
Proceedings of the 3rd International Conference on Industrial Application Engineering 2015

© 2015 The Institute of Industrial Applications Engineers, Japan.

Comparative evaluation between fixed and floating point hardware

implementation of image conversion on high-level synthesis

Miyu Fujitaa,*, Kazunari Yosikawaa, Naohiro Iwanagaa, Akira Yamawaki a,*

aKyushu Institute of Technology, 1-1 Sensui-cho Tobata-ku Kitakyushu-shi Fukuoka-ken, 804-8550, Japan

*Corresponding Author: yama@ecs.kyutech.ac.jp

Abstract

High-level synthesis (HLS) automatically converts the

software program in a high-level language to the hardware

behavior in a hardware description language. Generally, the

image processing programs have been written in floating-

point format. Thus, inputting such conventional image

processing programs, the HLS tool generates the hardware

modules with many floating-point calculators. The floating-

point calculator generally requires a large amount of

hardware resources. Thus, this paper develops the fixed-

point image processing programs that will be converted to

the hardware module including light-weight fixed-point

calculators, concentrating on the image conversions such as

scaling, rotation and shear. In the experiment, we confirm the

effect of the fixed-point programming for the HLS compared

with the floating point one.

1. Introduction

Electronic products need more performance, multi-

function and high speed for the image processing. To achieve

such requirements, the hardware implementation of the

image processing is mandatory for the embedded product

cannot employ high performance processor like the personal

computer. However, hardware development is very time-

consuming and high cost work. Thus, the HLS have been

researched and developed to reduce the burden due to

hardware development.

For the software development, many useful image

processing library exist like OpenCV. Generally, the image

processing programs have been written in floating-point

format. Thus, inputting such conventional image processing

programs, the HLS tool generates the hardware modules with

many floating-point calculators. The floating-point

calculator generally requires a large amount of hardware

resources. Thus, the fixed-point image processing programs

that an HLS tool can convert to the hardware modules

including light-weight fixed-point calculators are needed.

We have developed a synthesizable math library with

fixed-point elementary functions such as the trigonometric

functions, the exponential function and the logarithmic

function. However, more sophisticated process like image

filter including them have not been developed.

This paper develops the fixed-point image processing

programs, concentrating on the image conversions such as

scaling, rotation, shear and interpolation. In the experiment,

we confirm the effect of the fixed-point programming for the

HLS compared with the floating point one.

The rest of the paper is organized as follows. Section 2

explains the overviews of targeted image conversions.

Section 3 explains method of convert programs from

floating-point type to fixed-point type. Section 4 shows the

circuit scale and processing time comparison result of the

fixed-point type and floating-point type. Section 5 describes

the conclusion.

2. Image conversion

2.1 Affine transformation

The affine transformation is a linear transformation

between the vector space. In this study, we have created the

respective conversion programs by using the affine

transformation. Eq.1 is the basic equation of affine

transformation. The input coordinates are (x, y) and the

output coordinates are (x ', y')

 [x’ y’ 1]=[x y 1][

𝑎 𝑏 0
𝑐 𝑑 0
𝑡𝑥 𝑡𝑦 1

] (1)

DOI: 10.12792/iciae2015.108 625

mailto:yama@ecs.kyutech.ac.jp

2.2 Parallel shift

As Eq.2, 𝑡𝑥 is the intercept of the x-axis, and 𝑡𝑦 is the

intercept of the y-axis. Therefore, when the value of 𝑡𝑥 and

𝑡𝑦 is changed, image is moved in each x direction and y

direction.

[x’ y’ 1]=[x y 1][

1 0 0
0 1 0
𝑡𝑥 𝑡𝑦 1

] (2)

2.3 Scaling

As Eq.3, the coefficient a is the magnification of the image

size to the x direction, and the coefficient d is the

magnification of the image size to the y direction.

[x’ y’ 1]=[x y 1][
𝑎 0 0
0 𝑑 0
0 0 1

] (3)

2.4 Rotation

 For the coefficients of a, b, c and d in Eq.1, the values of

each trigonometric are set as Eq.4. By doing so, as a

reference coordinates (0, 0), the image is rotated by any angle

θ degrees. For the coefficients of 𝑡𝑥 and 𝑡𝑦 in Eq.1, the

coordinates of the center of the image (𝑐𝑥 ,𝑐𝑦) are set. By

doing so, the image is rotated with respect to (𝑐𝑥,𝑐𝑦).

[x’ y’ 1]=[x y 1][

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
𝑐𝑥 𝑐𝑦 1

] (4)

2.5 Shear

 In the equation (1), b is the coefficient of y in the equation

of x ', and c is the coefficient of x in the equation of y '. By b

and c have values, image is tilted as shown in the Fig1.

[x’ y’ 1]=[x y 1][
0 𝑏 0
𝑐 0 0
0 0 1

] (5)

Figure 2 shows the images after each conversion. As shown

in Figure 2, we have succeeded in converting images exactly

by using Affine transformation.

2.6 Images interpolation

In this study, we use the Bilinear Method as a method of

interpolation. Bilinear method is interpolation method that

put the average of the color values of the target pixel and

eight surrounding pixels surrounding to target pixel. It is too

simple method compared to other methods. Large distortion

is not seen in the image after conversion by each conversion

program that was created in this study, and this study is

focused on the point that is speeding up. So we used this

(a) Original image

(b) Scaling

(c) Rotation

(d) Shear

Fig2. Images after conversion

b

c

Fig1. Shear

626

interpolation technique in this study.

3. Fixed-point Image Conversion

Scale and shear programs require the values for

determining the magnification of images size and tilt

condition of images. These values are often used as a decimal.

Therefore, we bet the power of 2 of N of their value in the

first (N-bit left shift). N is the number of bits of the integer

part of the fixed-point that was decided arbitrarily on the

program. By doing so, the fractional value is treated as

integer type by temporarily large value. Then, the value can

hold the information of the fractional part. When using a

final calculation result as an output, the calculation result is

divided by 2 of n squared (n-bit right shift). By doing so, the

value temporarily increases is returned to the original output value.

In the rotation, method is the same as the scale and shear

basically. At the time of conversion, value decided by user is

the angle only, but, in this study, the rotational angle is being

limited to an integer. So, we were pre-declare the value that

the circumference ratio was n-bit left shift, and used its value

as circumference ratioπ. The trigonometric functions were

calculated by the existing fixed-point type trigonometric

calculation program.

4. Comparison with floating-point type

program

4.1 Hardware Parameters

We used an HLS of Vivado HLS 2014.2. The sizes of the

generated hardware of fixed-point and floating-point version

are evaluated. Table 1 shows these comparison results.

Table 1 represents that the number of look-up tables

(LUTs), flip-flops, and multipliers used. The fixed-point

programs have decreased hardware resources significantly

compared to floating-point programs. In other words, it is

indicates that the circuit scale is significantly reduced.

4.2 Performance Evaluation

We actually simulated conversion programs created in

this study by Vivado 2014.2, and measured processing time

and confirmed the image after HLS. We will explain about

the simulation method using the image. First, outputting the

image data to a text file as text data in binary. Second,

loading the text data to the test bench by using the interface

called TEXIO. Finally moving the program by using the

loaded image data as input, and observing simulation

waveform. Table 2 shows a processing time [ns] of each

conversion program at 1pixel obtained from the simulation

waveform.

The experimental results indicate that the processing

time of the fixed-point type is shorter compared to the

floating-point type. And, error rate of "data of the image after

each conversion by c language program" and "data of the

image after each conversion by VHDL after HLS" became 0.

In other words, images after conversion were confirmed that

it is no problem.

5. Conclusion

We have developed fixed-point programs that can be

converted to the hardware modules by HLS tool. Compared

with the floating point versions, our programs were able to

 scaling rotation

 floating fixed floating fixed

SLICE 447 53 2870 283

LUT 1215 69 7772 720

FF 825 196 6392 788

multipliers 7 1 106 9

Embedded memory 0 0 0 0

Shifter 0 0 0 0

Clock minimum

period

8.059 3.207 9.413 5.571

 shear parallel shift

 floating fixed

SLICE 571 122 55

LUT 1534 172 95

FF 1130 394 194

multipliers 17 13 1

Embedded memory 0 0 0

Shifter 0 36 0

Clock minimum

period

7.805 4.062 3.425

Table1. Circuit scale of each conversion program

Table2. Processing times in 1pixel of each conversion program

[ns]

 floating fixed

scaling 100 20

rotation 180 40

shear 140 20

627

significantly reduce the circuit scale. In each of the functions,

the number of SLICE has been reduced by about 80%, the

number of LUT has been reduced by about 90%, and the

number of flip-flop has been reduced by about 70%. Number

of multipliers has reduced about 90% in function of the

scaling and rotation, has reduced about 25% in function of

the shear. In addition, the processing speed is also much

faster, processing speed in each of the conversion program

was about 5 times. As a result, we have succeeded in

improving the processing speed and reduce the circuit size.

This fact promises an object of this study.

References

(1) Wim Meeus, Kristof Van Beeck, Toon Goedemé , Jan

Meel, Dirk Stroobandt, “An overview of today’s

high-level synthesis tools”, Design Automation for

Embedded Systems, Volume 16, Issue 3 , pp 31-51,

2012.

(2) Xilinx: “Xilinx Vivado Design Suite user’s guide: HLSXilinx”

http://japan.xilinx.com/support/documentation/sw_man

uals_j/xilinx2012_2/ug902-vivado-high-level-synthesis

.pdf (accessed 2th, Dec, 2013)

(3) Impulse “Impulse C ANSI-C math library support package

Xilinx “Xilinx Vivado Design Suite user’s guide: HLSXilinx”

http://japan.xilinx.com/support/documentation/sw manuals/x

ilinx2012 2/ug902-vivado-high-level-synthesis.pdf

(accessed 11th, Dec, 2013)

628

