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Abstract 

The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, 

each of which relates an atom in a substrate metabolite to an atom of the same element in a product metabolite. 

Genome-scale metabolic network reconstructions typically represent biochemistry at the level of reaction stoichiom-

etry. However, a more detailed representation at the underlying level of atom mappings opens the possibility for a 

broader range of biological, biomedical and biotechnological applications than with stoichiometry alone. Complete 

manual acquisition of atom mapping data for a genome-scale metabolic network is a laborious process. However, 

many algorithms exist to predict atom mappings. How do their predictions compare to each other and to manually 

curated atom mappings? For more than four thousand metabolic reactions in the latest human metabolic reconstruc-

tion, Recon 3D, we compared the atom mappings predicted by six atom mapping algorithms. We also compared 

these predictions to those obtained by manual curation of atom mappings for over five hundred reactions distributed 

among all top level Enzyme Commission number classes. Five of the evaluated algorithms had similarly high predic-

tion accuracy of over 91% when compared to manually curated atom mapped reactions. On average, the accuracy of 

the prediction was highest for reactions catalysed by oxidoreductases and lowest for reactions catalysed by ligases. In 

addition to prediction accuracy, the algorithms were evaluated on their accessibility, their advanced features, such as 

the ability to identify equivalent atoms, and their ability to map hydrogen atoms. In addition to prediction accuracy, 

we found that software accessibility and advanced features were fundamental to the selection of an atom mapping 

algorithm in practice.
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Background

In every biochemical reaction, the total number of atoms 

of each element in all substrates is equal to that in all 

products. An atom mapping is a one-to-one correspond-

ence (bijection) between an atom in a substrate and an 

atom in a product. An instance of a chemical reaction 

may be represented by a set of atom mappings, with one 

atom mapping between each substrate and product atom. 

Together, a set of atom mappings for a chemical reaction 

specify key aspects of the reaction mechanism, e.g., 

chemical bond change, breakage, and formation. A single 

chemical reaction can admit multiple chemically equiva-

lent atom mappings when chemically equivalent atoms 

are present in a substrate, a product, or both. �erefore, 

each chemical reaction can be represented by one set, or 

multiple chemically equivalent sets, of atom mappings, 

each of which may be interpreted as a graph with a set of 

disconnected edges, each of which establishes a bijective 

relation between a substrate and product atom (Fig. 1).

Due to the time consuming nature of manual curation 

of atom mapping, it is of great importance to have reli-

able algorithms to predict atom mappings, especially for 
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large sets of reactions found in metabolic databases and 

genome-scale metabolic network reconstructions. To 

our knowledge, only the BioPath [1] and KEGG RPAIR 

[2] databases disseminate manually curated atom map-

pings. Other metabolic databases such as EC-BLAST 

[3] MetaCyc [4] and MetRxn [5] include predicted atom 

mappings.

A genome-scale metabolic reconstruction is a struc-

tured knowledge-base that abstracts pertinent informa-

tion on the biochemical transformations taking place 

within an organism [6]. Such reconstructions form the 

basis for the development of condition-specific metabolic 

models whose functions are simulated and validated by 

comparison with experimental results. �ese models are 

then used in a wide range of biological, biotechnologi-

cal and biomedical research scenarios. Manual curation 

reconstructions involves extensive literature review [7] 

and sometimes sufficient experimental literature is not 

in existence. �is situation has driven the development of 

a range of software tools that seek to automate parts of 

the process to generate reconstruction content, e.g., [8]. 

Recon 3D is the latest human metabolic reconstruction 

[9], that adds three dimensional metabolite and protein 

structures to a genome-scale reconstruction for the first 

time. It is envisaged that this reconstruction and the 

models derived from it will drive deeper understanding 

how biochemical processes relate to mechanisms at the 

atomic scale.

It is fortunate that many atom mapping algorithms 

have been developed, but which is most suited to predict 

atom mappings for a genome-scale metabolic network 

reconstruction? Here, we evaluate six recently pub-

lished atom mapping algorithms [10–15]. We compare 

their predictions for more than five thousand metabolic 

reactions in the latest human metabolic reconstruction, 

Recon 3D [9]. We also compared these predictions with 

manually curated atom mappings for a set of 512 human 

metabolic reactions. Of the manually curated atom map-

pings, 340 were obtained from the BioPath database [1] 

and 172 additional reactions were manually curated to 

ensure that we could compare predictions with repre-

sentative reaction types from all six top level EC numbers 

[16] (see Additional file  1: Table  1S). �e best perform-

ing algorithm was used to predict atom mappings for the 

latest version of the human metabolic reconstruction, 

Recon 3D [9].

Fig. 1 An atom mapping for the enolase reaction. a Enolase (VMH ID: ENO) catalyses the hydrolysis of 2-phosphoglycerate (VMH ID: 2pg) to pro-

duce phosphoenolpyruvate (VMH ID: pep) and water (VMH ID: h2o). The atoms of the substrate are assigned with a mapping number that matches 

only with one atom of the same element in the product molecules; this representation describes the reaction mechanism. b, c A graphical repre-

sentation of two possible atom mappings for the enolase reaction. Nodes (circles) represent atoms. Atoms can be matched to metabolite structures 

in (a) on their metabolite identifiers, colours and numbers. Directed edges (arrows) represent atom transitions. All hydrogen atoms are omitted to 

simplify the figure. Since oxygen atoms 5, and 6 and 9, 10, and 11 are chemically equivalent twelve accurate atom mappings could be predicted for 

this reaction
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Atom mapping algorithms

Six academic and commercially available atom map-

ping algorithms were included in our evaluation Reac-

tion Decoder Tool (RDT, [10]), Determination of 

Reaction Mechanisms (DREAM, [11]), AutoMapper 5.0.1 

(AutoMapper, [12], ChemAxon, Budapest, Hungary), 

Canonical Labeling for Clique Approximation (CLCA, 

[13]), Minimum Weighted Edit-Distance (MWED, [14]) 

within Pathway Tools, and InfoChem-Map (ICMAP, [15], 

InfoChem, Munich, Germany). �ese algorithms imple-

ment different prediction strategies or they use molecu-

lar properties, such as the bonds with hydrogen atoms or 

the use of the stereochemistry to predict atom mapping. 

�ey are also equipped with a variable array of advanced 

features (Fig.  2), including the ability to identify chemi-

cally equivalent atoms and reaction centres, as well as 

the option to map hydrogen atoms. Other distinguishing 

factors include ease of availability, licensing, and use of 

standardised data formats. Atom mappings and chemi-

cal structure data can be encoded in different atom level 

chemical reaction formats such as the SMILES [17] or 

RXN [18] formats. �e most useful atom mapping format 

depends on the quality of the data and the intended 

application, e.g, the RXN format can hold information 

about chemical bond changes and stereochemistry. �e 

SMILES format holds a canonical representation of mol-

ecules, which is independent of the application used to 

generate it. Examples of different chemical formats are 

given in the Additional file 1. A brief description of each 

atom mapping algorithm follows.

DREAM

Determination of REAction Mechanisms (DREAM) [19] 

is a Web tool that identifies atom mappings using an opti-

misation-based approach known as Mixed Integer Linear 

Optimisation (MILP). �is approach aims to minimise 

the number of bonds broken, bonds formed and bond 

order changes, between substrates and products. To 

make predictions it considers chemical properties such 

as stereochemistry and hydrogen bonding. �e func-

tionality of this algorithm is accessible as a web applica-

tion. With DREAM, it is possible to atom map hydrogen 

atoms. In practice, the output of the current DREAM 

implementation does not designate reaction centres or 

Fig. 2 Atom mapping predictions for the enolase reaction. All six compared algorithms returned an accurate atom mapping but included different 

types of additional information. CLCA and MWED identify equivalent atoms in the reactants (blue). DREAM and AutoMapper map hydrogen atoms 

(yellow). RDT, CLCA, ICMAP and MWED all identify reaction centres (green). Unlike the other three algorithms, MWED does not identify reaction 

centres by adding information to the bonds that break and form. Instead, it assigns different colours to the molecular substructures (moieties) that 

break apart or bind together. The atom mapped reactions are visualised with MarvinView (ChemAxon, Budapest, Hungary), which accepts the RXN 

and SMILES formats as input
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assign chemically equivalent atoms in the output format, 

although based on the similarity to the MWED algo-

rithm, which is able to carry out both of the aforemen-

tioned functions, this should be possible. Atom mappings 

are predicted from RXN or SMILES files, or a single reac-

tion can be drawn in the web application using the Java 

Platform, Micro Edition (JME) Molecular Editor. �e 

predicted atom mappings are output as RXN files. Web 

services and a web user interface for DREAM are avail-

able at http://ares.tamu.edu/dream.

AutoMapper

AutoMapper [20] (ChemAxon, Budapest, Hungary) uses 

two approaches to predict atom mapping: maximum 

common substructure (MCS) and minimum chemical 

distance (MCD). In MCS, substrate(s) and product(s) are 

represented as molecular graphs. �is approach aims to 

identify the largest substructures of substrate graphs that 

are isomorphic to product graphs. For any atom that is 

not part of an isomorphic substructure, an atom map-

ping is calculated by MCD, which minimises the number 

of bonds that are broken and formed. AutoMapper is a 

tool for atom mapping a single reaction using the desk-

top application MarvinSketch (ChemAxon, Budapest, 

Hungary), or multiple reactions using Standardizer (Che-

mAxon, Budapest, Hungary) via command line. Marvin-

Sketch is available free of charge whereas Standardizer 

requires a license that is free for academics. Automap-

per provides the option to map hydrogen atoms, but the 

tool can neither identify chemically equivalent atoms 

nor reaction centres. AutoMapper accepts a variety of 

different chemical formats, including RXN, InChI, and 

SMILES. It generates atom mappings in RXN or SMILES 

formats. AutoMapper is available from https://www.che-

maxon.com.

RDT

Reaction Decoder Tool (RDT) [10] is a Java-based, open-

source atom mapping software tool. For each reaction, it 

returns the best of four atom mappings, predicted with 

four different algorithms: Mixture-MCS, which matches 

the maximum common substructure between substrates 

and products; Min-sub model, which matches the small-

est substructures between the substrates and products; 

Max-sub model, which matches the largest substruc-

tures between the substrates and products; and, lastly, 

Assimilation model, which is triggered if a substrate or 

a product contains a ring system. Once an algorithm 

has matched a maximal number of atoms, the remain-

ing atoms are mapped according to a similarity score for 

molecules, and the selection-and-elimination process 

is repeated until all atoms have been mapped. All four 

algorithms use the molecule stereochemistry to predict 

the atom mappings. RDT returns the atom mapping with 

the minimum number of modified bonds. RDT can be 

installed on a desktop or accessed via the web application 

EC-BLAST [3]. RDT can identify the reaction centres 

but lacks the ability to map hydrogen atoms or identify 

chemically equivalent atoms. �e user is given the choice 

between RXN and SMILES for both in- and output for-

mats. Web services are available at http://www.ebi.ac.uk/

thornton-srv/software/rbl/ and the software at https://

github.com/asad/ReactionDecoder.

CLCA 

�e Canonical Labelling for Clique Approximation 

[21] (CLCA) algorithm identifies the maximum com-

mon substructure between substrates and products 

using prime factorisation to generate canonical labels 

for bond-atoms. If a reaction has multiple reactant or 

product molecular graphs, many combinations of MCS 

exist. �us, MCD is used to select a substructure that 

reduces the number of bond changes between reactants 

and products. It generates canonical labels using a vari-

ety of chemical properties, such as the number of non-

hydrogen connections, the number of non-hydrogen 

bonds, atomic numbers, the sign of charge, the absolute 

charge, the number of connected hydrogen atoms, the 

atomic numbers of neighbouring atoms, R or S descrip-

tors for chiral atoms, pro-R or pro-S for prochiral arms, 

and cis and trans descriptors. CLCA identifies chemi-

cally equivalent atoms by using their canonical labels; 

the algorithm also indicates reaction centres. CLCA can 

only map hydrogen atoms for reactions with fully pro-

tonated molecules. CLCA uses SMILES as its input and 

output format. �e CLCA algorithm is available from 

https://github.com/maranasgroup/MetRxn/tree/master/

Alchemist.

MWED 

Similar to DREAM, Minimum Weighted Edit-Distance 

[22] (MWED) uses an MILP approach that aims to mini-

mise bonds changes. However, this algorithm assigns 

weights to bonds of the molecules in the reaction, and 

a specific cost when a bond is modified. �e algorithm 

uses the bonds with hydrogen molecules and the stere-

ochemistry to predict atom mappings. �e algorithm is 

available within the Pathway Tools Software Suite [23], 

which requires a license that is free of charge for academ-

ics. MWED can identify chemically equivalent atoms, 

as well as reaction centres. �e algorithm does not map 

hydrogen atoms but it does take them into consideration 

when calculating atom mappings. It supports both RXN 

and SMILES as input and generates SMILES and Meta-

Cyc output files. Pathway Tools is available from http://

biocyc.org/.

http://ares.tamu.edu/dream
https://www.chemaxon.com
https://www.chemaxon.com
http://www.ebi.ac.uk/thornton-srv/software/rbl/
http://www.ebi.ac.uk/thornton-srv/software/rbl/
https://github.com/asad/ReactionDecoder
https://github.com/asad/ReactionDecoder
https://github.com/maranasgroup/MetRxn/tree/master/Alchemist
https://github.com/maranasgroup/MetRxn/tree/master/Alchemist
http://biocyc.org/
http://biocyc.org/
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ICMAP 

InfoChem-Map [15] (ICMAP, InfoChem, Munich, Ger-

many) uses maximum common substructure and mini-

mum chemical distance approaches. It identifies reaction 

centres using minimum chemical distance when a bond 

is formed or broken. Unmapped atoms are mapped by 

minimum chemical distance with two additional chemi-

cal rules applied. �at is, the breakage and formation of 

bonds between heteroatoms is given preference over C–C 

bonds, and bonds with hydrogen atoms are rated the same 

as C–C bonds. ICMAP is a commercial desktop applica-

tion. It identifies the reactions centres but cannot identify 

chemically equivalent atoms or map hydrogen atoms. One 

extra feature of the ICMAP algorithm is the classification 

of a reaction regarding the reaction centres indentified 

using a 15 digit numeric code. Both input and output are 

in RD file format, which is a container file format for RXN 

files. ICMAP application is available from http://www.

infochem.de/.

Results

Prediction accuracy

We evaluated the accuracy of the six atom mapping algo-

rithms (Table  1) by comparing predictions to manually 

curated atom mappings for 512 reactions (see Methods). 

�e comparison of individual reactions is shown in Addi-

tional file 2. Table 1 shows the number of atom mapped 

reactions that were compared with the manually curated 

atom mappings.

Metabolic reactions can be classified according to a four 

digit Enzyme Commission (EC) number assigned to the 

catalysing enzyme. �e first digit, hereafter referred to as 

the top-level EC number, encodes the type of reaction that 

the enzyme catalyses (see Additional file 1: Table 1S). �e 

prediction accuracy of the algorithms on representative 

reactions of all six defined reaction types and the overall 

accuracy is shown in Fig.  3. Five of the 6 algorithms gave 

accurate predictions for more than 90% of reactions cata-

lysed by oxidoreductases, with RDT being the most accu-

rate. However, the accuracy of all six algorithms was low for 

reactions catalysed by ligases. DREAM, CLCA and ICMAP 

were equally accurate at prediction of atom mappings for 

isomerases. CLCA was the most accurate for hydrolases 

and lyases. Finally, DREAM was the most accurate for 

transferases. �e predictions and manual curation for each 

reaction are given in Additional file 3.

Additional features

In addition to prediction accuracy, we compared the 

technical and advanced features of each algorithms. �e 

technical features include the prediction approach, the 

user interface, the availability, and the file formats used 

for each algorithm (Table 2). �e main advanced features 

were the ability to identify chemically equivalent atoms 

and reaction centres, and the option to map hydrogen 

atoms (Table  3). We also compared additional features, 

such as the ability to map all atoms in each reaction, the 

ability to map R groups and the consideration of reac-

tant stereochemistry. Advanced features can be particu-

larly important for certain applications of atom mapping 

[24–26].

Application to Recon 3D

To atom map reactions in a metabolic network recon-

struction, one requires chemical structures, reac-

tion stoichiometries, and an atom mapping algorithm. 

Chemical structures for 2369 (85%) (Fig.  4a) of the 2797 

unique metabolites in Recon 3D [9] were obtained were 

obtained [27] or drawn using information from pub-

licly available sources, such as Recon 2 [28], PubChem 

[29], Kyoto encyclopedia of genes and genomes (KEGG) 

[30], Chemical Entities of Biological Interest (ChEBI) 

[31], Lipid Mass Structure Database (LMSD) [32], Bio-

Path database [33], ChemSpider database [34], and 

the Human Metabolome DataBase (HMDB) [35]. No 

chemical structures were obtained for the remain-

ing 428 (15%) unique metabolites due to insufficient 

information about the precise chemical structure (e.g., 

eumelanin), or because some Recon 3D reactions do 

not specify the nature of the reactant sufficiently, e.g., 

in lipid metabolism, a generic lipid substrate may corre-

spond to a family of compounds, that may differ slightly 

in structure, due to the number and position of double 

bonds.

We selected three different algorithms for the atom 

mapping of mass balanced Recon 3D reactions due to 

their high accuracy, ease of availability, and predictions 

without any unmapped atoms. �e Reaction Decoder 

Tool (RDT) was selected to atom map reactions with 

implicit hydrogen atoms, while DREAM and CLCA 

were chosen to atom map reaction with explicit hydro-

gen atoms. Atom mappings were predicted for 7637 mass 

balanced reactions in Recon 3D, using both RDT and 

Table 1 Number of evaluated reactions per algorithm

Due to limited access to some algorithms, we could not predict atom mappings 

for all 512 manually curated reactions

Algorithm Number of reactions  
compared

Unmapped 
reactions

RDT 512 0

DREAM 512 0

AutoMapper 512 0

CLCA 488 24

MWED 477 35

ICMAP 496 16

http://www.infochem.de/
http://www.infochem.de/
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DREAM. Atom mappings were predicted for a further 272 

mass imbalanced internal reactions in Recon 3D, using 

both RDT and CLCA. A remaining 840 internal reactions, 

that is 10% of all 8748 internal reactions, were not atom 

mapped due to missing chemical structures (Fig.  4b). 

Metabolite structures and atom mappings for Recon 3D 

[9] are disseminated via the Virtual Metabolic Human 

database (VMH, https://vmh.life/). Metabolite structures 

are provided in MOL and SMILES formats. Atom map-

ping data are provided in both RXN and SMILES formats.

Fig. 3 Accuracy by reaction types. Percentage of reactions where predicted atom mappings agreed with the manually curated atom mappings. On 

each bar is shown the number of reactions compared for each algorithm and top level EC number

Table 2 Comparison of technical features

Approach Interface Availability Input �le formats Output �le formats

RDT Structure-based Web and desktop application Free RXN, SMILES RXN, SMILES

DREAM Optimisation-based Web application Free RXN, SMILES RXN

MWED Optimisation-based Desktop application Free for academics RXN, SMILES SMILES, MetaCyc

CLCA Structure-based Algorithm Free SMILES SMILES

ICMAP Structure-based Desktop application Commercial RXN RXN

AutoMapper Structure-based Desktop application Free for academics RXN, SMILES RXN, SMILES

Table 3 Comparison of advanced features

a CLCA can only map hydrogen atoms for reactions with fully protonated molecules

Equivalent 
atoms

Hydrogen 
atoms

Reaction 
centres

Maps all atoms Maps R groups Stereo-chem-
istry

Maps unbal-
anced reactions

RDT χ χ � � � � �

DREAM χ � χ � � � χ

MWED � χ � � � � χ

CLCA � �
a

� � � � �

ICMAP χ χ � χ � χ �

AutoMapper 
5.0.1

χ � χ � � χ �

https://vmh.life/
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Discussion

�e six algorithms compared in this work implement 

different atom mapping approaches. RDT, AutoMap-

per 5.0.1, CLCA, and ICMAP implement an approach 

based on the identification of a common molecular sub-

structure, whereas DREAM and MWED implement an 

optimisation-based approach [36]. Each algorithm is 

ideal for different purposes, e.g., the RDT, ICMAP, and 

MWED algorithms can be used to describe reaction 

mechanisms as they identify reaction centres. CLCA can 

be used to enumerate alternative atom mappings by iden-

tifying equivalent atoms. DREAM atom maps hydrogen 

atoms, and can thus be used to identify conserved moie-

ties corresponding to hydrogen atoms in metabolic net-

works [26] and implemented within the COBRA Toolbox 

[37]. Finally, AutoMapper has a user-friendly interface 

and is part of a large suite of useful chemical informat-

ics tools provided by ChemAxon. Due to the accuracy, 

ease of availability and ability to map all atoms as well as 

R groups, we chose RDT for atom mapping of Recon 3D 

reactions with implicit hydrogen atoms, DREAM for its 

ability to explicitly map hydrogen atoms and CLCA for 

its ability to map mass imbalanced reactions with explicit 

hydrogen atoms.

It is especially interesting that five of the six algorithms 

achieved a prediction accuracy of more than 90%. How-

ever, this is somewhat lower than the reported accuracy 

[21, 22]. �is discrepancy may be due to selection of a 

different set of manually curated atom mappings from 

the KEGG RPAIR database [2]. Manual curation of more 

Recon 3D reactions, couple with testing new versions 

of existing atom mapping algorithms, will, in the future 

likely lead to prediction accuracy that asymptotically 

approaches 100%.

If EC numbers were available for all reactions in Recon 

3D, a superior strategy would have been to use the pre-

diction of the algorithm with the best accuracy for each 

top-level EC number. �at is, instead of selecting a sin-

gle algorithm to atom map all reactions in Recon 3D, 

we could have selected the most accurate algorithm for 

each reaction type (Fig. 3). However, this was not feasi-

ble because a large number of reactions have not yet been 

assigned an EC number [9, 38]. Moreover, due to the high 

level of accuracy across all six algorithms, our choice to 

use RDT was also based on other features such as soft-

ware availability and accessibility of the user interface.

�e EC number assigned to a reaction contains infor-

mation about the reaction mechanism, which can be used 

to identify prediction errors. �e most common errors 

we encountered were the preference for breaking and 

forming C–C σ-bonds instead of less stable bond types 

(Fig.  5), and the incorrect assignment of leaving groups 

in addition-elimination reactions (Fig.  6). In addition, 

idiosyncrasies of individual algorithms seem to result in 

inaccurate predictions for certain types of reactions.

Most algorithms tend to predict atom mappings and 

thereby reaction mechanisms with the lowest sum total 

number of bonds that are broken and formed, but often 

fail to sufficiently penalise the breakage of more sta-

ble bonds. �is was the case for the alanine-glyoxylate 

transaminase reaction in Fig. 5, which has the EC num-

ber 2.6.1.44. �e first number (2) indicates that the type 

of enzyme that catalyses the reaction is a transferase. �e 

second number (6) indicates that it transfers nitrogen 

groups. �e third number (1) indicates that the nitro-

gen group is transferred from an alanine molecule. �e 

last number (44) indicates that a nitrogen group is trans-

ferred from alanine to glyoxylic acid. In this reaction, five 

Fig. 4 Coverage of metabolites and reactions in Recon 3D. a Coverage of unique metabolites structure data. b Coverage of reaction atom mapping 

data
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algorithms predicted that the transferred group would 

be a methyl group, but this is incorrect due to the high 

energy needed to break a C–C σ-bond.

Another common error was with prediction of addi-

tion-elimination mechanisms. Typically, a nucleophile 

will attack an electron-deficient centre, which will push 

electron density towards an adjacent oxygen, followed by 

electron density being pushed back to the nucleophilic 

centre, which will eliminate a leaving group. Under acidic 

conditions, the leaving group is reprotonated to give 

the resulting alcohol or thiol (see Additional file  1: Fig-

ure 1S). Figure 6 shows an example of a prediction error 

for the acetylcholinesterase reaction. �e EC number of 

the reaction is 3.1.1.7, where (3) indicates a hydrolase 

reaction, (1) shows that the hydrolysis takes place on an 

ester bond; more specifically, carboxylic ester hydrolysis 

(1). �e last number (7) indicates hydrolysis of a choline 

ester. �e reaction mechanism predicted by DREAM was 

not consistent with this EC number.

As expected, DREAM and MWED predictions were 

similar (Additional file 1: Table 2S) since they are based 

on a very similar MILP approach. However, although 

MWED is based on DREAM, the latter obtained greater 

accuracy when comparing its predictions with the man-

ually-cured atom mappings. Of the 477 predictions that 

could be compared, the algorithms predictions differed in 

69 occasions of which in 30 DREAM predicts correctly 

and MWED does not, 23 DREAM predicts incorrectly 

and MWED does not, and in 16 both predictions are 

wrong. Among the most important differences, MWED 

fails to correctly assign the leaving groups. Nevertheless, 

because of the weight, it gives to the bonds, it can cor-

rectly predict reaction mechanisms as indicated in Fig. 5.

Chemically equivalent atoms in a molecule are atoms 

that are interchangeable through any symmetric opera-

tion (Fig.  7). Reactions of molecules with equivalent 

atoms have multiple equivalent atom mappings. For 

instance, all reactions involving molecular oxygen 

(Fig.  7a) have at least two chemically equivalent atom 

mappings. A compact representation of all chemically 

equivalent atom mappings for a single reaction can be 

achieved by assigning the same atom mapping number 

to chemically equivalent atoms (Fig.  7). Although the 

DREAM should, in principle, be able to identify chemi-

cally equivalent atoms, only CLCA and MWED assigned 

chemically equivalent atoms in practice. However, there 

is room for improvement with both algorithms. CLCA 

often fails to identify chemically equivalent atoms in res-

onance structures (Fig.  7b) and MWED fails to identify 

molecular symmetry (Fig. 7d).

Fig. 5 An incorrect reaction mechanism predicted by five algorithms. Alanine-glyoxylate transaminase (VMH ID: AGTim) reaction catalyses the 

chemical transformation of L-alanine (VMH ID: ala_L) and glyoxylate (VMH ID: glx) into pyruvate (VMH ID: pyr) and glycine (VMH ID: gly). The known 

reaction mechanism of the alanine-glyoxylate transaminase reaction is represented by the manual atom mapping (top). Five algorithms predicted 

the same incorrect atom mapping for this reaction (bottom) [43]. Only the MWED algorithm predicted correctly
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An atom mapping provides an abstract mechanistic 

description of a chemical reaction. It describes the fate of 

the atoms and all the bond changes that happen during 

the reaction. �erefore, when an atom mapping is pre-

dicted the reaction centres are identified. RDT, CLCA, 

MWED, and ICMAP are all able to identify reaction 

Fig. 6 Incorrect addition–elimination mechanism predicted by DREAM. Acetylcholinesterase (VMH ID: HMR_0641) reaction catalyses the break-

down of acetylcholine (VMH ID: ach) and water (VMH ID: h2o) to form acetate (VMH ID: ac) and choline (VMH ID: chol). The predicted mechanism 

(bottom) for the acetylcholinesterase reaction does not correspond to the mechanism described by the EC number (top). The  (C3–O5) bond is 

broken and the  (C3–O1) bond is formed. However, DREAM predicts that the  (C6–O5) bond is broken, followed by formation of the  (C6–O1) bond [43]

Fig. 7 Chemically equivalent atoms. Four molecules with chemically equivalent atoms (coloured backgrounds). a Molecular oxygen (VMH ID: o2). 

b Methyl phosphate where all three highlighted oxygen atoms are chemically equivalent through resonance. MWED, but not CLCA, can identify 

the highlighted atoms as being chemically equivalent. c 1-Amino-1,1-ethanedio. d 1,3-Diaminopropane (VMH ID: 13dampp), which shows that 

chemically equivalent atoms are not necessarily connected to a shared atom. CLCA, but not MWED, can identify the highlighted atoms as being 

chemically equivalent
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centers and generate their results indicating where the 

reaction centre is, however, DREAM and AutoMapper do 

not. �e identification of reaction centers is useful for a 

visual description of the reaction mechanism. �ese can 

potentially also be used to predict optimal pathways in a 

metabolic network, involving the minimum number of 

bond changes.

Two reactions with identical stoichiometry may occur 

by different reaction mechanisms depending, for exam-

ple, on the catalysing enzyme. Each reaction mechanism 

corresponds to a distinct set of atom mappings. �e opti-

misation-based algorithms DREAM and MWED are able 

to predict multiple optimal atom mappings for a single 

reaction. On the other hand, ICMAP represent ambi-

guity in a reaction mechanism by leaving some atoms 

unmapped. �is approach may be useful to represent 

mechanistic ambiguity in a compact form as a single file 

(Fig.  8). However, in some cases, it remains unmapped 

atoms that were not assigned by the MCS process (Fig. 2f, 

on the left hand side, one oxygen atom in the 2pg mol-

ecule and on the right hand side, the h2o molecule).

�e optimisation based algorithms DREAM and 

MWED require each reaction to be mass elementally bal-

anced in order to assign atom mappings. �is require-

ment is consistent with chemical principles. However, it 

could be a limitation depending on the objective of the 

atom mapping. In particular, atom mapping elemen-

tally unbalanced reactions could provide an automatic 

approach to suggest modifications to the reconstruc-

tion that could balance the reaction (Fig.  9), or for the 

automatic assignment of EC numbers [38]. �is utility is 

especially important for reconstructions whose content is 

at the edge of experimental biochemistry. Nevertheless, 

for other applications [24, 26, 39] it is necessary to know 

the fate of all the atoms in the metabolic network.

Atom mapping algorithms use different chemical for-

mats to input and output atom mappings. Each chemical 

format has unique features that distinguish it from other 

formats. DREAM, AutoMapper, CLCA, and MWED all 

used the SMILES format which is a compact string rep-

resentation of a reaction with canonicalised molecules. 

RXN files were used by DREAM, MWED, and AutoMap-

per. �is file format can store additional data such as 

bond changes and stereochemistry. ICMAP was the only 

algorithm to use the RD format. �is format is a concate-

nation of multiple reactions in RXN format. �e develop-

ers of MWED have also created their own format based 

on the data in the MetaCyc database [4]. An additional 

feature to accept and return at least one standard format 

(SMILES or RXN) should be a publication criterion for 

any future atom mapping algorithm. Chemoinformatics 

applications such as molConverter from ChemAxon [20], 

and OpenBabel [40] can be used to convert from one 

standard format to another.

Only AutoMapper, CLCA and DREAM provided the 

option to predict the fate of hydrogen atoms in chemi-

cal reactions. RDT, MWED, and ICMAP do not explic-

itly return the mapping of hydrogen atoms. Nevertheless, 

bonds involving hydrogen atoms are considered for the 

assignment of atom mappings by all algorithms, except 

Fig. 8 Unmapped atoms. Occasionally, ICMAP leaves some atoms unmapped. In this ICMAP prediction (VMH ID: MVLACc), the oxygen atoms 

in Mevalonate (VMH ID: mev_R) that are indicated in blue, may map to the water molecule (VMH ID: h2o) or the 4-hydroxy-4-methyl-2-oxanone 

molecule (VMH ID: mvlac)
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for AutoMapper v5.0.1. Hydrogen atoms are not as useful 

as carbon atoms for isotopic labelling in metabolic flux 

analysis [24], which is currently the main application for 

atom mapping data. However, as we shall now discuss, 

there are other applications where this is important.

When reaction stoichiometry is combined with atom 

mapping data for an entire metabolic network, new 

applications become possible that are beyond the resolu-

tion of reaction stoichiometry alone. For example, given 

atom mapping data for a stoichiometrically consistent 

metabolic network, the set of conserved moieties can be 

efficiently computed and identified [26]. Each conserved 

moiety corresponds to a particular identifiable molecular 

substructure that is invariant with respect to the chemi-

cal transformations of that network. Atom mapping of 

all atoms is a prerequisite for identification of all con-

served moieties. �e cardinality of the set of conserved 

moieties can be enumerated a priori as it is equivalent 

to the row rank deficiency of the corresponding stoi-

chiometric matrix. As such, it is possible to easily check 

if the expected number of conserved moieties has been 

computed, given a set of atom mapping data for a stoi-

chiometrically consistent network. In some instances, 

even with mapping of hydrogen atoms, one or more con-

served moiety is not computed with the aforementioned 

approach [26]. It appears as though mapping of electrons 

may also be necessary, but the conditions for this require-

ment remain to be clarified [26]. Every biochemical 

network will contain at least one conserved moiety cor-

responding to a hydrogen atom, so this feature is desired 

for atom mapping of metabolic reconstructions.

�e set of conserved moiety vectors forms a sparse 

non-negative integer basis for the left null space of a stoi-

chiometrically consistent network. Constraints derived 

from this left null space basis are a fundamental part of 

kinetic modelling because the amount of each conserved 

moiety is time-invariant [41]. �e set of all conserved 

moieties for a chemical reaction network give rise to a 

biochemically intuitive non-negative integer basis for the 

left nullspace of the corresponding stoichiometric matrix. 

Of course, one can always compute a linear basis for the 

left nullspace of a stoichiometric matrix using various 

linear algebraic algorithms, but then biochemical inter-

pretation of each basis vector is problematic. From this 

perspective, we advocate for explicit mapping of hydro-

gen atoms, or at least the option to do so.

Atom mappings are also used to identify the existence 

and contribution of pathways involved in the metabo-

lism of specific biological molecules by refining carbon 

flux paths with atomic trace data [25], which can lead to 

potential biomarkers for diseases. Since conserved moie-

ties consist of a set of atoms that follow the same path 

through a metabolic network, in principle, it is sufficient 

to isotopically label a single atom within a moiety to 

detect the possible paths of that entire moiety through a 

metabolic network [24]. Additionally, numerical classifi-

ers for enzymes known as Enzyme Commission numbers 

(EC numbers) [16] can be computationally assigned to 

reactions in genome-scale metabolic networks [38] using 

atom mappings. EC numbers establish links between 

enzymatic reactions, enzymes, enzyme genes, and met-

abolic pathways. �ese are just some examples of the 

many potential applications of atom mapping in genome-

scale metabolic networks.

Conclusions

We focussed on comparing the predictive accuracy of 

atom mapping algorithms for elementally balanced bio-

chemical reactions with complete structural specifica-

tion of reactants. �erefore, any conclusions we obtained 

are specific to this particular atom mapping objective. 

Many of the algorithms tested have a variety of differ-

ent advanced features which were not compared in detail 

so depending on ones objective the optimal algorithmic 

choice could differ.

Of the six atom mapping algorithms tested for atom 

mapping of elementally balanced reactions, most had 

an impressive prediction accuracy of 91% or higher, e.g. 

the DREAM, CLCA, MWED, ICMAP and RDT algo-

rithms. However different algorithms seem to be more 

accurate for different types of reaction mechanisms. 

Selection of an algorithm also depends on factors such 

as ease of availability of the software, quality of the user 

interface, and ability to deliver advanced features beyond 

atom mapping per se. Objectively, from the high accu-

racy achieved by many atom mapping algorithms, one 

can conclude that atom mapping is an advanced art. To 

reach perfection, detailed comparison of algorithmic 

Fig. 9 Unbalanced thyroid peroxidase reaction. The thyroid peroxidase reaction (VMH ID: THYPX) catalises the hydrogen peroxide molecules (VMH 

ID: h2o2) and two hydrogen iodides (VMH ID: i) into two water molecules (VMH ID: h2o) and two molecular iodines (VMH ID: iodine). The reaction 

can be balanced by adding the unmapped molecular iodine product atoms (blue background) on the left hand side
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approaches and elucidation of systematic imperfections 

will be necessary.

From a network perspective, approaching perfection in 

atom mapping is important because if the probability of 

an incorrectly mapped atom is p ∈ (0, 1) but the length 

of a pathway involving that atom is k then the probabilty 

of an incorrectly mapped atom at the end of the pathway 

is O(pk), e.g., 0.9110 ∼
= 0.39. �is is a worst case scenario 

that assumes the same atom is incorrectly mapped in 

each of the k sequential reactions. Nevertheless, it points 

out the importance for the atom mapping community of 

striving for ever higher levels of accuracy.

In our view, this can best be achieved by more detailed 

comparison of the alternate algorithms, in mathemati-

cal form, as well as in their computational implementa-

tions, via licensed source code for desktop applications. 

Expansion of the number of additional features would 

be valuable. Already, identification of chemically equiva-

lent atoms and reaction centres or mapping of hydro-

gen atoms are of key importance in certain applications, 

e.g., identification of conserved moieties and simula-

tion of isotope labelling experiments. �e convergence 

of genome-scale metabolic modelling, chemoinformat-

ics and structural bioinformatics, as illustrated in Recon 

3D opens up a host of new applications for atom map-

ping, not to mention the potential for cross fertilisation 

of ideas.

Methods

Recon 3D

Recon 3D is a genome-scale metabolic reconstruction 

of human metabolism accounting for ~12,000 metabolic 

reactions involving ~8000 metabolites [9]. It is not cell-

type specific, rather it is an amalgamation of the known 

metabolic capabilities ocurring in at least one human cell, 

regardless of type. Recon 3D is the most complete global 

human network model to date and the first to account for 

mechanisms at the atomic scale.

RXN �les

After obtaining the chemical structures of the unique 

metabolites [27], reaction stoichiometries from Recon 3D 

were used to create the corresponding RXN files using a 

MATLAB live script (Additional files 4 and 5).

Manually curated atom mappings

Manually curated atom mappings were obtained from 

the BioPath database [33] for the 340 Recon 3D reactions 

that are also on the BioPath database. An additional 196 

Recon 3D reactions representative for al 6 top EC-num-

bers were manually atom mapped according to textbook 

characterisations of reaction mechanisms [42, 43].

Algorithms predictions

CLCA, MWED ICMAP and RDT predictions were 

obtained by contacting the developers of each algorithm. 

DREAM predictions were obtained by compressing 

the RXN files obtained into different ZIP files with less 

than 2 MB of data. �en the ZIP files were uploaded in 

the DREAM web application. AutoMapper 5.0.1 predic-

tions were obtained by using the ChemAxon application 

Standardizer.

Evaluation of prediction accuracy

We say that an algorithm accurately predicts the atom 

mappings for a reaction if each atom mapping for that 

reaction matches that obtained by manual curation. �e 

accuracy of each algorithm was quantified using the per-

centage of reactions that were accurately predicted. Pre-

dictions that did not match the manually curated atom 

mappings were double checked manually.

Standardisation process

Not all algorithms returned results in the same for-

mat. In particular, the order of reactants (Fig. 2e, in this 

example, MWED prediction switched the product mol-

ecules) and the order of atoms within reactants varied 

between algorithms (Fig.  2). �erefore, we standardised 

the algorithmic output to enable comparison between 

algorithms and with manually curated data. First, atom 

mapping predictions in RXN format were converted to 

SMILES format to obtain the canonical order of atoms 

in molecules. �e conversion was performed using the 

ChemAxon application molConverter. �en, the SMILES 

strings for substrates and products were sorted by length. 

If the SMILES for two substrates (or products) were of 

the same length, they were sorted in alphabetical order. 

After that, the reactions in SMILES were converted back 

to RXN format with molConverter. Finally, the atom 

mapping numbers of each atom were re-assigned in 

ascending order, maintaining the equivalent atoms for 

the CLCA and MWED algorithms. �is standardisation 

process enabled automatic comparison between pre-

dicted and manually curated atom mappings.

Unmapped atoms

In some cases, ICMAP did not assign an atom map-

ping number to all the atoms in a reaction (e.g., oxygen 

in Fig.  2f ). In a post-processing step, atom mapping 

numbers were automatically assigned to all uniquely 

identifiable unmapped atoms. A substrate atom was 

deemed to be uniquely identifiable if it was the only 

unmapped atom of a particular element and it could 

therefore only map to one atom of the same element in 

the products.
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Chemically equivalent atoms

�e identification of chemically equivalent atoms is 

essential prior to comparing atom mappings. Oth-

erwise, a discrepancy between two equivalent atom 

mappings would be indistinguishable from a discrep-

ancy due to an incorrect prediction. When algorithms 

did not identify chemically equivalent atoms, they 

were identified in a post-processing step using tech-

niques from graph theory implemented in MATLAB 

(MathWorks, Natick, Massachusetts). Every molecule 

was represented as a molecular graph G := [V ,E]; an 

ordered pair of vertices, v ∈ V , and edges, e ∈ E. A ver-

tex represents an atom and an undirected edge between 

two vertices represents a chemical bond. Two atoms 

a and b were said to be chemically equivalent if both 

were of the same element, both were connected to the 

same atom c, and neither was connected to any other 

atom. �e bond type was not considered since equiva-

lent atoms are often part of a resonance structure with 

delocalised electrons. �e chemically equivalent atoms 

in each substrate were assigned the same atom mapping 

number. �en, the atom mapping numbers of matched 

product atoms were updated accordingly. �is process 

was also then repeated in the opposite direction, from 

products to substrates.

Additional �les

Additional �le 1. Contains the supplementary information of the 

manuscript. This includes 1) Different atom mapping chemical formats 

for reaction cyanase; 2) Figure 1S: Ester hydrolysis under basic condi-

tions; 3) Figure 2S: Cyanase reaction atom mapped; 4) Table 1S: Top 

level Enzyme Commission number classification; 5) Table 2S: Similarity 

between atom mapping predictions.

Additional �le 2. Contains the full comparison after the algorithmic and 

manual check of the of reactions. Full-atom mapping comparison table. 

With all standardised reactions, RXN file atom identifiers were extracted 

as an array and processed in MATLAB where they were compared if the 

reaction was present in the database. Comparisons were made with the 

following order: 1) cured reactions, 2) DREAM, 3) AutoMapper, 4) CLCA 

5) MWED, and 6) ICMAP. In the curated reactions column, there are only 

two values, 1 or NaN if there was no file. DREAM columncould have 3 

values 1 if equal than the curated reactions, 2 if are not equal and NaN 

if the le does not exist. AutoMapper column has 4 values, 1–3 and NaN. 

1 if is equal to curated files, 2 if the mappings are equal to DREAM and 3 

if they are not equal to the curated DREAM reactions and NaN if not file 

existed. So CLCA 1–4 and NaN, MWED 1–5 and NaN, and NaN ICMAP 1–6. 

If all reactions are equal, all columns 1 values obtained. With the matrix 

containing all the comparisons similarity of all algorithms was calculated.

Additional �le 3. Contains two folders, one contains the predictions 

obtained from each algorithm in RXN format (Folder: algorithmicPredic-

tions), the other contains manually curated atom mappings, (Folder:stand

ardisedPredictions).

Additional �le 4. A pdf version of atomMappingComparisonScript.mlx.

Additional �le 4. A MATLAB LiveScript used to standardise the algorith-

mic predictions, before comparison. Requires MATLAB 2016a and above.
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