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Abstract

A comparative evaluation of speech enhancement algorithms
for robust automatic speech recognition is presented. The eval-
uation is performed on a core test set of the TIMIT speech cor-
pus. Mean objective speech quality scores as well as ASR cor-
rectness scores under two noise conditions are given.

Index Terms: Speech enhancement, robust ASR

1. Introduction

When trained and tested under similar (matched) conditions,
the current state-of-the-art automatic speech recognition (ASR)
systems perform reasonably well. Their performance, however,
drops significantly under mismatched conditions, i.e. when
training is performed on clean speech, while testing is done on
noisy speech. Various approaches have been discussed in the
literature for robust ASR under mismatched conditions. One
approach is to use speech enhancement as a pre-processor to
ASR, where a speech enhancement algorithm is applied on cor-
rupted speech prior to feature extraction. A conventional ASR
trained on clean speech is then used in conjunction with features
extracted from the enhanced speech. A second approach is to
use robust feature extraction methods which utilize perceptual
properties of the human ear to increase performance in the pres-
ence of noise and distortion. Typical examples of robust feature
extraction algorithms include Mel Frequency Cepstral Coeffi-
cients (MFCC) [1] and Perceptual Linear Prediction (PLP) co-
efficients [2]. A third approach to robust ASR is to process
the noisy features in some way prior to recognition. Typical
examples of feature enhancement include RASTA filtering [3]
and cepstral mean subtraction (CMS) [4]. A fourth approach is
through model adaptation, where a clean model can be adapted
to match the noisy conditions. Alternatively, the noisy features
can be adapted to fit the original clean model. Parallel Model
Combination (PMC) [5] is an example of a model adaptation
approach. Some combinations of the above approaches have
also been proposed [6, 7].

In the present paper our aim is to investigate the role of
speech enhancement as a pre-processor for robust ASR. The
aim of speech enhancement is to improve the quality of noisy
speech so that it is suitable for human listeners. At the same
time, these algorithms should at least preserve speech intelligi-
bility, however, that is rarely the case [8]. Consequently, such
methods may do an excellent job as far the quality for the hu-
man ear is concerned, but they may not be good for machine
recognition. Thus, a straightforward use of speech enhance-
ment methods does not guarantee an improvement over ASR
performance under noisy conditions. Our aim in this paper is
to identify which particular methods fit well with ASR. In the

past various authors have investigated this problem, for example
[9, 10, 11, 12, 13, 14]. However, such studies are rarely done
on a common database and not all the methods of speech en-
hancement are included. This present work aims to explore in
a unified manner a broad set of speech enhancement techniques
to determine their performance for robust ASR.

2. Experiments

Our aim in this paper is to investigate the role of speech en-
hancement as a pre-processor for robust ASR. In particular,
we are interested in which speech enhancement methods are
most suited for improving robustness of ASR. For this purpose
speech enhancement and ASR experiments are conducted. The
reminder of this section describes the these experiments.

2.1. Speech enhancement

In this comparative evaluation we consider 16 commonly em-
ployed speech enhancement methods belonging to four major
classes of speech enhancement algorithms. Table 1 lists these
methods along with references to the original work. All of the
algorithms are also described in [15] along with reference im-
plementations. In our experiments we employ these implemen-
tations with their default settings. Note that adaptive noise esti-
mation methods are outside of scope of this evaluation. Instead
initial five, 20 ms, non-overlapped frames are used for noise es-
timation. Some methods also use a simple VAD (as per [15]). In
addition to ASR evaluation of the above algorithms (described
in Section 2.2), we also perform a corresponding objective eval-
uation of speech quality in terms of mean PESQ scores [16].
The mean PESQ scores are computed across the core test set
of the TIMIT corpus [17]. Two additive noise types, white and
babble, are investigated. The noise signals are taken from the
NOISEX-92 noise database [18].

2.2. Automatic speech recognition

The automatic speech recognition (ASR) experiments were
conducted on the TIMIT speech corpus [17]. The TIMIT speech
corpus is sampled at 16 kHz and consists of 6300 utterances
spoken by 630 speakers. The corpus is separated into training
and testing sets. For our experiments the sa* utterances, which
are the same across all speakers, were removed from both the
training and testing sets to prevent biasing the results. The ASR
training is performed on clean speech, while for testing, clean
speech is first corrupted by additive noise and then processed
using speech enhancement techniques listed in Table 1. For
training we use full train set consisting of 3696 utterances from
462 speakers. For testing we use the core test set consisting of
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Table 1: List of speech enhancement algorithms evaluated in
the present study as pre-processors for the TIMIT ASR task.

ALGORITHM CLASS ALGORITHM REFERENCE
Spectral subtractive SSUB [19]
MBAND [20]
RDC [21]
Wiener-type Wiener-as [22]
Wiener-wt [23]
Statistical model-based MMSE [24]
MMSE-SPU [24]
logMMSE [25]
logMMSE-SPU-1 [26]
logMMSE-SPU-2 [26]
logMMSE-SPU-3 [27]
logMMSE-SPU-4 [28]
STSA-weuclid [29]
STSA-wcosh [29]
Subspace KLT [30]
pKLT [31]

192 utterances from 24 speakers. A HTK-based triphone recog-
nizer with 3 states per HMM and 8 gaussian mixtures per state
is used. The phoneme set consisting of 48 phonemes is reduced
to 39 for testing purposes as in [32]. The frame size was set
to 25 ms with a step size of 10 ms. MFCC features with en-
ergy coefficients, as well as the first and second derivatives (39
coefficients total) were used. Cepstral mean subtraction was ap-
plied. A bigram language model is used. For recognition, the
Viterbi algorithm is used with no pruning factor. The Viterbi
decoder used a likelyhood scaling factor of 8 and a penalty of 0.
Phoneme recognition results are quoted in terms of correctness
percentage (Corr (%)) [33].

3. Results and discussion

The results of speech enhancement as well as ASR experiments
are shown in Table 3a and 3b, for white and babble noises, re-
spectively. The results suggest no single choice for ASR speech
enhancement — with performance varying substantially across
both noise types and input SNRs. The best performing algo-
rithms for each category are summarized in Table 2. Overall, the
best performing enhancement methods were Wiener-as (across
all SNRs), RDC (high SNRs) and STSA-wcosh (low SNRs).
In general, most enhancement algorithms performed quite well,
producing modest improvements in ASR performance. One
area in which all algorithms performed badly was the clean case
(SNR=00), with all methods showing degradation of ASR per-
formance. However, in the case of MMSE and RDC, these per-
formance drops were quite small. Perhaps employing speech
enhancement pre-processing on clean speech prior to training
could also be investigated. Notably, improvements in objective
speech quality (in terms of mean PESQ scores) did not translate
to ASR correctness scores improvements. For the white noise
case, the KLT method produced best objective speech quality
scores, yet its corresponding ASR performance was quite poor.
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Table 3: TIMIT experimental results: mean PESQ scores and phoneme correctness (%) scores for (a) white and (b) babble noises. A
bold score indicates the best performing method for a given SNR.
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ALGORITHM MEAN PESQ CORR (%)
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