (B) and

Mixed-1 and Mixed-2 (C).

FIGURE S2 | Global chromosome scatter plots of CpG10 sites in mouse

livers from different strain combinations. (A) Scatter plots of paired CpGs by

chromosome, which was aligned between Mixed-2 and B6-2. (B) Scatter plots of

paired CpGs by chromosome, which was aligned between B6-1 and B6-2.

FIGURE S3 | Representative tss region of Hsf5 and Zswim6 displayed

different methylation status. Red bars in the top methylation track showed the

status of methylation, whose range is from 0 to 1. The lower reads coverage track

displayed TSS regions are enriched and CpG sites were captured by this study

were highlighted by red or green. (A) Hsf5 represents hyper-methylated genes. (B)

Zswim6 represents hypo-methylated genes.

FIGURE S4 | Top 100 genes ranked in hypermethylated (>80%) and

hypomethylated (<20%) gene list were plotted with expression values. The

gene list was based on the counting CpG sites in promoter regions and gene

bodies (±2 kb of TSS). Color scale was represented by the log transformed fpkm

value from RNAseq.
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Bogdanović, O., Smits, A. H., de la Calle Mustienes, E., Tena, J. J., Ford, E.,

Williams, R., et al. (2016). Active DNA demethylation at enhancers during the

vertebrate phylotypic period. Nat. Genet. 48, 417–426. doi: 10.1038/ng.3522

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible

trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. doi:

10.1093/bioinformatics/btu170

Boumil, R. M., and Lee, J. T. (2001). Forty years of decoding the silence

in X-chromosome inactivation. Hum. Mol. Genet. 10, 2225–2232. doi:

10.1093/hmg/10.20.2225

Chalopin, D., Naville, M., Plard, F., Galiana, D., and Volff, J.-N. (2015).

Comparative analysis of transposable elements highlights mobilome

diversity and evolution in vertebrates. Genome Biol. Evol. 7, 567–580. doi:

10.1093/gbe/evv005

Chatterjee, A., Ozaki, Y., Stockwell, P. A., Horsfield, J. A., Morison, I. M.,

and Nakagawa, S. (2013). Mapping the zebrafish brain methylome using

reduced representation bisulfite sequencing. Epigenetics 8, 979–989. doi:

10.4161/epi.25797

Chatterjee, A., Stockwell, P. A., Horsfield, J. A., Morison, I. M., and Nakagawa, S.

(2014). Base-resolution DNA methylation landscape of zebrafish brain and

liver. Genomics Data 2, 342–344. doi: 10.1016/j.gdata.2014.10.008

Deaton, A., and Bird, A. (2011). CpG islands and the regulation of transcription.

Genes Dev. 25, 1010–1022. doi: 10.1101/gad.2037511.1010

Eden, A., Gaudet, F., Waghmare, A., and Jaenisch, R. (2003). Chromosomal

instability and tumors promoted by DNA hypomethylation. Science 300, 455.

doi: 10.1126/science.1083557

Elliott, G., Hong, C., Xing, X., Zhou, X., Li, D., Coarfa, C., et al. (2015).

Intermediate DNA methylation is a conserved signature of genome regulation.

Nat. Commun. 6, 6363. doi: 10.1038/ncomms7363

Feng, S., Cokus, S. J., Zhang, X., Chen, P.-Y., Bostick, M., Goll, M. G., et al. (2010).

Conservation and divergence of methylation patterning in plants and animals.

Proc. Natl. Acad. Sci. U.S.A. 107, 8689–8694. doi: 10.1073/pnas.1002720107

Garrett-Bakelman, F. E., Sheridan, C. K., Kacmarczyk, T. J., Ishii, J., Betel, D.,

Alonso, A., et al. (2015). Enhanced reduced representation bisulfite sequencing

for assessment of DNA methylation at base pair resolution. J. Vis. Exp.

96:e52246. doi: 10.3791/52246

Gaudet, F., Hodgson, J. G., Eden, A., Jackson-Grusby, L., Dausman, J., Gray, J. W.,

et al. (2003). Induction of tumors in mice by genomic hypomethylation. Science

300, 489–492. doi: 10.1126/science.1083558

Globisch, D., Munzel, M., Muller, M., Michalakis, S., Wagner, M., Koch, S.,

et al. (2010). Tissue distribution of 5-hydroxymethylcytosine and

search for active demethylation intermediates. PLoS ONE 5:e15367. doi:

10.1371/journal.pone.0015367

Goessling, W., and Sadler, K. C. (2015). Zebrafish: an important tool

for liver disease research. Gastroenterology 149, 1361–1377. doi:

10.1053/j.gastro.2015.08.034

Gu, H., Smith, Z. D., Bock, C., Boyle, P., Gnirke, A., and Meissner, A.

(2011). Preparation of reduced representation bisulfite sequencing libraries

for genome-scale DNA methylation profiling. Nat. Protoc. 6, 468–481. doi:

10.1038/nprot.2010.190

Gu, J., Stevens, M., Xing, X., Li, D., Zhang, B., Payton, J. E., et al. (2016). Mapping

of variable DNA methylation across multiple cell types defines a dynamic

regulatory landscape of the human genome. G3 (Bethesda) 6, 973–986. doi:

10.1534/g3.115.025437

Hagemann, S., and Hammer, S. E. (2006). The implications of DNA transposons in

the evolution of P elements in zebrafish (Danio rerio). Genomics 88, 572–579.

doi: 10.1016/j.ygeno.2006.06.010

Hartung, T., Zhang, L., Kanwar, R., Khrebtukova, I., Reinhardt, M., Wang, C., et al.

(2012). Diametrically opposite methylome-transcriptome relationships in high-

and low-CpG promoter genes in postmitotic neural rat tissue. Epigenetics 7,

421–428. doi: 10.4161/epi.19565

Howard, G., Eiges, R., Gaudet, F., Jaenisch, R., and Eden, A. (2008). Activation and

transposition of endogenous retroviral elements in hypomethylation induced

tumors in mice. Oncogene 27, 404–408. doi: 10.1038/sj.onc.1210631

Illingworth, R. S., and Bird, A. P. (2009). CpG islands – “A rough guide”. FEBS Lett.

583, 1713–1720. doi: 10.1016/j.febslet.2009.04.012

Irizarry, A. R. (2009). Genome-wide methylation analysis of human colon cancer

reveals similar hypo- and hypermethylation at conserved tissue- specific CpG

island shores. Nat. Genet. 41, 178–186. doi: 10.1038/ng.298.Genome-wide

Irizarry, R. A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P.,

et al. (2009). The human colon cancer methylome shows similar hypo- and

hypermethylation at conserved tissue-specific CpG island shores.Nat. Genet 41,

178–186. doi: 10.1038/ng.298

Jacob, V., Chernyavskaya, Y., Chen, X., Tan, P. S., Kent, B., Hoshida, Y., et al.

(2015). DNA hypomethylation induces a DNA replication-associated cell

cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos.

Development 142, 510–521. doi: 10.1242/dev.115980

Kapusta, A., Kronenberg, Z., Lynch, V. J., Zhuo, X., Ramsay, L., Bourque, G.,

et al. (2013). Transposable elements are major contributors to the origin,

diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet.

9:e1003470. doi: 10.1371/journal.pgen.1003470

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S. L. (2013).

TopHat2: accurate alignment of transcriptomes in the presence of insertions,

deletions and gene fusions. Genome Biol. 14:R36. doi: 10.1186/gb-2013-

14-4-r36

Lam, S. H., Wu, Y. L., Vega, V. B., Miller, L. D., Spitsbergen, J., Tong, Y., et al.

(2006). Conservation of gene expression signatures between zebrafish and

human liver tumors and tumor progression. Nat. Biotechnol. 24, 73–75. doi:

10.1038/nbt1169

Lam, W. L., Lee, T. S., and Gilbert, W. (1996). Active transposition in zebrafish.

Proc. Natl. Acad. Sci. U.S.A. 93, 10870–10875. doi: 10.1073/pnas.93.20.10870

Lee, H. J., Lowdon, R. F., Maricque, B., Zhang, B., Stevens, M., Li, D., et al.

(2015). Developmental enhancers revealed by extensive DNAmethylome maps

of zebrafish early embryos. Nat. Commun. 6, 6315. doi: 10.1038/ncomms7315

Lee, T.-F., Zhai, J., and Meyers, B. C. (2010). Conservation and divergence in

eukaryotic DNA methylation. Proc. Natl. Acad. Sci. U.S.A. 107, 9027–9028. doi:

10.1073/pnas.1005440107

Lee, Y. K., Jin, S., Duan, S., Lim, Y. C., Ng, D. P., Lin, X. M., et al. (2014). Improved

reduced representation bisulfite sequencing for epigenomic profiling of clinical

samples. Biol. Proced. Online 16, 1. doi: 10.1186/1480-9222-16-1

Li, E., Beard, C., and Jaenisch, R. (1993). Role for DNA methylation in genomic

imprinting. Nature 366, 362–365. doi: 10.1038/366362a0

Long, H. K., King, H. W., Patient, R. K., Odom, D. T., and Klose, R. J. (2016).

Protection of CpG islands from DNA methylation is DNA-encoded and

evolutionarily conserved. Nucleic Acids Res. gkw258. doi: 10.1093/nar/gkw258

Long, H. K., Sims, D., Heger, A., Blackledge, N. P., Kutter, C., Wright, M. L.,

et al. (2013). Epigenetic conservation at gene regulatory elements revealed

by non-methylated DNA profiling in seven vertebrates. Elife 2, 1–19. doi:

10.7554/eLife.00348

McGhee, J. D., and Ginder, G. D. (1979). Specific DNA methylation sites

in the vicinity of the chicken β-globin genes. Nature 280, 419–420. doi:

10.1038/280419a0

Meissner, A., Mikkelsen, T. S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., et al.

(2008). Genome-scale DNAmethylation maps of pluripotent and differentiated

cells. Nature 454, 766–770. doi: 10.1038/nature07107

Messerschmidt, D. M., Knowles, B. B., and Solter, D. (2014). DNA

methylation dynamics during epigenetic reprogramming in the

germline and preimplantation embryos. Genes Dev. 28, 812–828. doi:

10.1101/gad.234294.113.process

Mirbahai, L., Williams, T. D., Zhan, H., Gong, Z., and Chipman, J. K.

(2011). Comprehensive profiling of zebrafish hepatic proximal promoter CpG

Frontiers in Genetics | www.frontiersin.org 14 June 2016 | Volume 7 | Article 110

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


Zhang et al. Comparative Methylomics of Zebrafish and Mice

island methylation and its modification during chemical carcinogenesis. BMC

Genomics 12:3. doi: 10.1186/1471-2164-12-3

Mudbhary, R., Hoshida, Y., Chernyavskaya, Y., Jacob, V., Villanueva, A.,

Fiel, M. I., et al. (2014). UHRF1 overexpression drives DNA

hypomethylation and hepatocellular carcinoma. Cancer Cell 25, 196–209.

doi: 10.1016/j.ccr.2014.01.003

Potok, M. E., Nix, D. A., Parnell, T. J., and Cairns, B. R. (2013). Reprogramming the

maternal zebrafish genome after fertilization to match the paternal methylation

pattern. Cell 153, 759–772. doi: 10.1016/j.cell.2013.04.030

Reid, D. S. (2010). Taking the measure of the methylome. Nat. Biotechnol. 28,

199–218. doi: 10.1002/9780470958193.ch16

Sadler, K. C., Krahn, K. N., Gaur, N. A., and Ukomadu, C. (2007). Liver growth

in the embryo and during liver regeneration in zebrafish requires the cell

cycle regulator, uhrf1. Proc. Natl. Acad. Sci. U.S.A. 104, 1570–1575. doi:

10.1073/pnas.0610774104

Singer, Z. S., Yong, J., Tischler, J., Hackett, J. A., Altinok, A., Surani, M. A., et al.

(2014). Dynamic heterogeneity and DNA methylation in embryonic stem cells.

Mol. Cell 55, 319–331. doi: 10.1016/j.molcel.2014.06.029

Slotkin, R. K., and Martienssen, R. (2007). Transposable elements and the

epigenetic regulation of the genome. Nat. Rev. Genet. 8, 272–285. doi:

10.1038/nrg2072

Smith, S. S., and Crocitto, L. (1999). DNA methylation in eukaryotic chromosome

stability revisited: DNA methyltransferase in the management of DNA

conformation space. Mol. Carcinog. 26, 1–9. doi: 10.1002/(SICI)1098-

2744(199909)26:1<1::AID-MC1>3.0.CO;2-P

Smith, Z. D., Gu, H., Bock, C., Gnirke, A., and Meissner, A. (2009). High-

throughput bisulfite sequencing in mammalian genomes.Methods 48, 226–232.

doi: 10.1016/j.ymeth.2009.05.003

Spiers, H., Hannon, E., Schalkwyk, L. C., Smith, R., Wong, C. C. Y., Donovan,

M. C. O., et al. (2015). Methylomic trajectories across human fetal brain

development. Genome Res. 25, 338–352. doi: 10.1101/gr.180273.114

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., et al.

(2012). Differential gene and transcript expression analysis of RNA-seq

experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578. doi:

10.1038/nprot.2012.016

Xi, Y., and Li, W. (2009). BSMAP: whole genome bisulfite sequence MAPping

program. BMC Bioinformatics 10:232. doi: 10.1186/1471-2105-10-232

Yoder, J. A., Walsh, C. P., and Bestor, T. H. (1997). Cytosine methylation

and the ecology of intragenomic parasites. Trends Genet. 13, 335–340. doi:

10.1016/S0168-9525(97)01181-5

Zemach, A., McDaniel, I. E., Silva, P., and Zilberman, D. (2010). Genome-wide

evolutionary analysis of eukaryotic DNA methylation. Science 328, 916–919.

doi: 10.1126/science.1186366

Zeng, J., Konopka, G., Hunt, B. G., Preuss, T. M., Geschwind, D., and Yi, S. V.

(2012). Divergent whole-genome methylation maps of human and chimpanzee

brains reveal epigenetic basis of human regulatory evolution. Am. J. Hum.

Genet. 91, 455–465. doi: 10.1016/j.ajhg.2012.07.024

Zhang, Y., Wang, H., Zhou, D., Moody, L., Lezmi, S., Chen, H., et al. (2015). High-

fat diet caused widespread epigenomic differences on hepatic methylome in rat.

Physiol. Genomics 47, 514–523. doi: 10.1152/physiolgenomics.00110.2014

Zhao, L., Sun, M., Li, Z., Bai, X., Yu, M., Wang, M., et al. (2014). The dynamics of

DNA methylation fidelity during mouse embryonic stem cell self-renewal and

differentiation. Genome Res. 24, 1296–1307. doi: 10.1101/gr.163147.113

Zheng-Bradley, X., Rung, J., Parkinson, H., and Brazma, A. (2010). Large scale

comparison of global gene expression patterns in human and mouse. Genome

Biol. 11:R124. doi: 10.1186/gb-2010-11-12-r124

Zhou, X., Li, D., Lowdon, R. F., Costello, J. F., and Wang, T. (2014). MethylC

track: visual integration of single-base resolution DNA methylation data

on the WashU EpiGenome Browser. Bioinformatics 30, 2206–2207. doi:

10.1093/bioinformatics/btu191

Ziller, M. J., Müller, F., Liao, J., Zhang, Y., Gu, H., Bock, C., et al. (2011). Genomic

distribution and Inter-Sample variation of Non-CpG methylation across

human cell types. PLoS Genet. 7:e1002389. doi: 10.1371/journal.pgen.1002389

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Zhang, Hoshida and Sadler. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 15 June 2016 | Volume 7 | Article 110

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive

	Comparative Epigenomic Profiling of the DNA Methylome in Mouse and Zebrafish Uncovers High Interspecies Divergence
	Introduction
	Materials And Methods
	Sample Preparation
	Enhanced Reduced Representation Bisulfite Sequencing (ERRBS) Library Preparation and Sequencing
	RNA Sequencing Library Preparation and Sequencing
	Read Alignment and Methylation Calls
	Methylation Comparison and Statistical Analysis
	Integration of DNA Methylation and Gene Expression

	Results
	Mouse Liver Methylome Mapped by ERRBS
	DNA Methylation Pattern Is Consistent across Mouse Strains
	The Intra Species CpG Methylation Pattern Is Highly Conserved
	Hepatic Methylome Is Enriched in Intragenic Regions and Introns
	Correlation between DNA Methylation of Gene Regulatory Regions and Gene Expression

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


