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Abstract. Performance evaluation of salient features has a long-standing
tradition in computer vision. In this paper, we fill the gap of evaluation
for the recent wave of binary feature descriptors, which aim to provide
robustness while achieving high computational efficiency. We use estab-
lished metrics to embed our assessment into the body of existing evalua-
tions, allowing us to provide a novel taxonomy unifying both traditional
and novel binary features. Moreover, we analyze the performance of dif-
ferent detector and descriptor pairings, which are often used in practice
but have been infrequently analyzed. Additionally, we complement exist-
ing datasets with novel data testing for illumination change, pure camera
rotation, pure scale change, and the variety present in photo-collections.
Our performance analysis clearly demonstrates the power of the new
class of features. To benefit the community, we also provide a website
for the automatic testing of new description methods using our provided
metrics and datasets (www.cs.unc.edu/feature-evaluation).
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1 Introduction

Large-scale image registration and recognition in computer vision has led to an
explosion in the amount of data being processed in simultaneous localization
and mapping [1], reconstruction from photo-collections [2,3], object recognition
[4], and panorama stitching [5] applications. With the increasing amount of data
in these applications, the complexity of robust features becomes a hindrance.
For instance, storing high dimensional descriptors in floating-point representa-
tion consumes significant amounts of memory and the time required to compare
descriptors within large datasets becomes longer. Another factor is the prolifera-
tion of camera-enabled mobile devices (e.g. phones and tablets) that have limited
computational power and storage space. This further necessitates features that
compute quickly and are compact in their representation.

This new scale of processing has driven several recent works that propose
binary feature detectors and descriptors, promising both increased performance
as well as compact representation [6,7,8]. Therefore, a comparative analysis of
these new, state-of-the-art techniques is required. At the same time, the analysis
must embed itself into the large body of existing analyses to allow comparison.

In this paper, we provide such an analysis. We rely on established evaluation
metrics and develop a new taxonomy of all features. To evaluate traditional and
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Fig. 1. A taxonomy of descriptors
based on their computational and stor-
age requirements: I: Real Value Pa-
rameterization [14,19,20,21], II: Patch-
Based [17], III: Binarized [22,23], and
IV: Binary [6,7,8].
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Fig. 2. Example patterns of the (a) BRIEF,
(b) ORB, and (c) BRISK descriptors

binary features, we propose a comprehensive set of metrics that also overcomes
limitations in the previously performed evaluations. Additionally, when selecting
datasets, we chose standard existing image sequences, but supplemented them
with our own custom datasets to test for missing aspects. The new complete
benchmarking scenes cover a wide variety of challenges including changes in
scale, rotation, illumination, viewpoint, image quality, and occlusion due to the
change in viewpoint of non-planar geometry. We also decouple the detection and
description phases, and evaluate the pairwise combinations of different detectors
and descriptors. As a result of our analysis, we provide practical guidelines for the
strengths and weaknesses of binary descriptors. Finally, we provide an evaluation
website for the automatic benchmarking of novel features (using the results of
new detectors and descriptors on the datasets used in our analysis).1

2 Related Work

Feature performance (detection, description, and matching) is important to
many computer vision applications. In 2005, Mikolajczyk et al. [9] evaluated
affine region detectors, and looked to define the repeatability and accuracy of
several affine covariant region detectors. They also provided a set of benchmark
image sequences (the Oxford dataset) to test the effects of blur, compression,
exposure, scale/rotation, and perspective change, which we leverage for com-
patibility. Also in 2005, Mikolajczyk and Schmid performed an evaluation of
local descriptors [10], comparing complex description techniques and several re-
gion detectors. It defined two important metrics, recall and 1 – precision. Later,

1 www.cs.unc.edu/feature-evaluation
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Moreels and Perona [11] evaluated several popular detectors and descriptors by
analyzing their performance on 3D objects. Strecha et al. [12] published a dense
3D dataset, which we use in our evaluation as it provides 3D LIDAR-based ge-
ometry and camera poses. Finally, Aanæs et al. [13] evaluated detectors using a
large dataset of known camera positions, controlled illumination, and 3D models.

While many evaluations address the performance of a feature, the recent surge
in large-scale feature-based applications draws attention to their runtime re-
quirements. We isolate a feature’s computation expense (detection, description,
or matching) and the amount of memory required (to store and use) to establish
a taxonomy for feature classification (see Figure 1).

Small-scale applications can often afford large computational and memory re-
quirements (corresponding to real value parameterization). Techniques in this
category rely on a parameterization of an image region, where each dimension
is a floating-point type (or a discretization of a float, excluding binary). These
techniques, examined in [10], use image gradients, spatial frequencies, etc. to
describe the local image patch and to test for similarity by using the L2 norm,
Mahalanobis distance, etc. These descriptors have proven to be effective, and
tackle issues such as scale, rotation, viewpoint, or illumination variation. The
popular SIFT [14] is in this class. However, increased complexity and robustness
comes with an increase in computation and storage requirements. High per-
formance, parallel hardware (e.g. graphics processors) can be used to mitigate
higher computational expenses, as shown in [15,16], but even then, descriptor
computation can still be the most time-consuming aspect of a system [2].

Therefore, to reduce the computational bottleneck of a system, we address
patch-based descriptors. These methods use an image patch surrounding the
feature to directly represent it. Distance measures such as sum of squared differ-
ences (SSD), normalized cross correlation (NCC), or mutual information (MI)
are used to compute pair similarity [17]. The pixels in the patch must be stored,
with quadratically increasing requirements for larger patches. However, in large-
scale databases (for recognition or reconstruction [18]) the biggest constraints
are the matching speed, bandwidth, and the storage required by the descriptor.

The next region in our taxonomy, binarized descriptors, consists of techniques
that have high computational but low storage requirements. Binarized descrip-
tors rely on hashing techniques to reduce high-dimensional, real-value parame-
terizations into compact binary codes [22,23,24,25]. While reducing storage con-
straints, it also speeds up comparison times through the use of the Hamming
distance measure. However, computational requirements are still high as the full
real-value parameterization must be computed before the hashing can occur.

The final region in our taxonomy is the binary descriptors. These descriptors
have a compact binary representation and limited computational requirements,
computing the descriptor directly from pixel-level comparisons. This makes them
an attractive solution to many modern applications, especially for mobile plat-
forms where both compute and memory resources are limited.
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Table 1. Overview of the basic properties of the binary descriptors

Descriptor Detector Rotation Invariant Scale Invariant

BRIEF Any No No

ORB FAST Yes No

BRISK AGAST Yes Yes

3 Survey of Binary Descriptors

Recent works have focused on providing methods to directly compute binary de-
scriptors from local image patches. We survey these proposed techniques below.

Common Principles: In our analysis, we found that all of the recent binary
descriptors possess the same following properties:

– the descriptor is built from a set of pairwise intensity comparisons
– each bit in the descriptor is the result of exactly one comparison
– the sampling pattern is fixed (except for possible scale and rotation)
– Hamming distance is used as a similarity measure

While the binary descriptors use these basic principles, each adds its own unique
properties to achieve its design goals. We detail the differences between the
binary descriptors (Table 1 highlights their key properties).
BRIEF (Binary Robust Independent Elementary Features) are pro-
posed by Calonder et al. [6], and are the simplest of the methods. It uses a
sampling pattern consisting of 128, 256, or 512 comparisons (equating to 128,
256, or 512 bits), with sample points selected randomly from an isotropic Gaus-
sian distribution centered at the feature location (see Figure 2(a). Calonder et
al. [6] use the SURF detector negating their computational gain, but BRIEF can
be coupled with any other detector. Calonder et al. suggest to use BRIEF with
the efficient CenSurE detector [26]. Given its simple construction and compact
storage, BRIEF has the lowest compute and storage requirements.
ORB (Oriented FAST and Rotated BRIEF) was proposed by Rublee et
al. [7], and overcomes the lack of rotation invariance of BRIEF. ORB computes a
local orientation through the use of an intensity centroid [27], which is a weighted
averaging of pixel intensities in the local patch assumed not be coincident with
the center of the feature. The orientation is the vector between the feature loca-
tion and the centroid. While this may seem unstable, it is competitive with the
single orientation assignment employed in SIFT [28].

The sampling pattern employed in ORB uses 256 pairwise intensity compar-
isons, but in contrast to BRIEF, is constructed via machine learning, maximizing
the descriptor’s variance and minimizing the correlation under various orienta-
tion changes (see Figure 2(b) for an example).

When using this descriptor, ORB proposes to use the FAST corner detector
[29], noting that FAST does not provide a good measure of cornerness and lacks
robustness to multi-scale features. In order to combat this, the Harris [30] corner
measure is applied at each keypoint location to provide non-maximal suppression
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Fig. 3. Example images from the evaluation datasets. From left to right, the datasets
are Leuven, Boat, fountain-P11, Herz-Jesu-P8, Reichstag, and Berliner-Dom.

within the image, and a limited image scale pyramid is used to detect keypoints
of varying sizes. However, no non-maxima suppression is used between the scales,
resulting in potential duplicate detections within different pyramid levels.
BRISK (Binary Robust Invariant Scalable Keypoints) was proposed by
Leutenegger et al. [8] and provides both scale and rotation invariance. In order
to compute the feature locations, it uses the AGAST corner detector [31], which
improves FAST by increasing speed while maintaining the same detection perfor-
mance. For scale invariance, BRISK detects keypoints in a scale-space pyramid,
performing non-maxima suppression and interpolation across all scales.

To describe the features, the authors turn away from the random or learned
patterns of BRIEF and ORB, and instead use a symmetric pattern. Sample
points are positioned in concentric circles surrounding the feature, with each
sample point representing a Gaussian blurring of its surrounding pixels. The
standard deviation of this blurring is increased with the distance from the center
of the feature (see Figure 2(c) for an illustration). This may seem similar to the
DAISY descriptor [20], but the authors point out that DAISY was designed
specifically for dense matching, and captures more information than is needed
for keypoint description.

To determine orientation, several long-distance sample point comparisons (e.g.
on opposite sides of the descriptor pattern) are used. For each long-distance
comparison, the vector displacement between the sample points is stored and
weighted by the relative difference in intensity. Then, these weighted vectors
are averaged to determine the dominant gradient direction of the patch. The
sampling pattern is then scaled and rotated, and the descriptor is built up of
512 short-distance sample point comparisons (e.g. a sample point and its closest
neighbors) representing the local gradients and shape within the patch.

Overall, BRISK requires significantly more computation and slightly more
storage space than either BRIEF or ORB. This places it in the higher compute,
higher storage region of the binary descriptor category of our taxonomy.

4 Evaluation

We analyze the performance characteristics of the three recent binary descriptors
(BRIEF, ORB, and BRISK), while using state-of-the-art full parametrization
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descriptors (SIFT and SURF [19]) as a baseline. Besides traditional descriptor
performance metrics, we also evaluate the correlation between the detector and
descriptor with respect to matching performance. This has received some atten-
tion in the past [32], but is important to investigate given its significant practi-
cal implications in descriptor post-processing methods (for instance, RANSAC-
based estimations [33]). One of the contributions of our comparative analysis
is that we test the performance of the studied descriptors with a diverse set of
keypoint detectors (Harris, MSER, FAST, ORB, BRISK, SURF, and SIFT).

Datasets: To ensure our work is compatible with existing analyses, we use
existing datasets to evaluate the performance of the binary descriptors under
various transformations. Specifically, we relied on the Oxford dataset provided
and described by Mikolajczyk et al. [9] (for evaluations of the effects of image
blur, exposure, JPEG compression, combined scale and rotation, and perspec-
tive transformations of planar geometry), and the fountain-P11 and Herz-Jesu-
P8 datasets from Strecha et al. [12] (for evaluating the effects of perspective
transformations of non-planar geometry). Moreover, we complement the exist-
ing datasets with our own to test for pure rotation, pure scaling, illumination
changes, and the challenges posed by photo collection datasets such as white
balance, auto-exposure, image quality, etc. These various datasets also enable us
to isolate the effects of each transformation, or in some cases pairs of transfor-
mations.

Performance Metrics: Mikolajczyk et al. [9,10] propose to use the metrics
of recall, repeatability, and 1 – precision. They describe useful characteristics of
a feature’s performance, and are widely used as standard measures. However,
there are some subtleties to a feature’s performance that are missed by only
using these measures. For instance, they fail to capture information about the
spatial distribution of the features, as well as the frequency of candidate matches.

We wanted to not only use a comprehensive set of metrics that allow us
to embed our analysis into the existing body of work, but we also aimed at
evaluating parameters relevant to algorithms relying on the features. As such,
we propose a set a five different metrics: putative match ratio, precision, matching
score, recall, and entropy.

The putative match ratio, Putative Match Ratio = #Putative Matches /
#Features, addresses the selectivity of the descriptor and describes what frac-
tion of the detected features will be initially identified as a match (though poten-
tially incorrect). We define a putative match to be a single pairing of keypoints,
where a keypoint cannot be matched to more than one other. Keypoints that
are outside of the bounds of the second image (once they are transformed based
on the true camera positioning) are not counted.

The value of the putative match ratio is directly influenced by the match-
ing criteria. A less restrictive matching criteria will generate a higher putative
match ratio, whereas a criteria that is too restrictive will discard potentially
valid matches and will decrease the putative match ratio. Another influenc-
ing factor is the distinctiveness of the descriptors under consideration. If many
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descriptors are highly similar (have small distance values between them), this
creates confusion in the matching criteria and can drive down the putative match
ratio.

The precision, Precision = #Correct Matches / #Putative Matches [10]),
defines the number of correct matches out of the set of putative matches (the
inlier ratio). In this equation, the number of correct matches are those putative
matches that are geometrically verified based on the known camera positions.
The ratio has significant performance consequences for robust estimation mod-
ules that use feature matches, such as RANSAC [33], where execution times in-
crease exponentially as the inlier ratio decreases. It is also influenced by many of
the same factors that influenced the putative match ratio, but the consequences
are different. For instance, while a less restrictive matching criteria will increase
the putative match ratio, it will decrease the precision as a higher number of
incorrect matches will be generated. Additionally, highly similar descriptors,
which drove down the putative match ratio, will also decrease the precision, as
confusion in the matching step will also generate a higher number of incorrect
matches.

The matching score, Matching Score = #Correct Matches / #Features
[10] is equivalent to the multiplication of the putative match ratio and precision.
It describes the number of initial features that will result in correct matches, and
like the previous two metrics, the matching score can be influenced by indistinct
descriptors and the matching criteria. Overall, the matching score describes how
well the descriptor is performing and is influenced by the descriptor’s robustness
to transformations present in the data.

Recall, Recall = #Correct Matches / #Correspondences (defined in [10]),
quantifies how many of the possible correct matches were actually found. The
correspondences are the matches that should have been identified given the key-
point locations in both images. While this value is dependent on the detector’s
ability to generate correspondences, recall shares the same influences as the
matching score. For instance, a low recall could mean that the descriptors are
indistinct, the matching criterion is too strict, or the data is too complex.

The final metric, entropy (used by Zitnick and Ramnath [34]) addresses the
influence of the detector on a descriptor. The purpose of this metric is to compute
the amount of spread or randomness in the spatial distribution of the keypoints
in the image. This is important as too little spread increases the possibility of
confusion in the descriptor matching phase due to keypoint clusters.

To compute the entropy, we create a 2D evenly-spaced binning of the feature
points. Each point’s contribution to a given bin is weighted by a Gaussian relative
to its distance to the bin’s center. A bin b(p) at position p = (x, y) equals
b(p) = 1

Z

∑
m∈M G(‖p−m‖) where m is a keypoint in the full set M of detected

keypoints, and G is a Gaussian. A constant of 1/Z is added so that the sum of all
bins evaluates to 1. This binning allows us to compute the entropy: Entropy =∑

p −b(p) log b(p). Even though entropy is dataset dependent, the relative value
of the entropy is useful in identifying detector spatial distribution behaviors such
as non-random clustering of keypoint detections (as seen in Figure 4).
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We can now quantify how many features were reported as matching (putative
match ratio), how many actually matched (precision and matching score), how
many were matched out of those possible (recall), and the spread of the detector’s
keypoints (entropy). Next, we will describe our evaluation framework.

Test Setup: For each dataset, we detect and describe features in each of its
images, and use the features in the first image as a reference when matching to
all further images in the set. In order to test the detector/descriptor pairings,
we had to address several subtleties. For instance, there was a mismatch when
a scale invariant descriptor was combined with a detector that was not scale
invariant, and vice versa. Additionally, combining detectors and descriptors that
were both scale invariant was not trivial, as they typically each use their own
method of defining what a feature scale is. In both cases, we simply discarded the
scale information, and computed the descriptor at the native image resolution.

In addition, we addressed mismatches in rotation invariance between various
detectors and descriptors. We solved this by isolating the orientation computa-
tion to the description phase, so that the descriptor overrides any orientation
provided by the detector. We next discuss the matching criteria that we use.

Match Criteria: To compute putative matches, we adopt a ratio style test that
has proven to be effective [11], [14]. This test compares the ratio of distances
between the two best matches for a given keypoint, and rejects the match if the
ratio is above a threshold of 0.8 for all tests (the same used in [14]).

To determine the correctness of a match, we use ground truth data to warp
keypoints from the first image of the dataset into all remaining images. The
warping is achieved either by homographies (provided in the Oxford dataset [9]
as well as our non-photo-collection supplemental datasets) or by using ground
truth 3D geometry (provided in the Strecha dataset [12]) to project the points
into the known cameras. In both cases, match points that are within 2.5 pixels of
each other are assumed to be correct. This threshold was chosen empirically as it
provided a good balance between pixel-level corner detection (such as Harris [30]
and FAST [29]), and the centers of blobs in blob-style detectors (SIFT [14] and
SURF [19]). For the photo-collection datasets, we use known camera positions to
project points from the first image as epipolar lines in the other images, and once
again apply a 2.5 pixel distance threshold test. While we could have used the
three camera arrangement test described by Moreels and Perona [11], we opted
for the single epipolar line approach as it allowed us to compare only a given
pair of images, without the need for a third image to provide correspondences
and closely mimics typical uses of features.

5 Analysis and Results

In our analysis we tested the individual effects of various geometric and photo-
metric transformations, as well as several of their combinations to gain a better
and more complete understanding of the detectors’ and descriptors’ performance.
Figure 5 provides the results for all tested dataset categories. The individual
values making up each measurement (# putative matches, features, etc.) were
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Table 2. This table provides statistics for the detectors and descriptors used in our
evaluation. For storage, we used a 32 byte BRIEF, and the values in parenthesis for
SURF and SIFT are the number of required bytes if the descriptors are stored as floats.
For the timings, values in parenthesis are GPU implementations ([15], [16], or our own).

Detector/Descriptor BRIEF ORB BRISK SURF SIFT Harris MSER FAST

Avg # Features n/a 13427 7771 3766 4788 2543 693 8166

Detector Entropy n/a 12.10 12.33 12.26 12.34 11.84 10.74 12.52

Detector ms/image n/a 17 43 377(19) 572(25) 78(4.7) 117 2.7

Descriptor µs/feature 4.4(0.4) 4.8 12.9 143(6.6) 314(19) n/a n/a n/a

Storage bytes/feature 16,32,64 32 64 64(256) 128(512) n/a n/a n/a

Fig. 4. This figure shows the distribution of keypoints (for two datasets) from the
Harris (left image in the pair) and FAST (right image in the pair) corner detectors.
The FAST detector not only detects more keypoints, but has a higher entropy for its
detections.

first summed across each pairwise comparison, and one final average was com-
puted.

Detector Performance: As mentioned before, entropy can be used as a mea-
sure of the randomness of the keypoint locations, penalizing detectors that spa-
tially cluster their keypoints. In order to compute the entropy across all of the
datasets, we perform a weighted average of the individual entropies to account
for the different contributions of the datasets (results are in Table 2).

We see several notable attributes. First, FAST has the highest entropy, which
can be attributed to its good spread of points and the shear number of detections
that occurred. A higher number of keypoints does not necessarily correspond to
increased entropy, but it can help if more spatial bins in the entropy equation are
populated. The second group of detectors, SIFT, BRISK, and SURF, have the
next highest entropies, which is expected as Zitnick’s and Ramnath’s evaluation
[34] noted that a blob-style detector (difference of Gaussian) have high entropies.

On the other end, Harris and MSER reported the lowest two entropy values.
The primary reason for this is a lower average number of keypoint detections
(especially in the case of MSER), which leads to less spatial bins being popu-
lated. While these detectors are still very viable, it is important to note their
lower detection rates and potential differences in keypoint distribution (one such
example is provided in Figure 4).

Descriptor Performance: One of the most compelling motivations for the
use of binary descriptors is their efficiency and compactness. Table 2 shows
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the timing results for the various detectors and descriptors that we used in
our system. The implementations for ORB and BRISK were obtained from the
authors, while all others came from OpenCV 2.3 [35]. The code was run on
a computer with an Intel Xeon 2.67GHz processor, 12GB of RAM, NVIDIA
GTX 285, and Microsoft Windows 7. From the results, we can see that the
binary descriptors (and many of their paired detectors) are an order of magnitude
faster than the SURF or SIFT alternatives. For mobile devices, while the overall
timings would change, a speedup would still be realized as the binary descriptors
are algorithmically more efficient. Table 2 also lists the storage requirements for
the descriptors. In some cases, the binary descriptors can be constructed such
that they are on par with efficient SURF representations, but overall, binary
descriptors reduce storage to a half or to a quarter. We are assuming that the
real value parameterization descriptors are stored in a quantized form (1 byte
per dimension). If instead they are stored as floating-point values, the storage
savings of binary features are even more significant.

Figure 5 shows the results for our evaluation of detector and descriptor pair-
ings. Upon a close inspection, several interesting conclusions become apparent.

Non-geometric Transforms: Non-geometric transforms consist of those that
are image-capture dependent, and do not rely on the viewpoint (e.g. blur, JPEG
compression, exposure, and illumination). Challenges in these datasets involve
less-distinct image gradients and changes to the relative difference between pixels
due to compression or lighting change.

Upon inspecting the results, BRIEF’s performance is very favorable. It out-
performs ORB and BRISK in many of the categories (even when compared to
SURF or SIFT), though the precision is noticeably lower than ORB or BRISK.
The key insight to BRIEF’s good performance is that it has a fixed pattern
(no scale or rotation invariance), and is designed to accurately represent the
underlying gradients of an image patch (which are stable for monotonic color
transformations). In regard to the lower precision, as we mentioned before, the
precision is decreased when the matching criteria are either less restrictive, or the
features are not distinct enough. We enforced the same matching criteria for each
descriptor, hence performance differences are due to the lack of distinctiveness.
The pattern used by ORB is specifically trained to maximize distinctiveness, and
BRISK’s descriptor is much more complex (larger number of samples with each
sample being a comparison of blurred pixels), which allows it to be much more
certain of the matches it generates. Therefore, it is not surprising that BRIEF’s
precision would suffer slightly compared to ORB or BRISK.

For the choice of detector, both SURF and Harris perform well under these
non-geometric transformations. The key is that both are very repeatable in these
images. SURF (being a blob detector) does well for the blur dataset, as the
smoothing of the gradients negatively impacts corner detectors like Harris. SIFT
(also being a blob detector) does not do as well as the accuracy of its keypoint
detections decreases as the scale of the blob increases. This is an artifact of the
downsampling in the image pyramid, where SURF overcomes this by applying
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larger filters at the native resolution. For the non-blurred datasets, Harris does
well because high gradient change still exists at corners under color changes.

Affine Image Transforms: The affine image transforms that we used in our
testing consist of image plane rotation and scaling. Overall, SIFT was the best,
but ORB and BRISK still performed well. As is expected, BRIEF performs
poorly under large rotation or scale change compared to the other descriptors
(as it is not designed to handle those effects). For pure scale change, ORB is
better than BRIEF although there is no rotation change in the image. This can
be attributed to the limited scale space used by the ORB detector, allowing it
to detect FAST corners at several scales. However, of all the binary descriptors,
BRISK performs the best, as it is scale invariant.

For pure rotations, the ORB detector/descriptor combination performs better
than the BRISK detector/descriptor. However, the FAST detector paired with
BRISK is a top performer (as well as the Harris detector paired with ORB),
competing on the same level as SIFT. The insight to this result is that both
FAST and Harris are not scale invariant, and excel because there is no scale
change in the images. The better performances of BRISK and ORB when paired
with other detectors are unexpected, but only help to highlight the importance
of considering various combinations when deciding on a detector and descriptor.

Finally, when analyzing combined scale and rotation changes, BRISK takes
the lead of the binary descriptors. However, SIFT and SURF have competitive
matching scores, but significantly higher recalls. This difference in matching score
and recall speaks to the performance of the detectors. They detected almost the
same percentage of correct matches (the matching score), SURF and SIFT’s
number of correspondences must have been lower in order for their recall to
be higher. This means that for basic scale and rotation combinations, BRISK’s
detector is more repeatable than SURF or SIFT’s.

Turning our attention back to BRIEF, one way to overcome BRIEF’s sensitiv-
ity to rotation when computing on mobile devices is via inertial sensor-aligned
features [36] which aligns a descriptor with the current gravity direction of the
mobile device (assuming that the device has an accelerometer), allowing for re-
peatable detections of the same feature as the device changes orientation.

Perspective Transforms are the result of changes in viewpoint. The biggest
issues faced in these sets of images are occlusions due to depth edges, as well as
perspective warping. For binary descriptors, BRIEF surprisingly has a slight lead
in recall and matching score over ORB and BRISK, given its limited complexity.
However, in most of the perspective evaluation datasets, there is no significant
change in scale, and the orientation of the images are the same. This is not the
case in the photo-collection datasets, which include a higher variety of feature
scales. Even then, BRIEF still takes the lead over the other binary descriptors.
So, even though there is considerable viewpoint change throughout all of the
perspective datasets, the upright nature of all of the images allows the fixed
orientation of BRIEF to excel.
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Putative Match Ratio
BF OB BK SF ST

H 25 11 11

MR 19 10 9

FT 23 10 11

OB 13 10 8

BK 20 9 9

SF 31 15 12 15

ST 19 8 9 10

Precision
BF OB BK SF ST

H 67 78 84

MR 65 71 69

FT 68 72 85

OB 70 78 87

BK 67 77 73

SF 72 82 79 71

ST 63 76 76 73

Matching Score
BF OB BK SF ST

H 17 8 9

MR 12 7 6

FT 15 7 9

OB 9 8 7

BK 13 7 6

SF 22 12 9 11

ST 12 6 7 7

Recall
BF OB BK SF ST

H 44 22 24

MR 40 22 19

FT 39 10 24

OB 19 16 12

BK 31 9 14

SF 55 29 22 28

ST 38 18 18 24

(a)

Putative Match Ratio
BF OB BK SF ST

H 68 54 51

MR 43 31 29

FT 50 33 35

OB 35 36 30

BK 50 35 33

SF 59 43 30 47

ST 35 23 28 29

Precision
BF OB BK SF ST

H 95 97 97

MR 83 88 86

FT 91 96 97

OB 95 97 98

BK 93 97 94

SF 92 96 94 90

ST 85 93 94 91

Matching Score
BF OB BK SF ST

H 64 53 49

MR 36 27 25

FT 46 32 34

OB 34 35 30

BK 46 34 32

SF 54 41 28 42

ST 30 22 27 26

Recall
BF OB BK SF ST

H 80 64 63

MR 53 40 33

FT 69 47 54

OB 47 49 35

BK 59 43 41

SF 74 56 39 61

ST 55 40 40 55

(b)

Putative Match Ratio
BF OB BK SF ST

H 39 28 26

MR 45 31 30

FT 53 38 39

OB 36 36 35

BK 44 32 28

SF 43 31 25 30

ST 34 25 29 34

Precision
BF OB BK SF ST

H 80 91 93

MR 76 76 72

FT 84 93 95

OB 89 93 96

BK 81 90 87

SF 80 88 82 78

ST 76 88 87 86

Matching Score
BF OB BK SF ST

H 31 26 24

MR 34 24 22

FT 44 36 37

OB 32 34 34

BK 36 29 24

SF 34 28 21 23

ST 26 22 25 29

Recall
BF OB BK SF ST

H 63 51 52

MR 63 44 39

FT 65 51 58

OB 51 53 45

BK 55 43 37

SF 73 58 44 53

ST 58 48 48 74

(c)

Putative Match Ratio
BF OB BK SF ST

H 13 8 7

MR 15 10 9

FT 11 7 7

OB 6 5 5

BK 9 6 6

SF 10 5 4 8

ST 7 5 6 10

Precision
BF OB BK SF ST

H 64 76 82

MR 52 41 36

FT 71 76 84

OB 78 80 89

BK 69 73 79

SF 57 60 57 37

ST 49 54 61 55

Matching Score
BF OB BK SF ST

H 8 6 5

MR 8 4 3

FT 7 5 6

OB 4 4 4

BK 6 4 4

SF 6 3 2 3

ST 4 3 3 6

Recall
BF OB BK SF ST

H 32 23 22

MR 47 24 18

FT 25 17 21

OB 13 13 11

BK 20 14 15

SF 35 21 15 19

ST 24 17 18 40

(d)

Putative Match Ratio
BF OB BK SF ST

H 19 10 12

MR 10 8 9

FT 15 7 12

OB 5 21 5

BK 11 7 40

SF 15 8 8 56

ST 14 7 10 57

Precision
BF OB BK SF ST

H 80 80 87

MR 69 48 53

FT 77 73 89

OB 79 92 91

BK 74 73 78

SF 75 67 70 81

ST 76 72 82 96

Matching Score
BF OB BK SF ST

H 15 8 11

MR 7 4 5

FT 11 6 10

OB 4 19 5

BK 8 5 31

SF 11 5 6 45

ST 11 5 8 54

Recall
BF OB BK SF ST

H 24 13 17

MR 10 6 7

FT 19 9 17

OB 6 29 6

BK 11 7 42

SF 17 8 8 69

ST 16 7 10 80

(e)

Putative Match Ratio
BF OB BK SF ST

H 3 69 64

MR 5 44 42

FT 3 62 68

OB 1 62 58

BK 2 52 51

SF 4 44 38 43

ST 3 41 50 58

Precision
BF OB BK SF ST

H 14 93 88

MR 18 90 78

FT 15 91 93

OB 12 86 94

BK 12 89 86

SF 13 88 79 82

ST 13 93 84 95

Matching Score
BF OB BK SF ST

H 0 64 56

MR 1 40 33

FT 0 57 64

OB 0 53 55

BK 0 46 44

SF 0 38 30 35

ST 0 38 42 55

Recall
BF OB BK SF ST

H 0 68 62

MR 1 50 39

FT 0 63 74

OB 0 62 53

BK 0 52 48

SF 1 57 45 55

ST 1 50 48 79

(f)

Putative Match Ratio
BF OB BK SF ST

H 4 6 6

MR 6 6 5

FT 2 4 6

OB 1 8 4

BK 2 4 13

SF 3 4 4 14

ST 3 4 4 13

Precision
BF OB BK SF ST

H 34 65 81

MR 19 40 35

FT 23 64 83

OB 20 83 86

BK 27 68 84

SF 20 48 58 68

ST 18 55 72 84

Matching Score
BF OB BK SF ST

H 1 4 5

MR 1 2 2

FT 1 3 5

OB 0 7 3

BK 0 3 11

SF 1 2 2 9

ST 0 2 3 11

Recall
BF OB BK SF ST

H 2 6 9

MR 5 9 8

FT 1 4 7

OB 0 8 3

BK 1 3 14

SF 1 5 6 25

ST 1 5 7 30

(g)

Putative Match Ratio
BF OB BK SF ST

H 29 14 17

MR 15 9 9

FT 25 13 17

OB 12 15 13

BK 19 11 13

SF 18 10 10 15

ST 18 9 13 24

Precision
BF OB BK SF ST

H 88 87 90

MR 76 68 70

FT 84 85 89

OB 89 88 92

BK 86 83 87

SF 78 73 75 73

ST 83 80 81 86

Matching Score
BF OB BK SF ST

H 26 13 15

MR 11 6 6

FT 21 11 15

OB 11 13 12

BK 16 9 11

SF 14 7 7 11

ST 15 7 11 20

Recall
BF OB BK SF ST

H 36 18 22

MR 25 13 14

FT 28 8 21

OB 13 15 12

BK 22 7 15

SF 32 17 17 25

ST 28 14 17 42

(h)

Putative Match Ratio
BF OB BK SF ST

H 22 13 14

MR 17 11 11

FT 21 12 15

OB 9 13 9

BK 15 9 15

SF 16 9 9 18

ST 15 9 13 22

Precision
BF OB BK SF ST

H 60 66 73

MR 55 39 37

FT 73 73 81

OB 77 80 85

BK 63 62 72

SF 58 54 58 61

ST 69 68 75 84

Matching Score
BF OB BK SF ST

H 13 9 10

MR 9 4 4

FT 15 9 12

OB 7 10 8

BK 9 5 11

SF 10 5 5 11

ST 11 6 10 19

Recall
BF OB BK SF ST

H 30 19 23

MR 32 15 13

FT 30 17 24

OB 12 18 11

BK 19 10 20

SF 28 14 15 33

ST 24 13 18 44

(i)

Putative Match Ratio
BF OB BK SF ST

H 11 6 6

MR 11 7 7

FT 9 5 5

OB 4 6 4

BK 7 4 7

SF 10 6 5 11

ST 8 4 5 11

Precision
BF OB BK SF ST

H 81 78 84

MR 76 72 63

FT 84 77 86

OB 87 84 88

BK 83 77 86

SF 79 73 75 79

ST 76 71 75 83

Matching Score
BF OB BK SF ST

H 9 5 5

MR 8 5 4

FT 7 4 5

OB 4 5 3

BK 6 3 6

SF 8 4 4 8

ST 6 3 4 10

Recall
BF OB BK SF ST

H 8 5 5

MR 8 5 4

FT 7 4 5

OB 4 5 3

BK 6 3 5

SF 8 4 4 9

ST 6 3 3 10

(j)

Fig. 5. Results for (a) blur, (b) JPEG compression, (c) exposure, (d) day-to-night
illumination, (e) scale, (f) rotation, (g) scale and rotation, (h) perspective with planar
scene, (i) perspective with non-planar scene, (j) photo-collection. Rows are detectors,
columns are descriptors: H=Harris, MR=MSER, FT=FAST, BF=BRIEF, OB=ORB,
BK=BRISK, SF=SURF, ST=SIFT. Values are in percent (blue 0%, red 100%).
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Additionally, it is interesting to note that the Harris corner detector does
well when coupled with BRIEF. Harris is not scale invariant, but the nature
of corners is that there will be high gradient change even under perspective
distortion allowing for repeatable detections.

Another observation is that the precision of BRISK is once again higher than
its binary competitors. This points to the descriptiveness of BRISK, allowing it
to achieve very high quality matches. Once again, however, SIFT provides the
best performance, and proves to be the most robust to changes in perspective.

6 Conclusion

From the analysis of our results, we highlight several pertinent observations,
each of which was driven by the metrics used in our evaluation. Moreover, by
proposing and integrating a comprehensive set of measures and datasets, we are
able to gain insights into the various factors that influence a feature’s behavior.

First, consider BRIEF’s performance under non-geometric and perspective
transforms. In both cases, BRIEF excelled because the images contained similar
scales and orientations. This highlights the importance of leveraging any addi-
tional knowledge about the data being processed (e.g. similar scales/orientations
or orientation from inertial sensors) as it impacts the performance of the binary
descriptors. The key idea is that a binary descriptor will suffer in performance
when it takes into account a transform not present in the data.

As a result of our evaluation of detector/descriptor pairings, we observed
that the best performance did not always correspond to the original authors’
recommendations. This leads us to our second observation that by considering
the effect a detector has on a descriptor, we enable the educated assignment of
detectors to descriptors depending on the expected properties of the data.

Finally, for all datasets except the non-geometric transforms, SIFT was the
best. Although achieving a gain in matching rate, some applications using SIFT
may unnecessarily forfeit the significant speed gains made possible by binary
descriptors (Table 2). This performance tradeoff makes binary features a viable
choice whenever the application provides robustness against additional outliers.
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