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ABSTRACT Eight docking programs (DOCK,
FLEXX, FRED, GLIDE, GOLD, SLIDE, SURFLEX,
and QXP) that can be used for either single-ligand
docking or database screening have been compared
for their propensity to recover the X-ray pose of 100
small-molecular-weight ligands, and for their capac-
ity to discriminate known inhibitors of an enzyme
(thymidine kinase) from randomly chosen “drug-
like” molecules. Interestingly, both properties are
found to be correlated, since the tools showing the
best docking accuracy (GLIDE, GOLD, and SUR-
FLEX) are also the most successful in ranking known
inhibitors in a virtual screening experiment. More-
over, the current study pinpoints some physicochem-
ical descriptors of either the ligand or its cognate
protein-binding site that generally lead to docking/
scoring inaccuracies. Proteins 2004;57:225–242.
© 2004 Wiley-Liss, Inc.
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INTRODUCTION

Docking small-molecular-weight ligands to therapeu-
tically relevant macromolecules has become a major
computational method for predicting protein–ligand in-
teractions and guide lead optimization.1 From the pio-
neering work of Kuntz et al.,2 numerous docking pro-
grams based on very different physicochemical
approximations have been reported.3,4 Since any dock-
ing tool needs to combine a docking engine with a
fast-scoring function, the recent literature is full of
benchmarks addressing three possible issues: (1) the
capability of a docking algorithm to reproduce the X-ray
pose of selected small-molecular-weight ligands5–24; (2)
the propensity of fast-scoring functions to predict bind-
ing free energies from the best-scored pose10,24 –34;
and (3) the discrimination of known binders from ran-
domly chosen molecules in virtual screening experi-
ments.19,20,23–26,29,35–37 However, analyzing all these
data for a comparative analysis of available docking
tools is very difficult. First, many tools are not available.
Second, independent studies assessing the relative per-
formance of docking algorithms/scoring functions are
still rare26,35,36 and focus on the use of few methods.
Third, the quality judgment may vary depending on the
examined properties (quality of the top-ranked pose,
quality of all plausible poses, binding free energy predic-
tion, and virtual screening utility). Fourth, most dock-

ing programs assume approximation levels that can
vary considerably3 and lead, for example, to very inhomo-
geneous docking paces ranging from few seconds to few
hours. Last, many docking programs have been cali-
brated and validated on small protein–ligand data sets.
Detailed benchmarks (�100 Protein Data Bank (PDB)–
ligand complexes) are only reported for a few docking
tools.12,14,16,18,24,38

The purpose of the current study is to provide indepen-
dent benchmarks for widely used docking programs. As it
would be almost impossible to consider all of them, docking
programs were selected based on three criteria: (1) avail-
ability, (2) use of conventional file formats as input (e.g.,
pdb, sdf, mol2), and (3) easy application to virtual screen-
ing (database docking). Eight tools were finally selected
(DOCK,15 FLEXX,39 FRED (Open Eye Scientific Software;
Santa Fe, NM), GLIDE (L. Schrödinger, Portland, OR),
GOLD,24 SLIDE,19 SURFLEX,20 and QXP8) and examined
under comparable conditions (see Material and Methods
section) for their ability to reproduce the X-ray pose of 100
small-molecular-weight ligands18 and their capability to
discriminate by protein-based virtual screening true inhibi-
tors of an enzyme of known X-ray structure (thymidine
kinase) from randomly chosen “drug-like” molecules. For
achieving a fair comparison, all programs were here
considered using settings allowing fast screening (�4
min/ligand).

MATERIAL AND METHODS
Docking
Setting up a data set of 100 protein–ligand
complexes

The crystal structure of 100 protein–ligand complexes18

from the PDB40 were used to generate a separate set of
coordinates for the whole protein, its ligand, and the
corresponding active site. Unless specified below, the input
conformation of the ligand was directly extracted from the
X-ray structure. No energy minimization of the ligand was
performed. The protein active site was defined as the
collection of amino acids for which at least one atom is
nearer than 6.5 Å to any nonhydrogen atom of the bound
ligand. Important metal ions and cofactors were included
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in binding sites. Except for 5 entries (1aaq, 1dbj, 1dwd,
1lna, and 4phv) all crystallographic water molecules were
removed from the active site. Hydrogen atoms were added
using SYBYL 6.9 (TRIPOS Associates; St. Louis, MO)
standard geometries. In order to accommodate the input
requirement of the 8 docking programs used, coordinates
were saved in several formats; protein files were stored in
pdb,40 mol2 (TRIPOS Associates), and mae (L. Schröd-
inger) formats; ligand files were saved in pdb, mol2, mae,
and sd (MDL Information Systems; San Leandro, CA)
formats. File format conversions were achieved using
UNITY4.4 (TRIPOS Associates), except for the mae file
format, which was obtained using Schrödinger’s Maestro
interface.

DOCK4.0, FLEXX1.11, and GOLD2.0 docking

DOCK, FLEXX, and GOLD calculations were performed
as previously described.18 For each ligand, the 30 best
scored poses were kept.

FRED1.1 docking

FRED requires a set of input conformers for each ligand.
The conformers were generated by OMEGA (Open Eye
Scientific Software) and stored in a single binary file.
Modifications applied to the default settings of OMEGA
were the following: The maximum number of output
conformers was set to 500 (GP_NUM_OUTPUT_CONFS);
the upper bound relative to the global minimum was set to
3 kcal/mol (GP_ENERGY WINDOW); and the root-mean-
square deviation (RMSD) value below which two conforma-
tions are considered to be the similar was set to 0.8 Å
(GP_RMS_CUTOFF). In addition, the maximum number
of rotatable bonds in the molecule was raised to 25
(GP_MAX_ROTORS) in order to generate conformers for
all ligands of our data set (the most flexible ligand contains
24 rotatable bonds as defined by OMEGA).

FRED docking roughly consists of 2 steps: shape fitting
and optimization. During shape fitting, the ligand is
placed into a 0.5-Å-resolution grid box encompassing all
active-site atoms (including hydrogens) using a smooth
Gaussian potential.21 A series of three optimization filters
is then processed, which consists of (1) refining the posi-
tion of hydroxyl hydrogen atoms of the ligand, (2) rigid
body optimization, and (3) optimization of the ligand pose
in the dihedral angle space. In the optimization step, 4
scoring functions are available: Gaussian shape scoring,21

ChemScore,41 PLP,5 and ScreenScore.29 Preliminary dock-
ing trials induced us to select ChemScore for the 3
optimization filters.

GLIDE2.0 docking

GLIDE calculations were performed with Impact ver-
sion v2.0 (L. Schrödinger). The grid generation step re-
quires mae input files of both ligand and active site,
including hydrogen atoms. The protein charged groups
that were neither located in the ligand-binding pocket nor
involved in salt bridges were neutralized using the Schröd-
inger pprep script. The center of the grid enclosing box was
defined by the center of the bound ligand as described in

the original PDB entry. The enclosing box dimensions,
which are automatically deduced from the ligand size, fit
the entire active site. For the docking step, the size of
bounding box for placing the ligand center was set to 12 Å.
A scaling factor of 0.9 was applied to van der Waals radii of
ligand atoms.42 No further modifications were applied to
the default settings. The GlideScore scoring function was
used to select 30 poses for each ligand.

SLIDE2.0 docking

SLIDE looks for chemical and geometrical similarity
between the ligand and a binding-site template that
defines points for favorable interactions with the protein
surface atoms.19,43 It handles the mol2 file of the ligand
and the PDB file of the target active site (without hydro-
gens). Note that none of the active-site residues were
truncated, thereby allowing side-chain rotations for in-
duced-fit modeling. Unbiased construction of the template
in the dense mode of interaction points generation
(Grid_spacing 0.5 Å, Hbonding_point_density dense and
Clustering_threshold � 3 Å) yields about 100–150 points.
The SlideScore empirical function19 was used to generate
30 solutions for each docked ligand.

SURFLEX1.1 docking

The SURFLEX docking algorithm20 uses an idealized
active site called a protomol.6,44 The protomol was built
from the hydrogen-containing protein mol2 file. The con-
struction was based on protein residues that constitute the
active site (see above definition) using parameters tuned to
produced a small and buried docking target (proto_
thresh � 0.5 and proto_bloat � 0). Docking of the ligand in
sd format was run using the “whole molecule” approach, a
maximum of 100 conformations per fragment in each stage
of the incremental construction process, and default set-
tings for all other parameters. Thirty poses were finally
saved for each ligand.

QXP docking

Docking was carried out using the MCDOCK conforma-
tional searching/energy minimization procedure of QXP
(flo01.11S8). Protein and ligand PDB coordinates were
used for single docking. Between 4 and 7 amino acids
(depending on the protein) lining the active site were
marked to define the binding cavity. Free movements of
both ligand- and protein-marked residues were allowed.
The ligand was subjected to 30 cycles of Monte Carlo
conformational searching and energy minimization. For
each ligand, the 25 lowest energy conformations were
finally saved.

RMSD calculations

The RMSDs have been calculated over heavy atoms of 2
different conformations of a same molecule. In order not to
overestimate RMSD values, symmetry operators have
been included in the calculation routine to interchange
equivalent atoms belonging to symmetrical groups (e.g.,
carboxylate or phosphate oxygens).18 From here on, the
“best pose” is defined as the docking solution that is the
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nearest to the experimental binding mode, whereas the
“top pose” is defined as the docking solution that is ranked
first.

Virtual Screening
Compounds library

The library comprises 10 known inhibitors of the HSV-1
thymidine kinase (TK), as well as 990 “drug-like” mol-
ecules, as previously described.26 Three-dimensional (3D)
input coordinates of the 1000 ligands were generated from
a 2D sd file using Concord (TRIPOS Associates) and stored
in mol2 format. For GLIDE, the compound library was
converted to Schrödinger’s mae format using Maestro
without energy refinement. For QXP, the multimol2 file
was converted into a 3D sd format using UNITY (TRIPOS
Associates). Last, a multiconformer OMEGA library was
produced for FRED screening, as previously described.

Protein target

Protein target coordinates were extracted from the PDB
entry corresponding to the crystal structure of the TK
enzyme in complex with deoxythymidine (PDB code: 1kim).
As previously described,26 all water molecules were re-
moved from the active site. The active site (see above
definition) contains 16 amino acids. File modifications
necessary for the 8 docking programs were performed as
described in the previous section.

Docking parameters

The docking parameters used were those specified above.
It should be noted that the SURFLEX output (top-scoring
poses) was postprocessed to filter out ligands showing a
protein penetration value (pen score) above a defined
threshold (�3 or �6, see text).

RESULTS

Eight docking programs, namely, DOCK, FLEXX, FRED,
GLIDE, GOLD, SLIDE, SURFLEX, and QXP, have been
extensively tested in order to evaluate their potency in
drug discovery applications. Docking results are discussed
in the light of the 3 major issues in the application of
docking programs to virtual screening: docking accuracy,
ranking accuracy, and speed. These criteria were assessed
on a data set of 100 diverse protein–ligand complexes from
the PDB. The ability of the scoring function to reliably
rank potential hits was also evaluated by screening against
the TK target a library containing 10 true TK inhibitors
and 990 randomly chosen drug-like compounds.

Docking and Ranking Accuracy
Data set description

The X-ray structure of 100 selected protein–ligand com-
plexes follow the 2 following criteria: high resolution (�3
Å) and well-defined atomic positions of the ligand (tempera-
ture factors below 40 Å2). Thus, the X-ray pose is consid-
ered as the bioactive one and can be further used as the
reference to evaluate computed conformations. A total of
94 proteins and 97 ligands compose the data set. The
chemical diversity of ligands has been previously as-

sessed18 by the analysis of several physicochemical descrip-
tors (molecular weight, number of rotatable bonds, num-
ber of H-bond donors and acceptors, MlogP, and polar
surface area). By examining the descriptors, it appears
that almost all ligands are “drug-like.”45 Ligands have a
molecular weight ranging from 88 to 730 and occupy a
protein cavity whose volume is comprised between 300 and
3510 Å3. Plotting the molecular weight of the ligand versus
the volume of the corresponding protein cavity clearly
shows that these two features are mutually related [Fig.
1(A)]. Similarly, an obvious correlation is observed be-
tween ligand size and conformational freedom [Fig. 1(B)].
Both the size of the protein and the conformational flexibil-
ity of the ligand will be further used to classify binding
sites and discuss docking performances in that respect (see
below). Since docking is usually based on not only shape
complementary but also favorable ligand–receptor interac-
tions, docking results are also examined with regard to the
polar surface area of the ligand. Special attention will be
paid to hydrophobic ligands, as well as very polar ligands
[Fig. 1(C)].

Docking accuracy

For the 8 docking tools, we identified the best pose out of
30 possible solutions. The ability to predict the correct
binding of a ligand into its active site was thus evaluated
by comparing the best pose and the experimentally deter-
mined solution. Docking was considered successful if the
best pose was closer than a given threshold from the X-ray
solution. Figure 2(A) shows that at a 1 Å RMSD cutoff,
docking is successful for 61–63% of the cases using GLIDE,
GOLD, or QXP. At this cutoff, FLEXX and SURFLEX only
achieve successful docking in 48% and 54% of the cases,
respectively. DOCK, FRED, and SLIDE perform signifi-
cantly worse, exhibiting success rates of 29–38%. Similar
discrepancies occur up to an RMSD threshold of 2 Å, which
is usually considered the upper limit for drug discovery.18

In a first group, GLIDE, GOLD, SURFLEX, and QXP
placed about 80–90% of the ligands of the data set within
2.0 Å of the X-ray pose. FLEXX and FRED were considered
successful in 66% and 62% of the cases, respectively. Last,
DOCK and SLIDE performed poorly in locating only about
50% of the ligands within the 2 Å RMSD threshold.

Ranking accuracy

The performance of the 8 programs on the 100-complex
data set in ranking the diverse poses of a single ligand in
the target binding site was estimated by comparing the
top-ranked pose with the experimentally determined solu-
tion [Fig. 2(B)]. Again, GLIDE, GOLD, and SURFLEX
clearly outperformed DOCK, FRED, and SLIDE. FLEXX
performance is comparable to that of the three former
programs, whereas for QXP, performance is significantly
worse in ranking than in docking. At a 2 Å RMSD cutoff,
FLEXX, GLIDE, GOLD, and SURFLEX succeed in dock-
ing about 50–55% of the ligands, whereas the success rate
of DOCK, FRED, SLIDE, and QXP does not exceed 40%.
The latter inspection is, however, unable to identify the
cause of ranking inaccuracy (insufficient conformational
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sampling, inaccurate scoring function). To identify true
scoring failures, we next looked at the percentage of
PDB entries for which docking predictions within 2 Å
from the X-ray pose exist but are never ranked first
[Fig. 2(C)]. True scoring errors were mainly observed
using QXP, FRED, and to a lesser extent SLIDE, whose
scoring functions have clear difficulties discriminating
accurate from inexact poses. For other tools, only 25–
30% of correctly predicted poses were inaccurately
ranked [Fig. 2(C)].

Docking/scoring performance as a function of
ligand input coordinates for FRED, GLIDE, SLIDE,
and QXP

DOCK, GOLD, and FLEXX are widely used docking
programs whose performance has already been exten-
sively tested.7,15,18,24,39 Benchmarks recently became avail-
able for SURFLEX.20 Its docking and pose recognition
accuracy were evaluated on 81 protein–ligand complexes
using 10 different ligand-input conformations. Results are
comparable to those of the present study, suggesting that

Fig. 1. Description of the PDB data set (100
high-resolution protein–ligand complexes). Lin-
ear fit curves are displayed on the three graphs.
(A) Protein cavity volume versus ligand molecu-
lar weight. The volume of the binding site cavity
was determined using SURFNET46 with a grid
resolution of 0.8 Å and radius for gap spheres
between 1 and 4 Å. (B) Molecular weight versus
number of rotatable bonds, counted according
to SYBYL, of the ligands. Five highly flexible
ligands (PDB codes: 1aaq, 1apt, 1eed, 1poc,
and 1rne) are enclosed. (C) Molecular weight
versus polar surface area of the ligands. Small
hydrophobic, medium-sized hydrophobic, and
very polar ligands are enclosed in classes 1, 2,
and 3, respectively.
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the ligand-input conformation has little effect on docking
success when using this program. Therefore, the current
analysis only focuses on docking tools (FRED, GLIDE,
SLIDE, and QXP) for which too few data are available to

unambiguously assess docking performance as a function
of ligand-input coordinates.

FRED rigid docking requires a preselection of suitable
conformers for each ligand. The conformational ensemble
was herein generated by OMEGA. OMEGA sampling has
previously been shown to select a conformation similar to
that of the X-ray input when using appropriate parame-
ters47 (a low-energy cutoff to discard high energy conforma-
tions, a low RMSD value below which two conformations
are considered to be similar, and a maximum of 500–1000
output conformations). Indeed, using the X-ray structure
of the ligand as input, OMEGA was able to propose at least
one conformation closer than 2 Å from the protein-bound
X-ray conformation for 99% of our 100 ligands. At lower
thresholds (1.0 and 0.5 Å), the percentage of ligands for
which at least one bioactive-like conformation has been
generated decreases to 77% and 39%, respectively. To
check whether OMEGA conformers are adequate for effi-
cient FRED docking, 2 independent runs were carried out:
(1) docking a conformational ensemble generated from
X-ray coordinates, and (2) docking a conformation en-
semble generated from a randomly defined conformation.
Docking performances of both runs are quite comparable
[Fig. 3(A,B)], suggesting that the OMEGA–FRED combina-
tion is insensitive to the input conformation of the ligand.

Fig. 4. Enrichment in thymidine kinase inhibitors. The cumulative
percentage of known actives recovered by virtual screening is indicated
as a function of the top-scoring fraction of the database selected for
generating a hit list.

Fig. 2. Docking of 100 ligands to their cognate protein X-ray structure.
Cumulative percentage of complexes as a function of the RMSD from the X-ray
pose. (A) Docking accuracy: RMSD in Å of the best pose (nearest to the
experimental binding mode) from the experimental solution. (B) Scoring accu-
racy: RMSD in Å of the top pose (best scored solution) from the experimental
solution. Current plots have been obtained considering the X-ray pose as input
conformation of the ligand to dock. Using an arbitrary input ligand conformation
produces quite substantial different results for SLIDE and QXP (see Fig. 3).
(C) True scoring failures: percentage of PDB entries for which docking
predictions within 2 Å from the X-ray pose exist but are never ranked first are
plotted for different docking programs. Numbers in bars indicate the absolute
number of PDB entries for which a scoring failure has been detected.
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Fig. 3. Sensitivity of docking tools to ligand input coordinates. Cumulative percentage of complexes as a function of the RMSD from the X-ray pose
for docking runs using as input either the X-ray pose (dotted line) or a randomly chosen ligand conformation obtained using the TRIPOS randconf script:
(solid line) with FRED combined with OMEGA (A,B), SLIDE (C,D), GLIDE (E,F), and QXP (G,H). For QXP, the randomly chosen conformation was
replaced by an altered X-ray pose (rotation by 180° along its main axis).
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GLIDE and SLIDE sample conformational space of the
ligand during docking. For this purpose, an incremental
construction method is implemented in both docking algo-
rithms. Nevertheless, the approaches used to treat posi-
tions and conformations of core regions and end “rotamer
groups” differ. In GLIDE, core fragment poses are first
clustered and then anchored into the binding site. Then,
the position and orientation of end “rotamer groups” are
selected by a series of topological and energetical filters.
The best binding mode is finally identified by thoroughly
exploring the active site using flexible ligand minimization
and Monte Carlo sampling. In SLIDE,19,43 molecular
fragments are reassembled once the core fragment has
been anchored in the active site, using the geometry of the
input conformation. Rotatable bonds of the ligand and of
protein side-chains are modified whether or not intermo-
lecular bumps occur. The dependence of GLIDE and
SLIDE docking performance on the ligand input coordi-
nates was evaluated by comparing, for each program,
results of two different runs: (1) starting from the X-ray
conformation, and (2) starting from a randomly generated
conformation. As shown in Figure 3(C, D), SLIDE was
found to be very sensitive to the ligand input conformation,
as its docking accuracy significantly decreases when start-
ing from a randomly defined conformation. By contrast,
changing the starting coordinates of the ligand does not
alter the overall performance of GLIDE [Fig. 3(E,F)].

To simulate ligand flexibility, QXP uses random Monte
Carlo (MC) moves on dihedral space combined with energy
minimization during the template fitting procedure.8 In
order to achieve a docking pace comparable to that of other
tools, the number of MC cycles was herein restricted to 30.
Starting from X-ray coordinates of the ligand, QXP pre-
dicts a top and best pose within 2 Å RMSD from the
experimental pose in 37% and 92% of cases, respectively.
However, a simple rotation of the X-ray pose by 180° along
its main axis to generate alternative input coordinates
yields much poorer results [Fig. 3(G, H)], demonstrating
that QXP is very sensitive to the input conformation of the
ligand.

Virtual Screening of a Compound Database

The virtual screening utility of 8 docking tools was tested
by using the X-ray structure of HSV-1 TK as a target and a
database of 990 randomly chosen drug-like molecules seeded
with 10 known TK inhibitors. TK is a difficult target for
protein-based virtual screening because its binding site is
delimited by a very flexible loop amenable to induced-fit upon
ligand binding.48 Conformations of few side-chains vary
depending on the bound ligand, and in some cases, water
molecules are involved in protein–ligand interactions. More-
over, the affinity of most ligands for the target is low (in the
micromolar range). The TK conformation used for screening
was that of the crystal structure of the deoxythymidine-
bound enzyme (PDB code: 1kim).

The percentage of true hits retrieved in increasing
fractions of the starting database whose compounds have
been ranked by the docking score is displayed in Figure 4
(see also Table I). Considering the top 5% of binders,
programs may be classified as follows: (1) the very efficient
one, SURFLEX (8 true hits among 50 compounds); (2) the
good ones, namely, GLIDE, GOLD and FLEXX (5, 4, and 4
true hits, respectively); and (3) the less efficient ones,
namely, QXP, DOCK, FRED, and SLIDE (2, 1, 0, and 0
true hits, respectively). Retrieving all TK inhibitors embed-
ded in the full database would require the selection of the
top 10% of scorers for both GOLD and SURFLEX, and even
more for FLEXX and GLIDE (20–27% of top scorers,
respectively). Using a hit list generated from the predicted
top 5% of scorers, which seems reasonable with respect to
recent virtual screening reports,49,50 FLEXX, GLIDE,
GOLD, and especially SURFLEX are thus the methods of
choice for the current target.

Out of the 10 true TK ligands seeded in the library,26 7
are pyrimidine analogs, whereas 3 compounds share a
larger purine scaffold. Among the 4 most successful dock-
ing tools, GOLD and FLEXX provide better ranks for
pyrimidine derivatives. The opposite propensity is ob-
served for GLIDE and to a small extent for SURFLEX.
Addressing the question of docking accuracy, it appears
that pyrimidines are generally better docked than purines,
suggesting that scores assigned to larger molecules (here,

TABLE I. Description of Hit Lists generated by 8 Docking Tools on the Thymidine Kinase Example
A hit list is generated from the top-scoring compounds selected at a given threshold.

Top 2.5 % Top 5% Top 10%

Hit Ratea Yieldb Hit Rate Yield Hit Rate Yield

DOCK 0 0 2 10 3 30
FLEXX 8 20 8 40 8 80
FRED 0 0 0 0 2 20
GLIDE 8 20 10 50 6 60
GOLD 4 10 8 40 10 100
SLIDE 0 0 0 0 0 0
SURFLEXc 16 40 16 80 10 100
QXP 0 0 4 20 2 20
aHit rate: (AH/TH) � 100
bYield: (AH/A) � 100, where TH is the total number of compounds in the hit list, AH the number of true hits in the hit list, and A the total number
of true hits in the library.
cFigures reported for SURFLEX were obtained by using a protein penetration threshold value of �6.
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purines) by GLIDE and SURFLEX tend to be overesti-
mated (data not shown).

Docking Times

Although we tried to set up docking parameters in order
to achieve a fair comparison of docking programs, espe-
cially in terms of docking speed, analyzing the average
docking times for our 100-ligand data set clearly indicates
significant differences (Table II). The faster docking tool by
far is FRED (mean docking time of 18 s). Thus, this tool is
particularly attractive for ultrahigh-throughput docking
(�1 million compounds). DOCK and FLEXX are also
remarkably fast, since they are able to dock a ligand in less
than 1 min. SLIDE, QXP, SURFLEX, and DOCK can be
considered equally fast for the present data set (mean
docking time about 2 min). However, even within this
group, the range of observed CPU times varies consider-
ably. GOLD achieves a remarkable narrow distribution of
CPU docking times (55–479 s) and is much less sensitive
to the ligand flexibility (which is the main factor influenc-
ing the docking pace) than SURFLEX (CPU times from 9 s
to 1460 s), whose speed is much more dependent on the
number of rotatable bonds of the ligand to dock. Last,
GLIDE was significantly slower than other docking tools,
with an average docking time of about 4 min.

Thus, the most accurate docking tools (SURFLEX,
GLIDE, and GOLD) identified in the current study are also
the slowest. It should be noted that some programs (e.g.,
DOCK, GLIDE) first require significant CPU time to
compute grid energy values. These timings were not
considered here, although precomputing grid energies is
known to hasten scoring in the docking step.

DISCUSSION
Comparison With Published Benchmarks

To check whether the current settings of the described
docking tools have dramatically altered their accuracy, we
first compared on common PDB entries our results with
previously described data. We already discussed in a
previous report18 that current docking data are very
similar to existing benchmarks for DOCK, FLEXX, and

GOLD. The comparison thus focuses on the other five
tools.

Schulz-Gasch and Stahl42 have analyzed 7 different
targets using FRED (in combination with OMEGA),
FLEXX, and GLIDE over a data set of 7528 noise com-
pounds combined with data sets containing multiple active
compounds (from 36 to 128). Since all screenings gave
satisfactory hit rates, the authors concluded that both
GLIDE and FRED are efficient docking tools, with FRED
being especially attractive considering its high speed.
Among the 7 tested proteins is thrombin (PDB code:
1dwd), which has also been used in the present study to
assess docking and scoring accuracy. In the above-
mentioned study, virtual screening against thrombin us-
ing FRED in combination with the ChemScore scoring
function was able to recover 55% and 75% of known actives
among the top 5% and 10% of scorers, respectively. Similar
values were obtained when using GLIDE in combination
with GlideScore. Though docking accuracy was not thor-
oughly investigated, the authors have verified that poses
were “reasonably predicted.” Results of our docking trials
of NAPAP [N-�-(2-napthyl-sulfonyl-glyceryl)-para-amino-
alanyl-piperidine] into �-thrombin using FRED and GLIDE
are reported in Table III. Whatever the ligand input
conformation, FRED gives satisfactory results, with
RMSDs of docked poses from X-ray conformation between
1.76 and 2.14 Å. Using GLIDE, poses close to the experi-
mentally determined solution could be found, yet the
program had difficulties ranking one of them as a top-
scoring solution, especially in terms of whether the ligand
input conformation differs from the X-ray conformation.

Thrombin was also chosen as test case by SLIDE’s
authors19 in docking known cocrystallized ligands into the
apostructure of the enzyme and in virtual screening of a
library containing 15,000 random compounds and known
thrombin inhibitors. The thrombin-binding site, which
consists of a narrow lipophilic pocket with an aspartic acid
(Asp189) at its floor, was represented by 100–150 interact-
ing points generated using an unbiased approach. Points
within 5 Å of carboxylic oxygens of Asp189 were selected as
key points, so that any docking must include a match to
one of these points, in order to ensure that docked mol-
ecules will at least partially occupy the targeted site.
Thirty-six of the 42 thrombin ligands were successfully
docked into the apostructure, provided that both ligand
and protein flexibility were modeled.19 More especially,
docking NAPAP (PDB code: 1dwd) generated a best pose,
with a 0.44 Å RMSD from the X-ray solution. In the
present study, docking of NAPAP into thrombin was
performed using an unbiased template with no key points
selected. It also gave satisfactory results when using X-ray
coordinates as input (Table III). However, Slide could not
correctly pose NAPAP starting from a random conforma-
tion. The virtual screening against thrombin published by
Zavodszky et al.19 produced high hit rates (about 64% of
known ligands among the top-scoring 6.7% of molecules).
These data have to be interpreted with care, since input
coordinates for thrombin ligands were taken directly from
thrombin–ligand complexes available in the PDB. Our

TABLE II. Docking Times for 8 Programs (Single-
Processor Docking Time in Seconds, on a 270 MHz SGI

R12K Processor Running IRIX6.5)

Program Averagea Minimumb Maximumc

FREDd 18 0.1 193
DOCK 46 1 667
FLEXX 67 2 595
QXP 108 37 378
SLIDE 118 1 1743
SURFLEX 135 9 1460
GOLD 137 55 479
GLIDE 234 9 2825
aCPU time averaged over our data set of 100 PDB entries.
bSmallest observed CPU time in the PDB data set.
cHighest observed CPU time in the PDB data set.
dIncludes CPU time required by OMEGA for generating conformers of
the ligand to dock.
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data suggest that using random conformations for true
actives is likely to dramatically decrease SLIDE’s perfor-
mance. It also hints that SLIDE would be more efficient in
biased site point mode (i.e., making use of protein cavity–
derived pharmacophoric points to screen out compounds
that do not have an appropriate chemical functional group
likely to intact with these key points of the active site).
Such biases can, however, be applied only to well-defined
protein cavities for which key amino acids have already
been identified. It is therefore questionable whether SLIDE
would be able to retrieve hits from a database for less
defined active sites (e.g., orphan target).

QXP was evaluated using X-ray data for 12 protein–
ligand complexes, 4 of which were common to our 100-
complex data set.8 Docking search was performed on
randomly distorted ligands that were then subjected to

100 cycles of MC simulation (default value). Resulting
RMSDs between retained docked poses and the X-ray
structure were always smaller than 2 Å (Table V). In the
present study, the number of MC cycles was limited to 30
to ensure fast screening. Unless the X-ray ligand coordi-
nates were used as input, the conformational search was
not long enough to allow the program to find a reliable
solution for any of the tested examples (1hfc, 1stp, 4dfr,
and 4phv).

SURFLEX docking benchmarks have recently been de-
scribed for a set of 81 high-resolution protein–ligand
complexes,20 67 of which are common to the data set
investigated herein. Although different settings were used
in both studies (docking of 10 energy-minimized random
input conformations in the original study, docking a single
nonminimized conformation in the current protocol), con-

TABLE IV. Docking 4 Ligands Into Their Cognate Proteins Using QXP

Input
conformation

McMartin and Bohacek8 Present Study

Topa Bestb Bestc Topd Bestc Topd Bestc

“Distorted X-ray” X-ray Inverted X-raye

4phv 0.19 0.16 1.1 0.58 0.58 6.58 5.18
4dfr 0.74 0.30 0.96 0.42 0.42 9.59 8.53
1hfc 1.54 0.09 0.37 5.69 0.56 6.82 6.82
1stp 0.74 0.08 0.54 6.21 0.98 10.57 2.55
aRMSD in Å of the top pose from the energy-minimized X-ray solution.
bRMSD in Å of the best pose from the energy-minimized the X-ray solution.
cRMSD in Å of the best pose from the X-ray solution.
dRMSD in Å of the top pose from the X-ray solution.
eRotation of the X-ray pose by 180° along its main axis.

TABLE III. Docking of NAPAP Into �-Thrombin Using FRED, GLIDE, and SLIDE

OMEGA parameters Schulz-Gash and Stahl42 Present Study

GP_ENERGY WINDOW 5 3
GP_RMS_CUTOFF 0.8 0.8
GP_NUM_OUTPUT_CONFS 400 500

FRED docking Schulz-Gash and Stahl42 Present Study

Input conformation Random X-ray Random
Scoring function ChemScore, PLP, or ScreenScore ChemScore ChemScore
RMSD topa “Reasonably predicted” 2.14 2.14
RMSD bestb 1.93 2.14
Omega best RMSDc 1.16 1.16

GLIDE docking Schulz-Gash and Stahl42 Present Study

Input conformation Random X-ray Random
RMSD top “Reasonably predicted” 2.54 8.55
RMSD best 1.14 1.08

SLIDE docking Zavodszky et al.19 Present Study

Input conformation X-ray X-ray Random
RMSD top n.a.d 1.49 5.61
RMSD best 0.44 1.10 5.61
aRMSD in Å of the top pose from the experimental solution.
bRMSD in Å of the best pose from the experimental solution.
cRMSD in Å of the best conformation generated by OMEGA from the experimental solution. The crystallographic water molecule was considered
as part of the active site in FRED and GLIDE.
dNot available.
The PDB entry 1dwd was used, except for SLIDE docking by Zavodszky et al.,19 where 1vrl coordinates have been used.
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sidering the best RMSD pose yields quite comparable
success rates at a 2 Å RMSD threshold (Table V). More
discrepancies occur if the best scored pose is considered.
The better performance of SURFLEX in Jain’s study20 is
mainly explained by a more exhaustive sampling of the
ligand’s conformational space. Since SURFLEX is a deter-
ministic method, quite similar results are obtained on the
TK screening example (Table V), with slight differences
mainly explained by the use of different computer plat-
forms (PC/Windows2000 vs SGI/IRIX). It should be noted
that the use of a higher bump tolerance (protein penetra-
tion threshold equal to �6 instead of �3, as in Jain’s
original study) to allow the scoring of all TK inhibitors
significantly decreased SURFLEX performance on this
peculiar dataset (Table V). However, it still led to the best
enrichment rates with regard to other docking tools exam-
ined in the current study (Fig. 4).

Docking Performance as a Function of Steric and
Electrostatic Features of the Ligand and of the
Protein Cavity

On the basis of the above conclusions, SLIDE and
QXP performances have not been further analyzed,
since parameter settings that would suit virtual screen-
ing purposes do not allow efficient docking. The top-
ranked pose and the experimentally determined solu-
tion were compared with respect to the dimensions of
the protein active site [Fig. 5(A), upper graph]. Four
programs, namely, DOCK, FLEXX, GOLD, and SUR-
FLEX, perform well on small binding sites (volumes
below 700 Å3), and a steady decrease of accuracy is
observed upon increase of the protein cavity volume
from 300 to 2000 Å3. Conversely, FRED and GLIDE
achieve best performance for medium-size binding sites

(700 –1000 Å3 and 1000 –1500 Å3). Remarkably, FRED
and SURFLEX still predict reliable ligand poses in very
large binding sites (�2000 Å3). More especially, SUR-
FLEX is the only docking tool able to properly handle
the location of CGP38560 into the 3500 Å3 cavity of
human renin (which corresponds to the largest binding
site of the data set; PDB code: 1rne). Similar tendencies
are observed by comparing the best pose to the X-ray
solution [Fig. 5(A), lower graph]. It is noteworthy that
GOLD and GLIDE also succeed in placing ligands in
large protein cavities (�1500 Å3), yet the programs are
not able to properly rank solutions (see the differences
between statistics generated from the best and the top
pose). On average, the GLIDE empirical scoring func-
tion (GlideScore), as well as that of FLEXX and GOLD,
does not efficiently rank poses into large binding pock-
ets. A plausible explanation of this observation resides
in the strong directional terms utilized by the latter
scoring functions for describing H-bonding. Thus, the
scoring function tends to overestimate buried ligand–
protein electrostatic interactions, which leads to a poor
docking of partially buried but flexible ligands.

Docking performances evaluated as a function of ligand
flexibility [Fig. 5(B)] provide evidence for docking accuracy
being inversely proportional to the conformational free-
dom of the ligand for DOCK, FLEXX and GOLD. This
effect is much less pronounced for FRED, GLIDE, and
SURFLEX. The latter tool is remarkably successful in
docking highly flexible ligands [Fig. 5(B, C)].

To test whether docking performances depend on the
shape of the active site, docking data were analyzed as a
function of ligand burying. More than a third of the
investigated active sites consist of closed cavities, enabling
complete ligand burying. For 50 active sites, the protein-
bound ligand buried surface ranges from 70% to 90%. In 11
complexes, cavities are more open and bound ligands are
exposed to solvent. Considering the percentage of best
poses docked closer than 2 Å from the X-ray solution using
FLEXX, GLIDE, GOLD, and SURFLEX (Fig. 6), it appears
that docking accuracy is generally improved upon experi-
mental ligand burying increases from 38% to 100%. Note
that the DOCK shape fitting protocol yields a good success
rate for docking ligands in opened cavities. As opposed to
the other 5 docking tools, FRED accuracy does not de-
crease when the ligand is partially buried in the active site
(Fig. 6). It is likely that both the good quality of OMEGA-
generated conformations and the soft Gaussian potential
used to smoothen van der Waals interactions account for
the latter observation.

As expected, the binding mode is mainly determined by
the overall shape of the binding pocket for nonpolar
ligands. As shown in Figure 7(A), DOCK, FRED, FLEXX,
GLIDE, GOLD, and SURFLEX all perform well in docking
small hydrophobic ligands. Upon increase of the size of
hydrophobic ligands [Fig. 7(B)], GOLD and SURFLEX
performances roughly remain unchanged, and FRED and
GLIDE are still efficient in predicting the ligand place-
ment (best pose), yet seldom succeed in ranking the best
pose first. Last, DOCK, as well as FLEXX, undergoes a

TABLE V. Comparison of SURFLEX Benchmarks for
Single-ligand and Database Docking

Jain20 Present
Study

Single-ligand dockinga

Success rate (best
RMSD)b

92.4 84.8

Success rate (best
score)c

78.8 65.2

Virtual screening (TK dataset)d

Penalty thresholde �3 �6 �3 �6
True positives, %f 32 16 28 16
False negatives, %g 0.3 0.6 0.3 0.6
aCommon set of 67 PDB entries.18,20

bPercentage of best poses closer than 2.0 Å from the X-ray pose.
cPercentage of top poses closer than 2.0 Å from the X-ray pose.
dData set of 1000 compounds comprising 10 true inhibitors and 990
randomly chosen “drug-like” molecules.26 Random molecules are
presumed to be inactive although not experimentally tested for
binding to TK.
eProtein penetration value.
fPercentage of actives in molecules selected by virtual screening (in
the top 2.5% scorers).
gPercentage of actives in molecules eliminated by virtual screening
(not present in the top 2.5% scorers).
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Fig. 5. Docking success rate as a function of
physicochemical properties of protein–ligand com-
plexes. (A) Percentage of successful docking at a 2
Å RMSD cutoff as a function of the volume of the
protein cavity; 5 subsets corresponding to increas-
ing volume intervals contain 29, 27, 26, 14, and 4
PDB entries, respectively. (B) Percentage of suc-
cessful docking as a function ligand flexibility; 5
subsets corresponding to increasing ligand flexibil-
ity contain 44, 31, 17, 3, and 5 members, respec-
tively. Rotatable bonds have been calculated using
the TRIPOS Sybyl Line Notation (sln) representa-
tion. (C) Docking of 5 highly flexible ligands (1aaq,
1apt, 1eed, 1poc, and 1rne) with more than 25
rotatable bonds. For each program, results for top
and best poses are displayed from left to right.
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little decay of both docking and ranking accuracy. Hence,
insofar as the conformational space to search is limited,
shape complementarity is taken into account by all dock-
ing algorithms studied herein. Increasing the size and
thus the conformational flexibility of the ligand leads to
some docking errors, probably because too few conforma-
tions have been scanned in the allowed CPU time that was
required (notably for FLEXX and DOCK), generating
ranking discrepancies.

For very polar ligands [Fig. 7(C)] requiring strong
hydrogen bonding to the receptor, DOCK shaped fitting
leads, as expected, to a rather poor accuracy. By contrast,
FRED, FLEXX, and SURFLEX docking gives satisfactory
results, superior to those obtained with GLIDE and GOLD,
which manage to achieve correct placement of hydrophilic
ligands into binding pockets yet produce bad ranking of
obtained poses [Fig. 7(C)]. The poorer behavior of GLIDE
and GOLD for the latter set of ligands is somehow surpris-
ing; most programs use a scoring function containing an
explicit H-bond term with a directional restraint.
GlideScore, the scoring function utilized by GLIDE, is
directly derived from ChemScore, the scoring function
used by FRED in its optimization step. Nevertheless, both
programs behave differently for the current set of highly
polar ligands. We have not a single and clear explanation
for this observation. As described in the next section, a
partial explanation may come from the structure of some
very hydrophilic ligands for which several H-bond donors/
acceptors are symmetrically distributed and thus lead to
inaccurate ranking of the near-native pose.

Systematic Docking Failures

About 10% of the 100 PDB entries led to systematic
docking errors (Table VI), whatever the docking pro-
gram. Failures were often due to insufficient conforma-
tional sampling for highly flexible ligands (e.g., 1rne,
1aaq, 1eed, 1glq, 2lic, and 1poc). Docking was also im-
paired by an open and shallow active site that binds to
a partially buried ligand (e.g., 1mrc, 1glq). Some entries
exhibit unusual binding mode and may be unsuitable
for the purpose of validating docking algorithms. This is
exemplified by 5 entries (1ghb, 8ghc, 1ive, 1lmo, and
2plv) for which significant clashes between protein and
ligand atoms occur in the X-ray structure.38 The exam-
ple relative to D-xylose isomerase represents a more
difficult case. Four entries in our data set (1xid, 1xie,
1did, and 1die) involve D-xylose isomerase. Cognate li-
gands are L-ascorbic acid, 1,5-dianhydrosorbitol,
5-dideoxy-2,5-imino-D-glucitol and 1-deoxy-nojirimycin
in 1xid, 1xie, 1did, and 1die entries, respectively [Fig.
8(A)]. They all are characterized by a very high ratio
between the number of H-bond donors/acceptors and the
number of carbon atoms. No satisfactory poses were
found for L-ascorbic acid, except using GOLD, whereas
the 3 other molecules are correctly placed in the en-
zyme-binding site by most programs. In the X-ray struc-
ture of the 4 complexes, the ligand does not fully occupy
the polar cavity of the protein but coordinates a Mn2�

ion (Mg2� in the 1did entry). The metal ion constitutes
a strong anchor in the binding site and thus facilitates

Fig. 6. Docking success rate as
a function of ligand burying. Percent-
age of successful dockings at a fixed
2 Å RMSD cutoff for the top and the
best poses are plotted for 4 ligand
subsets showing increasing receptor-
bound burial, as estimated by
SAVOL. Four subsets showing in-
creasing percentage of protein-
bound ligand burial contain 11, 22,
28, and 39 members, respectively.
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the docking. Indeed, it explains why ligands in 1did and
1die entries are generally accurately docked. In 1xid
and 1xid entries, the binding pocket selected for docking
contains a second Mn2� ion, whose coordination sphere
may be completed. As a consequence, significantly dif-
ferent poses of the ligand coordinating either one or
both metal ions resulted in favorable interactions with
the binding site, more especially for the 5-membered
ring of L-ascorbic acid [Fig. 8(B)].

Even if a docking program could easily find an accu-
rate pose for a ligand, accurate ranking sometimes re-
mains an issue (Table VI). Analyzing poses close to the
crystal structure but badly ranked suggests the follow-
ing observations:

1. Poses are generally inaccurately evaluated when no or
very few lipophilic interactions occur between the protein

and its ligand. In 2cmd, 4cts, 1tdb, 1did, and 1imb PDB
entries, ligands are very polar, and several of them can be
viewed as pseudosymmetrical molecules with regard to
H-bond acceptors/donors. Most scoring functions cannot
distinguish the X-ray pose from predicted solutions.

2. Similarly, good poses are poorly ranked when the
ligand makes no or very few electrostatic interactions
(H-bonds or salt bridges) with the protein. In 1acj, 2r07,
1icn, and 1epb PDB entries, ligands are all very hydro-
phobic. In the 1igj example, none of the H-bond acceptor/
donors of the ligand buried upon protein binding are
actually involved in intermolecular hydrogen bonding.
As the primary goal of most docking algorithms is to
favor energetically stable poses for which intermolecu-
lar H-bonds are optimized, such entries are usually
badly handled.

3. Scoring is also challenging for complexes whose X-ray

Fig. 7. Docking success rate as a function polar surface area of the ligand. Number of successful docking at
a fixed 2 Å RMSD cutoff for the top (left) and the best (right) poses are plotted ligand subsets of increasing
polarity (A, 10 small hydrophobic ligands; B, 7 medium-sized hydrophobic ligands; C, 7 very polar ligands).
Subsets refer to groups 1, 2, and 3, as described in Figure 1(C).
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TABLE VI. PDB Entries Leading to Frequent Docking Failures

PDB
entry Protein Ligand Main Cause of Failure

Unsuccessful dockingsa

1aaq HIV-1 protease Hydroxyethylene isostere Very flexible ligand
1rne Renin CGP38560 Very flexible ligand
1poc Phospholipase A2 1-O-octyl-2-heptylphosphonyl-SN-glycero-3-

phosphoenolamine
Very flexible ligand

1lic Adipocyte lipid-binding
protein

Hexadecanesulfonic acid Very flexible ligand

1eed Endothiapepsin Cyclohexyl renin inhibitor PD125754 Very flexible ligand
1eap Catalytic antibody 17E8 Phenyl [1-(1-succinylamino)pentyl]

phosphonate
Flexible ligand with symmetrical

distribution of apolar groups
1glq Glutathione S-transferase

yfyf
S-(p-nitrobenzyl) glutathione Partially buried ligand

1mer Immunoglobulin � light
chain

N-acetyl-L-His-D-Pro-Oh Open and shallow active site

1ghb �-Chymotrypsin N-acetyl D-Trp Short protein–ligand
intermolecular distances

1ive Neuraminidase N2 4-(acetylamino)-3-aminobenzoic acid Short protein–ligand
intermolecular distances

1lmo Mucopeptide N-
acetylmuramylhydrolase

Di-N-acetylglucosamine Short protein–ligand
intermolecular distances

2plv Poliovirus Myristic acid Short protein–ligand
intermolecular distances

8gch �-Chymotrypsin Gly-Ala-Trp Short protein–ligand
intermolecular distances

1xid D-Xylose isomerase L-ascorbic acid Metal coordination mismatch
(see Fig. 8)

Unsuccessful scoringb

2cmd Malate dehydrogenase Citric acid Pseudosymmetrical distribution
of H-bond donors/acceptors in
the ligand

4cts Citrate synthase Oxaloacetate ion Pseudosymmetrical distribution
of H-bond donors/acceptors in
the ligand

1imb Inositol monophosphatase L-myo-inositol-1-phosphate Pseudosymmetrical distribution
of H-bond donors/acceptors in
the ligand

1did D-Xylose isomerase 2,5-dideoxy-2,5-imino-D-glucitol Pseudosymmetrical distribution
of H-bond donors/acceptors in
the ligand

1tdb Thymidylate synthase 5-fluoro-2	-deoxyuridine-5	-monophosphate Solvent-accessible ligand
1acj Acetylcholinesterase Tacrine Hydrophobic ligand
1icn Fatty acid–binding protein Oleate Hydrophobic ligand
1ebp Retinoic acid–binding

protein
Retinoic acid Hydrophobic ligand

1igj Igg2A (
) antibody Fab
fragment

Digoxin Hydrophobic ligand

2r07 Rhinovirus 14 Antiviral agent WIN VII Hydrophobic ligand
1hfc Collagenase [(N-(2-hydroxymatemethylene-4-

methyl-pentoyl) phenylalanyl)]
Metal coordination mismatch

Methylamine
1hyt Thermolysin Benzylsuccinic acid Metal coordination mismatch
aNo more than 2 programs manage to successfully dock the ligand in its active site.
bSuccessful scoring for less than half of the programs that yield successful docking.
Only results produced by the 6 programs (DOCK, FLEXX, FRED, GLIDE, GOLD, and SURFLEX) were analyzed. Docking starting from X-ray
input coordinates is considered as successful when the RMSD of best pose from the X-ray structure is below 2 Å. Similarly, scoring is successful
when the RMSD of the top pose from the X-ray structure is below 2 Å.
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structure reveals a mismatch between hydrophobic/
electrostatic potentials of the ligand and those of the
active site. In this respect, the examples relative to the
complexes between a zinc-containing enzyme and a
ligand involved in the metal coordination are demonstra-
tive.

Most programs manage to predict an accurate pose of
the ligand, since the zinc ion prevents the placement of
the ligand in irrelevant regions of the binding pocket.
Though docking was generally accurate, ranking first
the best pose often failed for 1azm, 1cil, 1hfc, and 1hyt
zinc-containing PDB entries. Lipophilic moieties of the
ligand facing hydrophilic parts of the active site and
vice versa are observed in the three former PDB com-
plexes and could partially explain the scoring failure. In

addition, imperfections in the zinc coordination sphere
may contribute to the bad score. In the 1hyt crystal
structure, the ligand moiety involved in zinc coordina-
tion is a carboxylate but too close (less than 3 Å) to two
other carboxylate groups of the protein to be well scored
by an empirical scoring function. Since very close con-
tacts between protein and ligand atoms bearing the
same charge are penalized by most scoring functions,
such poses are difficult to recover.

Main Strengths and Weaknesses of Investigated
Docking Programs

Analyzing the above-described results enables us to
propose prioritization schemes for specific methods depend-
ing on the docking context (Table VII).

We have tested two types of deterministic approaches:
multiconfomer docking (FRED) and incremental construc-
tion (DOCK, FLEXX, GLIDE, SLIDE, and SURFLEX).
Though FRED failed to retrieve known TK inhibitors in a
virtual screening experiment, our docking data suggest
that this program may be successful for other targets [e.g.,
proteins with large cavities; recall Fig. 5(A)]. Actually,
most of docking failures with this program in our data set
of 100 PDB complexes were observed for entries whose
ligands are small, polar, and deeply buried in the protein
cavity (e.g., 6abp, 1aha). Most likely, the smooth Gaussian
function used during the shape-fitting step is not able to
predict the location of such polar ligands, since it accounts
only for shape in the primary docking step.

In the case of deterministic algorithms using an incre-
mental construction approach, SURFLEX and GLIDE
generally outperformed DOCK, FLEXX, and SLIDE, what-
ever the application (single-ligand docking, virtual screen-
ing). In the 3 latter programs, core and end rotamer groups
are treated separately during conformational search steps,
whereas in the 2 former programs, end rotamer groups are
carried along with the core fragment, thereby avoiding
inappropriate placement of the core fragment and subse-
quent protein–ligand interpenetration at the peripheral
fragments. Indeed, for DOCK and FLEXX, docking errors
are generally related to ligand flexibility (number of
rotatable bonds � 10) and the resulting numerous possibili-
ties of ligand fragmentation. It should be also noted that
DOCK, which used a shape-based docking engine, also has
difficulty finding an accurate pose for a ligands in a large
and open binding cavity. Regarding the high docking speed
of both programs, it is likely that the ligand flexibility
issue can be partly addressed by a more exhaustive
conformational sampling. GLIDE performances are in
part due to the above-mentioned possibility of scaling
down van der Waals radii of nonpolar atoms and the use of
additional filtering steps that help to discriminate good
from bad poses. After passing a series of steric and energy
filters, ligands undergo grid-based energy minimization
and MC sampling. SURFLEX robustness and reliability,
notably for docking flexible ligands in large binding sites,
may be explained by an efficient and original surface-
based similarity match between ligand atoms and receptor
hotspots.20,44 The binding pocket is first characterized by a

Fig. 8. Docking in D-xylose isomerase binding sites. (A) Ligands of the
four entries in our test set. Atoms involved in metal coordination as observed
in the X-ray structure of complexes are displayed in bold. (B) Overlay of
native (white) and SURFLEX best pose (black) for L-ascorbic acid bound to
1xid (green sticks). For the sake of clarity, the ligand is displayed using ball
and stick representation, whereas active site atoms are represented by
sticks. The two Mn�� ions are displayed as yellow balls.
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set of probes that represent potential interactions with the
protein; then both density of probes and surrounding
cavities are analyzed to select the most favorable area for
placing the core fragment of the ligand.

GOLD and QXP use stochastic methods (genetic algo-
rithm and MC simulated annealing, respectively) to ex-
plore ligand positions and conformations. GOLD achieves
accurate docking within a timeframe that suits virtual
screening purposes. By contrast, the time necessary for
QXP to achieve a thorough sampling of ligand poses and its
high sensitivity to input coordinates of the ligand make it
unusable for virtual screening applications.

CONCLUSIONS

Eight popular docking tools have been compared on
common data sets for both docking and virtual screening
accuracy. It is not our intention in the current study to
propose a hierarchy of available docking programs but to
notice advantages and drawbacks of selected tools in
different contexts. As a matter of fact, we made the choice
of examining docking tools from a virtual screening perspec-
tive, which means using settings compatible with fast
docking. Hence, we believe that speed is nowadays an
important aspect of computational drug discovery tech-
niques, as the computational chemist has to cope with the
throughput already reached by medicinal chemists and
biologists. Thus, benchmarks reported herein may signifi-
cantly differ from the peak performance that can be
reached by a docking program under optimal conditions.

Many previous reports have pointed out that the
docking performance of most docking tools is very much

dependent on the target, and that predicting which one
is the most suitable in a precise context is almost im-
possible.26,29,32,35,42 We even reported discrepancies be-
tween docking and screening accuracies,26 which is
rather frustrating in a structure-based screening ap-
proach. For the first time, this issue has been simulta-
neously addressed by comparing different tools on a
common protein–ligand data set (100 high-resolution
PDB entries) that is large enough to be statistically
relevant, and on a practical virtual screening applica-
tion. Interestingly, the docking tools (FLEXX, GLIDE,
GOLD, and SURFLEX) considered the most accurate in
terms of docking (predicting the X-ray pose) were also
the most successful in enriching a virtual hit list in
known inhibitors after screening the X-ray structure of
the cognate enzyme. This observation demonstrates
that the preparation of our data sets, as well as the
settings chosen for the different programs, is suffi-
ciently unbiased to ensure a fair comparison and draw
statistically reliable conclusions. However, it is impor-
tant to note that good docking accuracy is necessary but
not sufficient for accurate screening utility. Hence,
among the most accurate docking tools considered
herein (GLIDE, GOLD, and SURFLEX), there are still
significant differences in their propensity to enrich a
virtual hit list in true hits, as illustrated by our virtual
screening test. However, we acknowledge that several
virtual screening tests on different data sets and differ-
ent targets would be necessary to fully address this
issue. The current benchmarks can be used to prioritize

TABLE VII. Strengths and Weaknesses of Docking Programs According to Physicochemical Properties
of Protein–Ligand Complexesa

Program Strengths Weaknesses

DOCK Small binding sites Flexible ligands
Opened cavities Highly polar ligands
Small hydrophobic ligands

FLEXX Small binding sites Very flexible ligands
Small hydrophobic ligands

FRED Large binding sites Small, polar, buried ligands
Flexible ligands
Small hydrophobic ligands
High speed

GLIDE Flexible ligands Ranking very polar ligands
Small hydrophobic ligands Low speed

GOLD Small binding sites Ranking very polar ligands
Small hydrophobic ligands Ranking ligands in large cavities

SLIDE Side-chain flexibility Sensitivity to ligand input coordinates

SURFLEX Large and opened cavities Low speed for large ligands
Small binding sites
Very flexible ligands

QXP Optimizing known binding modes Sensitivity to ligand input coordinates
aSmall polar ligands are generally well docked by most programs. Thus, this group of ligands is not described here.
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the selection of specific docking tools depending on the
physicochemical properties of both the active site and
the ligand(s) to be investigated.

NOTE-IN-PROOF

The application of the SLIDE docking tool in this work
was carried out under conditions not currently recom-
mended by its developers. However, additional calcula-
tions performed at the recommended conditions do not
lead to significantly different results for SLIDE in compari-
son to the others evaluated herein.
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