
University of Central Florida University of Central Florida 

STARS STARS 

Faculty Bibliography 2000s Faculty Bibliography 

1-1-2002 

Comparative evaluation of protective coatings and focused ion Comparative evaluation of protective coatings and focused ion 

beam chemical vapor deposition processes beam chemical vapor deposition processes 

B. W. Kempshall 
University of Central Florida 

L. A. Giannuzzi 
University of Central Florida 

B. I. Prenitzer 

F. A. Stevie 

S. X. Da 

Find similar works at: https://stars.library.ucf.edu/facultybib2000 

University of Central Florida Libraries http://library.ucf.edu 

This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for 

inclusion in Faculty Bibliography 2000s by an authorized administrator of STARS. For more information, please 

contact STARS@ucf.edu. 

Recommended Citation Recommended Citation 
Kempshall, B. W.; Giannuzzi, L. A.; Prenitzer, B. I.; Stevie, F. A.; and Da, S. X., "Comparative evaluation of 
protective coatings and focused ion beam chemical vapor deposition processes" (2002). Faculty 
Bibliography 2000s. 3282. 
https://stars.library.ucf.edu/facultybib2000/3282 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/facultybib2000
https://stars.library.ucf.edu/facultybib
https://stars.library.ucf.edu/facultybib2000
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/facultybib2000/3282?utm_source=stars.library.ucf.edu%2Ffacultybib2000%2F3282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


Comparative evaluation of protective coatings and focused ion beam chemical vapor
deposition processes
B. W. Kempshall, L. A. Giannuzzi, B. I. Prenitzer, F. A. Stevie, and S. X. Da

Citation: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing,
Measurement, and Phenomena 20, 286 (2002); doi: 10.1116/1.1445165
View online: https://doi.org/10.1116/1.1445165
View Table of Contents: https://avs.scitation.org/toc/jvn/20/1
Published by the American Institute of Physics

ARTICLES YOU MAY BE INTERESTED IN

Preparation of transmission electron microscopy cross-section specimens using focused ion beam milling
Journal of Vacuum Science & Technology A 19, 2186 (2001); https://doi.org/10.1116/1.1378072

Focused ion beam induced deposition of platinum
Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena 8, 1826 (1990);
https://doi.org/10.1116/1.585167

High brightness inductively coupled plasma source for high current focused ion beam applications
Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing,
Measurement, and Phenomena 24, 2902 (2006); https://doi.org/10.1116/1.2366617

Comprehensive study of focused ion beam induced lateral damage in silicon by scanning probe microscopy
techniques
Journal of Vacuum Science & Technology B 28, 595 (2010); https://doi.org/10.1116/1.3431085

Focused ion beam induced deposition of platinum for repair processes
Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing,
Measurement, and Phenomena 9, 162 (1991); https://doi.org/10.1116/1.585279

Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition
Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing,
Measurement, and Phenomena 18, 3181 (2000); https://doi.org/10.1116/1.1319689

https://avs.scitation.org/author/Kempshall%2C+B+W
https://avs.scitation.org/author/Giannuzzi%2C+L+A
https://avs.scitation.org/author/Prenitzer%2C+B+I
https://avs.scitation.org/author/Stevie%2C+F+A
https://avs.scitation.org/author/da%2C+S+X
/loi/jvn
/loi/jvn
https://doi.org/10.1116/1.1445165
https://avs.scitation.org/toc/jvn/20/1
https://avs.scitation.org/publisher/
https://avs.scitation.org/doi/10.1116/1.1378072
https://doi.org/10.1116/1.1378072
https://avs.scitation.org/doi/10.1116/1.585167
https://doi.org/10.1116/1.585167
https://avs.scitation.org/doi/10.1116/1.2366617
https://doi.org/10.1116/1.2366617
https://avs.scitation.org/doi/10.1116/1.3431085
https://avs.scitation.org/doi/10.1116/1.3431085
https://doi.org/10.1116/1.3431085
https://avs.scitation.org/doi/10.1116/1.585279
https://doi.org/10.1116/1.585279
https://avs.scitation.org/doi/10.1116/1.1319689
https://doi.org/10.1116/1.1319689


Comparative evaluation of protective coatings and focused ion beam
chemical vapor deposition processes

B. W. Kempshalla) and L. A. Giannuzzi
Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida,
P.O. Box 162450, 4000 Central Florida Blvd., Orlando, Florida 32816-2450

B. I. Prenitzer and F. A. Stevie
Agere Systems (Cirent Semiconductor), 9333 S. John Young Parkway, Orlando, Florida 32819

S. X. Da
FEI Company, 7451 NW Evergreen Parkway, Hillsboro, Oregon 97124-5830

~Received 18 April 2001; accepted 26 November 2001!

Dual-beam instruments incorporate both an electron column and an ion column into a single
instrument, and therefore allow the chemical vapor deposition~CVD! process to be either ion- or
electron-beam assisted. Damage has been observed in the surface layers of specimens in which
ion-beam assisted CVD processes have been employed. Cross-section transmission electron
microscopy~TEM! has been used to compare~100! Si substrates on which Pt metal lines have been
grown by ion- and electron-beam assisted CVD processes. The micrographs show that a 30 keV
Ga1 ion beam, a 5 keV ion beam, and a 3 keV electron beam imparts 50 nm, 13 nm, and 3 nm of
damage to the Si substrate, respectively. In addition, Au–Pd and Cr sputter coatings were evaluated
for the prevention of ion-beam induced surface damage. TEM cross-section specimens revealed that
Cr sputter coatings. 30 nm in thickness are sufficient to protect the~100! Si surface from the 30
keV Ga1 ion beam while Au–Pd sputter coatings up to 70 nm in thickness may be discontinuous
and, therefore, will not protect surface regions from ion beam damage. ©2002 American Vacuum
Society. @DOI: 10.1116/1.1445165#

I. INTRODUCTION

Focused ion beam~FIB! instruments have become ex-
tremely useful as specimen preparation tools for transmission
electron microscopy~TEM!.1,2 More recently, the techniques
developed for TEM have been extended to include specimen
preparation for subsequent analysis in scanning electron mi-
croscopy, scanning transmission electron microscopy, sec-
ondary ion mass spectrometry, and scanning Auger
microscopy.3 The introduction of dual-beam FIB systems,
which include both an ion column and an electron column on
the same platform, has afforded increased versatility to the
FIB processes. The dual-beam instruments allow for the tra-
ditional FIB processes of imaging, milling, and chemical va-
por deposition~CVD! with the ion column as well as imag-
ing and CVD deposition with the electron column.

The ion column utilizes a finely focused ion beam from a
Ga1 liquid metal ion source to perform imaging, milling,
and CVD operations. The interaction of the finely focused
ion beam with the target material causes the ejection of sec-
ondary ions and secondary neutrals~which may be liberated
as atoms, molecules, or clusters! and results in milling of the
target material. The emitted secondary electrons or the sec-
ondary ions from the ion-beam–solid interaction may be uti-
lized for imaging. The ion-beam assisted CVD process in-
volves the introduction of organometallic gas molecules in
the vicinity of the surface of the target material while the ion
beam is rastered in a predefined pattern. The interaction be-

tween the ion beam and the adsorbed organometallic mol-
ecules on the surface of the target material results in the net
deposition of the metallic element~plus a considerable
amount of carbon and Ga! and the release of the volatile
carbon based gas molecules as outlined in the schematic
drawing shown in Fig. 1.4

The electron column on the dual-beam instrument can be
used for imaging, just as in a traditional SEM, and for
electron-beam assisted CVD. The mechanism for electron-
beam assisted CVD is very similar to the previously de-
scribed ion-beam assisted CVD process, but the deposition
efficiency is much lower than for the ion-beam assisted CVD
process.5

The CVD metal layers may be used for device modifica-
tion by depositing alternate paths of electrical
conduction.6,7,8Alternatively, these CVD layers may be used
as a protective layer for subsequent milling operations in the
FIB.1,2 Protection is especially critical for analysis of surface
layers ~e.g., ultrashallow regions of a specimen! or for the
surface itself. Therefore it is important to investigate the pos-
sible damage that may occur during the CVD process in the
FIB. The use of a single beam FIB for the preparation of
TEM specimens may require coating the sample prior to in-
sertion into the FIB to prevent spurious sputtering of the
desired material in the region of interest during FIB imaging.
Thus, it is prudent to investigate the efficacy of various pro-
tective sputter coatings~i.e., Au–Pd and Cr! that may be
deposited onto a sample surface prior to insertion into the
FIB instrument.a!Electronic mail: bwk43981@ucf.edu
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II. EXPERIMENT

~100! Si wafers were used as the substrate for this inves-
tigation. An FEI XL830 dual-beam instrument with the elec-
tron beam operating at an accelerating voltage of 3 keV and
with a beam current of 300 pA was used to grow an electron-
beam assisted CVD Pt line. An FEI FIB 200 TEM operating
at an accelerating voltage of 5 keV with a 60 pA beam cur-
rent was used to deposit the 5 keV Ga1 ion-beam assisted
CVD Pt line. An FEI FIB 800 operating at an accelerating
voltage of 30 keV with an 11 pA beam current was used to
deposit the 30 keV Ga1 ion-beam assisted CVD Pt line. Care
was taken to avoid imaging the regions of the Si wafer in
which the Pt deposition would occur prior to the actual Pt
CVD operation because imaging sputters the surface. The Si
substrates containing the Pt lines were then covered with a
sputter coated Au–Pd layer using an Emitech K550 in order
to preserve the integrity of the CVD Pt lines and to delineate
the Pt lines from subsequent Pt depositions used for TEM
specimen preparation of the samples. In addition, a Si sub-
strate was sputter coated with a 70-nm-thick Au–Pd layer
using an Emitech K550 and another Si substrate was sputter
coated with a 60-nm-thick Cr sputter coating using an
Emitech K675. All of the Si substrates were then inserted
into the FEI FIB 200 TEM and the deposited lines and pro-
tective coatings were cross-sectioned for TEM analysis using
the FIB lift out TEM specimen preparation technique1,2 as
shown in Fig. 2. A Philips EM430 TEM operating at 300 keV
and an FEI Tecnai F30 TEM operating at 200 keV with x-ray
energy dispersive spectrometry~XEDS! was used for the

TEM analysis. TRIM~Ref. 9! simulations were also used to
generate comparative models of the anticipated ion damage
for the cases of the 5 and 30 keV Ga1 ion deposition. The
models are used to correlate the observed damage with the
production of vacancies found with the TRIM~Ref. 9! simu-
lations.

III. RESULTS AND DISCUSSION

A direct comparison of the damage that occurs during the
CVD deposition using a 30 keV Ga1 ion beam, a 5 keV Ga1

ion beam, and a 3 keV electron beam is shown in Figs. 3~a!,
3~b!, and 3~c!. As is evident from the cross-section TEM
images in Figs. 3~a! and 3~b! the 30 and 5 keV Ga1 ion
beam impart 50 and 13 nm of damage to the unprotected Si
substrate during the Pt CVD process, respectively. The dam-
age layer observed for the 30 keV Ga1 ion-beam assisted
deposition is slightly larger, but in agreement with the 40 nm
damage depths reported by Lippet al.10 and Katoet al.11 as
will be discussed below. The damage layer corresponds to
the bright amorphous phase observed between the nanocrys-
talline Pt and the single crystal Si. Damage of this nature can
have a severely adverse impact on the subsequent analysis of
the surface layers and/or ultrashallow regions of dopant wa-
fers. Figure 3~c! is a bright field TEM cross-section image of
the Pt line that was deposited using the 3 keV electron beam.
The diffraction contrast observed in Fig. 3~c! indicates the
presence of an apparent damage layer of 3 nm. However, it
should be noted that a native SiO2 layer due to Si oxidation
in atmosphere is on the same order of thickness.12–14 There-
fore, the 3 keV electron beam assisted Pt deposition contrib-
utes little or no damage to the Si surface. Hence, if analysis
of the surface layers or ultrashallow regions is desired, the
electron beam Pt deposition for protecting the surface is a
better option than the ion-beam Pt deposition.

A closer examination of the damage regions of the ion-
beam assisted Pt deposition as shown in Figs. 4~a! and 4~b!
reveals two interesting features. The first is that the TRIM
~Ref. 9! simulated production of vacancies for the respective
30 keV @Fig. 4~a!# and 5 keV@Fig. 4~b!# Ga1 ion beams
correlates qualitatively with the empirically observed 40 nm
and 13 nm amorphous damage region in each case, respec-
tively. The continuous contrast variation in Fig. 4~b! is most
likely due to ion damage and mixing of Pt into the amor-

FIG. 1. Schematic drawing of the CVD process showing the introduction of
organometallic molecules, decomposition of the molecules with either the
Ga1 ion or electron beam, and the net deposition of metal on the substrate.

FIG. 2. Schematic drawing of a portion of the TEM FIB lift out specimen
preparation technique showing the cross-sectioned Pt line that was deposited
with either the 3 keV electron beam, 5 keV Ga1 ion beam, or the 30 keV
Ga1 ion beam.

FIG. 3. Observed damage regions and corresponding damage depths~shown
by arrows! from the TEM FIB-LO cross-sectioned Pt CVD lines as depos-
ited by ~a! 30 keV Ga1 ion beam—50 nm,~b! 5 keV Ga1 ion beam—13
nm, and~c! 3 keV electron beam—3 nm.~The nm marker refers to all three
images.!
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phous Si during the Pt deposition. The second interesting
feature is that for the case of the 30 keV Ga1 ion-beam
assisted Pt deposition@Fig. 4~a!# there is an additional 10 nm
damage layer between the Pt deposition and the amorphous
region. In a lower magnification image of the 30 keV Ga1

ion-beam assisted deposition shown in Fig. 5, a dark band
appears directly below the cross-sectioned Pt line and corre-
spondingly shows a dip in the Si in the same region. The
parallel lines drawn on the TEM micrograph extend from the
adjacent areas of the Pt deposition and show that the Si sur-
face has receded as a result of surface sputtering by the 30
keV Ga1 ion-beam assisted deposition. Using an FEI Tecnai
F30 TEM with XEDS, it was determined that the dark band
is a mixture of Si and Pt. Figure 6 shows an overlay of the
normalized emitted PtLa/SiKa peak intensity ratio across
the region affected during the early stages of the 30 keV Ga1

ion-beam assisted CVD process. The peak intensity ratio also
corresponds with the mass-thickness contrast observed in the
image, which further confirms the mixture of Pt and Si in the

dark band. The lighter band just above the original surface in
Fig. 6 is a diffuse region where the Pt deposition begins out
of the sputtered and redeposited Pt and Si. The dark band is
thus the result of the competition between sputtering and
deposition at the early stages of the ion-beam assisted CVD
process.15,16 The observation of this layer is different from
previous reports10,11 because a cross-section TEM specimen
was prepared that included the entire region directly under
the Pt line as well as the areas adjacent to the Pt line. The
result is the observation of the total damage incurred from
the CVD Pt deposition using 30 keV Ga1 ions. The total
thickness of the damage layer is 50 nm, which consists of 40
nm of ion-beam damage~in agreement with Lippet al.10 and
Kato et al.11! plus 10 nm of damage in the form of the sput-
ter eroded Si surface. The same phenomenon is not readily
observed in the case of the 5 keV Ga1 ion-beam assisted
deposition, due to the much lower beam energy.

FIG. 4. Correlation of the TRIM simulated production of vacancies for~a!
30 keV Ga1 and ~b! 5 keV Ga1 into Si. The micrograph in~a! shows the
TRIM simulation plot beginning at the region believed to be the extent to
which the Si surface receded during the early stages of the ion-beam assisted
CVD process.~The same Si surface recession phenomenon is not readily
apparent in the 5 keV case.!

FIG. 5. Low magnification TEM micrograph of the cross-sectioned 30 keV
Ga1 ion-beam assisted Pt CVD line. The region directly beneath the cross-
sectioned Pt line where the parallel lines have been drawn shows a dip in the
substrate indicating that the Si surface was sputtered in the deposition pro-
cess.

FIG. 6. Correlation of the emitted PtLa/Si Ka peak intensity ratio with the
observed mass-thickness contrast across the region affected during the early
stages of the 30 keV Ga1 ion-beam assisted CVD process.
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An alternative to electron-beam assisted Pt deposition,
particularly for single beam FIB instruments, may be to pro-
tect the ultrashallow surface region with a low-energy sputter
deposition. Figures 7~a! and 7~b! show cross-section TEM
images of a Si substrate that was sputter coated with a 70-
nm-thick Au–Pd layer@Fig. 7~a!# and a 600-nm-thick Cr
layer @Fig. 7~b!# prior to depositing a 30 keV Ga1 ion-beam
assisted CVD Pt layer. As shown in Fig. 7~b!, the Cr coating
completely protects the Si surface from the 30 keV Ga1 ion
beam during the Pt CVD deposition process. A TRIM~Ref.
9! simulation of 30 keV Ga1 at 0° incidence into Cr resulted
in a modeled projected ion range of 11.4 nm with a straggle
of 5.3 nm. Thus, a 30-nm-thick Cr layer is sufficient to pro-
tect a substrate from 30 keV Ga1 ions. Conversely, Au–Pd
deposits in an islandlike morphology as shown in Fig. 8. The
plan view SEM micrograph in Fig. 8 shows a 40-nm-thick

Au–Pd sputter coating that was deposited on a Si substrate
using the same Emitech K550 system. The average island
size is about 50 nm, which is consistent with the size of the
islands in the TEM cross section in Fig. 7~a!. The cross-
section TEM image in Fig. 7~a! shows alternating regions of
light and dark contrast separating the islands. The mottled
contrast corresponds to the ion damage regions in the sub-
strate where the Pt/Ga beam mixture penetrated down the
island walls and into the Si. TRIM~Ref. 9! simulations of 30
keV Ga1 at 0° incidence into Au–Pd resulted in a modeled
projected range of 9.4 nm with a straggle of 5.4 nm. Thus, 70
nm of Au–Pd should be sufficient to prevent substrate dam-
age. However, the observed discontinuous Au–Pd coating is
ineffective at completely protecting an entire surface from
radiation damage during ion-beam assisted CVD. Based on
the observations presented, Cr is a more effective barrier for
protecting ultrashallow surface regions from the FIB deposi-
tion ~or milling! processes.

IV. SUMMARY

The preservation of surface integrity afforded to samples
subjected to FIB milling or deposition operations is impor-
tant to quantify. It has been shown that electron-beam as-
sisted Pt CVD results insignificantly less, and possibly no
surface damage as compared to ion-beam assisted Pt CVD in
the FIB. Using a 3 kV electron beam a 3 nmamorphous
interface layer is observed between the nanocrystalline Pt
and the monocrystalline Si substrate. Using the Ga1 ion
beam for the Pt CVD process resulted in a 13 nm damage
layer when deposition was performed with a 5 kV Ga1 ion
beam and a 50 nm damage layer when deposition was per-
formed with a 30 kV Ga1 ion beam. The 50 nm damage
layer consisted of 10 nm of erosion damage and 40 nm of
ion-beam damage into the Si substrate. In addition, the depth
of ion damage in Si correlates qualitatively with the simu-
lated production of vacancies generated by TRIM simula-
tions for both the 5 and the 30 keV Ga1 ion beams. The
viability of a low-energy sputter coating procedure to deposit
a layer of protective material prior to FIB milling or deposi-
tion was investigated. It was found that a Cr sputter coated
layer greater than 30 nm in thickness is sufficient to protect a
Si surface from a 30 kV Ga1 ion beam~or electron beam!. It
has also been determined that the Au–Pd sputter coated lay-
ers up to a thickness of 70 nm are discontinuous and there-
fore are ineffective at protecting surface regions from ion-
beam damage.
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