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The mitochondrial genome (mitogenome) and plastid genome (plastome) of plants vary 

immensely in genome size and gene content. They have also developed several eccentric 

features, such as the preference for horizontal gene transfer of mitochondrial genes, the 

reduction of the plastome in non-photosynthetic plants, and variable amounts of RNA 

editing affecting both genomes. Different organismal lifestyles can partially account for 

the highly diverse organellar genomes across the tree of green plants. For example, 

endosymbiotic and parasitic lifestyles can dramatically affect the genomic architectures 

of plant mitochondria and plastids. In this study, the organellar genomes of several green 

plants with atypical lifestyles were investigated and compared with the breadth of 

organelle genomic diversity within green plants. Next-generation sequencing and 

comparative evolutionary analyses were performed on organellar genomes of parasitic 

plants in Orobanchaceae and endosymbiotic algae in Chlorellaceae. Comparative 

organellar genomic analysis from endosymbiotic green algae provided no evidence for 

genome reduction; instead the endosymbiont genomes are generally larger in genome 

size and richer in intron content. Similarly, facultative hemiparasitic species in 

Orobanchaceae revealed minimal organellar genome degradation, but some evidence for 

several horizontal transferred genes. In both groups, the lack of genomic reduction may 

be attributed to the retention of photosynthetic ability. In addition, the extent of RNA 



 

 

editing was examined in the mitogenome of Welwitschia, a xerophytic plant. RNA 

editing sites in Welwitschia are extremely reduced compared with other gymnosperms, 

and may be caused by retroprocessing. Taken together, these results demonstrated that 

atypical lifestyle does not necessarily lead to the production of unusual genomic features 

and exhibited the convergence and divergence in green plants organelle genomes. 
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1 Introduction 

The endosymbiotic theory states that the mitochondrion, a key factor in energy 

generation, originated ~1.5 billion years ago from the α-proteobacteria endosymbiont 

(Gray et al. 1999), while the plastid, the major organelle associating with photosynthesis 

and carbon fixation, originated from cyanobacteria (Douglas and Turner 1991, Wolf 

2012). The mitochondrial genome (mitogenome) and the plastid genome (plastome) are 

the DNA genomes are separate from the nuclear genome, and their main function is to 

generate some of the proteins required for mitochondrial and plastid activity, 

respectively. Genome sequencing technologies have revolutionized genomics and 

ushered in comparative analysis for functional and evolutionary purpose.  

The mitogenome and plastome display broad variation in their structure, size, gene 

content and posttranscriptional modification. This is true in many eukaryotic lineages, 

and particularly in green plants (Viridiplantae), for which many organellar genomes are 

now available. The green plants include what have traditionally been called “green algae” 

and the land plants (Embryophytes), forming a monophyletic group of eukaryotic 

organisms with distinctive chloroplasts (Lang and Nedelcu 2012, Simpson 2010). 

Although most plants have retained the plastid genome, recent studies have suggested 

that the plastome has become lost in the holoparasite Rafflesia (Molina et al. 2014) and 

also in the non-photosynthetic unicellular alga Polytomella (Smith and Lee 2014). 

Similarly, the plant mitogenome exhibits an extreme range of sizes, from 13 kb to >11 

Mb, along with several unique features, such as the insertion of foreign DNA and 

widespread RNA editing. 
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One of the reasons that contribute to the highly diverse organellar genomes is the 

different living styles. While most green plants are autotrophic and free-living, some 

plants have to live in symbiotic or parasitic relationships with the other organisms, 

obtaining partial or complete nutrients from their hosts. Another small portion of plants 

called xerophytes have adapted to survive in arid environments. All of these atypical 

plant lifestyles have the potential to contribute to the extensive differences in the 

organellar genomes. 

2 Green Plants Organelle Genome Sequencing Progress 

The first mitogenome fragments were sequenced from Chlamydomonas reinhardtii in 

1985 (Boer et al. 1985), a pioneer point of genomic studies in green plants. The first 

complete genomes to be sequenced were the plastid genomes of Marchantia polymorpha 

and Nicotiana tabacum 30 years ago (in 1986) (Ohyama et al. 1986, Shinozaki et al. 

1986). Six years later, the first complete land plant mitochondrial genome was reported 

from M. polymorpha (Oda et al. 1992). After another six years, the first complete 

mitogenome from green algae was reported from C. reinhardtii (Denovan-Wright et al. 

1998). In 2000, the first plant nuclear genome was published from Arabidopsis thaliana, 

opening the floodgates for the plant evolutionary and biological research (Mayer et al. 

1999, Salanoubat et al. 2000, Tabata et al. 2000, Theologis et al. 2000).  

Over the next decade, aided by the fast development of next-generation sequencing 

technologies, complete genome sequences from plant organelles have grown enormously, 

driving the comparative genomic studies. 
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Currently, more than 1100 complete plastomes from the green plants are available 

(https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?opt=plastid&taxid=33090, 

last accessed on June 2016). Within the green algae, there are 18 complete plastomes 

from charophytes (the green algae most closely related to land plants) and more than 75 

from chlorophytes (the group containing the majority of green algae). In land plants, the 

total released complete plastomes exceed 1000. In contrast, the total number of 

sequenced mitogenome is only approximately 10% as that of plastome 

(https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?opt=organelle&taxid=3309

0, last accessed June 2016), which could be attributed to the higher genomic complexity 

of many land plant mitochondrial genomes that increases the difficulty in assembly. The 

mitogenome dataset from green algae includes nine charophytes and 44 chlorophytes. 

Among land plants, representatives from all major groups have been sequenced or 

reported (>100 mitogenomes), demonstrating dramatic diversity in many aspects (details 

below). Within vascular plants, there are more than 70 mitogenomes from angiosperms, 

while many fewer are from the other groups, including only three from gymnosperms 

[Cycas taitungensis (Chaw et al. 2008), Ginkgo biloba and Welwitschia mirabilis (Guo et 

al. 2016)], three from lycophytes [Isoetes engelmannii (Grewe et al. 2009), Selaginella 

moellendorffii (Hecht et al. 2011) and Huperzia squarrosa (Liu et al. 2012)], and two 

from ferns [Ophioglossum californicum and Psilotum nudum (Guo, in press)]. 

Among all of the sequenced organellar genomes, it is worthwhile to mention that there 

have been efforts to sequence plants with a broad spectrum of lifestyles: free-living and 

endosymbiotic species, parasitic and non-parasitic plants, photosynthetic and non-

photosynthetic taxa, xerophyte and mesophyte species. With these genomes elaborated, it 

https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?opt=plastid&taxid=33090
https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?opt=organelle&taxid=33090
https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?opt=organelle&taxid=33090
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has become possible to compare evolutionary diversity among species to assess the 

genomic effects of these different lifestyles on characteristics such as the conserved and 

diverse genome size and gene content, shared or distinguished features. 

3 Plant Organellar Genome Size and Genetic Content Diversity 

3.1 Plant Mitochondrial Genome 

The plant mitochondrion plays a major role in translocating protons and generating ATP 

(Rose and Sheahan 2007, Tovar et al. 1999). These functions are required by all plants, 

and therefore there are no examples of mitogenome loss from any species. However, 

there dramatic variation in genome size, gene arrangement, the amount of foreign DNA 

and the degree of posttranscriptional modification. 

3.1.1 Genome Size 

Genome size varies dramatically among major plant lineages. In green algae, Polytomella 

capuana was reported to have the smallest mitogenome at only 13 kb in size (Smith and 

Lee 2008). At the opposite extreme, due to the lower coding density and heavier repeat 

elements, the mitogenome of Chlorokybus atmophyticus has expanded to 201.8 kb 

(Turmel et al. 2007). In land plants, mitogenome size diversity is even greater, ranging 

from 58 kb in I. engelmannii to over 11 Mb in Silene conica (Grewe et al. 2009, Sloan et 

al. 2012). Strikingly, the massive mitogenome size in S. conica is even larger than some 

cyanobacterium genomes, which comprise thousands of genes (Welsh et al. 2008). In the 

gymnosperm subclade, although only three complete mitogenomes have been sequenced 

so far, the genome size varies from 346 to 979 kb (Chaw et al. 2008, Guo et al. 2016). In 
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angiosperms, in contrast to the extremely large mitogenomes in S. conica (>11 Mb) and 

Cucurbita pepo (983 kb), the hemiparasitic plant Viscum scurruloideum mitogenome is 

only 66 kb (Alverson et al. 2010, Skippington et al. 2015, Sloan et al. 2012). All of these 

previous studies have demonstrated the wide range of mitogenome size, but given the few 

genomes that have been sequenced so far, it is very possible that even more diversity 

remains to be discovered. 

3.1.2 Gene Content 

The mitochondrial genome encodes genes associated with electron transport (nad, sdh, 

cob, cox), ATP synthesis (atp), translation (ribosomal RNAs, transfer RNAs, rpl and rps), 

protein import and maturation (ccm, mttB/tatC) (Table 1-1). Most of the green algae 

retain most of these genes which are essential for respiration, although some species 

exhibit minor to substantial gene loss. For example, selective species in prasinophytes 

and chlorophyceae experienced massive gene loss, particularly the atp, rps, and rpl genes 

(Kroymann and Zetsche 1998, Smith et al. 2010, Turmel et al. 1999). The colorless green 

alga Polytomella parva encodes only seven genes (Fan and Lee 2002). 

Land plants typically contain 20-41 protein-coding genes (Table 1-1). The angiosperm 

mitogenomes generally share the same set of 24 core protein genes but differ in the other 

17 protein genes, most of which are ribosomal proteins (Adams and Palmer 2003, Adams 

et al. 2002). However, the recently reported mitogenome from the parasitic plant Viscum 

has lost 11 of the 24 core protein genes, and 11 of the 17 variably present genes, resulting 

in the lowest mitochondrial gene content in angiosperms (Petersen et al. 2015, 

Skippington et al. 2015). In hornworts and lycophytes, the absence of ccm genes and 
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ribosomal protein genes have been demonstrated many times (Grewe et al. 2009, Hecht et 

al. 2011, Xue et al. 2010), contributing to even more gene content diversity across land 

plants.  

In terms of ribosomal RNAs (rRNA), all green plants possess large and small ribosomal 

RNA (rnl and rns), and almost all land plants have 5S rRNA (rrn5) except for S. 

moellendorffii (Hecht et al. 2011). The rrn5 is also present in some of the green algae, 

although it was not found in Chlorophyceae and several lineages of prasinophytes 

(Burger and Nedelcu 2012, Mower et al. 2012). 

3.1.3 Intron Content 

In mitochondrial genes of green plants, introns are prevalent but their position and 

frequency are highly variable, from a single intron in some green algae (Chlorella sp. 

ArM0029B, Pedinomonas minor, etc) to 37 introns in the lycophyte S. moellendorffii 

(Jeong 2014, Turmel 1999, Hecht 2011). Although intron content is relatively conserved 

within the major land plant lineages, it can sometimes still show obvious variation. For 

example, the gymnosperms Cycas and Ginkgo contain 26 and 25 mitochondrial introns, 

respectively, while the Welwitschia mitogenome retains only 10 introns, less than half of 

the other two gymnosperms (Chaw et al. 2008, Guo et al. 2016). In vascular plants, the 

variation in intron content is due primarily to the loss of introns in particular lineages. 

Few examples of obvious intron gain exist. However, a well-studied example of intron 

gain is the mobile cox1 intron in angiosperm, which is speculated to be horizontally 

transferred among lineages due to its mobile nature (Cho et al. 1998, Sanchez-Puerta et 

al. 2008). 
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3.2 Plant Plastid Genome 

The plant plastid performs an essential role in carrying out photosynthesis and carbon 

fixation in plant metabolism. Many plastid-encoded genes, therefore, are involved in the 

photometabolic pathways (Bock Ralph 2007, Palmer 1997) while others generate 

components of the genetic apparatus, such as structural and transfer RNAs (tRNA), in 

order to translate the plastid genes. 

3.2.1 Genome Structure and Genome Size Diversity 

Generally, the plastid chromosomes are arranged in head-to-tail concatemers of multiple 

molecules in circularized or linear form (Scharff and Koop 2006, Wicke et al. 2011). In 

land plants, the plastid genome normally has a highly conserved structure with two 

inverted repeats (IR) that separate the genome into a large and small single-copy region 

(LSC and SSC region, respectively). In green algal lineages, most plastid DNAs are 

circular mapping with the occurrence of some fragments carrying repeat regions (Reyes-

Prieto et al. 2007). Some of the green algae have the IR structure (e.g. P. minor) but the 

others like Chlorella vulgaris do not (Wakasugi et al. 1997). The mechanisms of 

generating or eliminating the repeat regions remain unclear. 

The plastomes in green plants also have diversity in their genome size, which is closely 

related to the retention or loss of photosynthetic ability. The photosynthetic green algae 

exhibit the total length of 118-521 kb in Mesostigma viride and Floydiella terrestris, 

respectively (Brouard et al. 2010, Lemieux et al. 2000). For those nonphotosynthetic or 

endosymbiotic green algae, the genome size may be much smaller, such as the parasitic, 

nonphotosynthetic green alga Helicosporidium (de Koning and Keeling 2006). In 
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Polytomella spp., a free-living, nonphotosynthetic green alga related to Chlamydomonas 

(Smith and Lee 2014), the entire plastome was inferred to be lost. The plastid genome 

size of most land plants is between 120-170 kb  and the genome size is strongly affected 

by the length of the IR regions (Chumley et al. 2006, Naumann et al. 2016, Ruhlman and 

Jansen 2014, Wakasugi et al. 1994, Wu et al. 2007). Again, the genome reduction or 

complete loss could occur in parasitic lineages, which will be discussed in more detail 

later. 

3.2.2 Gene Content 

The plastid genes in green plants have been classified in three categories, encoding 

components of the genetic system, components related to photosynthesis, and 

components of other pathways. A detailed catalogue of the protein-coding genes is 

displayed in Table 1-2. In total, the number of protein-coding genes in photosynthetic 

species is approximately 66-88 (Wicke et al. 2011). In contrast, the species that have lost 

photosynthetic capacity generally eliminate the genes related to photosynthesis (see 

below), such as the holoparasites (Funk et al. 2007, Molina et al. 2014). The ribosomal 

RNA genes (rrn23, rrn16, rrn5 and rrn4.5) are present in most land plant plastomes 

studied so far, and often these genes are duplicated in each copy of the IR region. In 

green algae, generally there is only one set of ribosomal RNA with no rrn4.5. Similar to 

the protein-coding genes, nonphotosynthetic or minimal photosynthetic angiosperms will 

also lose some tRNAs (Funk et al. 2007, McNeal et al. 2007, McNeal et al. 2009, Morden 

et al. 1991). For transfer RNA genes, the standard number is 27-32, but unique cases 

could also occur in some photosynthetic specus, such as Selaginella uncinata which has 

only 12 tRNA genes (Tsuji et al. 2007). 
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3.2.3 Intron Content 

The intron content in the plastome is extremely variable among all the different clades, 

and even within the same group it can vary from lineage to lineage. Land plants typically 

contain 15-20 group II introns and one group I intron in trnL. The plastid matK gene is 

usually located within the group II intron of trnK. In green algae, intron content can range 

from no introns in some species to 26 introns in F. terrestris. Although several highly 

sophisticated search algorithms have been developed and applied, it is still difficult to 

identify and classify all the introns, especially in tRNAs (Beck and Lang 2009, 2010, 

Wyman et al. 2004). 

4 Peculiar Features of Plant Organellar Genomes 

The plant mitochondrial genome exhibits some unusual features, such as frequent 

genomic recombination (Lonsdale et al. 1984, Marechal and Brisson 2010), incorporation 

of foreign DNA (Adams et al. 2002, Cho et al. 1998), widespread RNA editing (Giegé 

and Brennicke 1999, Hiesel et al. 1989) and trans-splicing of transcripts to remove 

introns (Chapdelaine and Bonen 1991, Wissinger et al. 1991). However, many of these 

peculiar features are absent from green algae and early branches of land plants. The plant 

plastid genome is generally very highly conserved in land plants, with some more diverse 

structures in green algae. However, some abnormal changes can occur to the plastome 

when parasitism evolves. 
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4.1 Horizontal Gene Transfer in Plant Mitochondrial Genome 

Horizontal gene transfer (HGT) refers to the transfer of the genetic material between non-

mating species (Bock 2010). Plant mitogenomes experience frequent horizontal transfer 

of genes acquired from evolutionarily diverse plants (Davis et al. 2005, Richardson and 

Palmer 2007). The exchange of genetic material is more often to occur by the transfer of 

DNA rather than RNA (Mower et al. 2010, Xi et al. 2013, 2012, Zhang et al. 2014). To 

date, most of the transferred genes thus far have resulted in the presence of both 

horizontally acquired and preexisting gene copies within mitogenome, such as observed 

for Rafflesia and Amborella (Rice et al. 2013, Xi et al. 2013). In a few cases, some of the 

transferred genes have functionally replaced the native copies (Sanchez-Puerta 2014). 

The abundance of HGT in plant mitochondria has been suggested to be caused by several 

factors, including the ability of the mitochondrion to uptake DNA (Koulintchenko et al. 

2003), frequent fusion and fission of mitochondrial during the plant cell cycle (Arimura 

et al. 2004) and the presence of massive intergenic regions in the mitogenome (Kitazaki 

and Kubo 2010). Furthermore, HGT occurs frequently in parasitic-host plant systems 

(Bergthorsson et al. 2004, Zhang et al. 2014). Evidence of HGT has been reported in 10 

of the 11 parasitic lineages to date (Davis and Xi 2015). This preference is hypothesized 

mainly because of the haustorium, a physical connection between hosts’ roots or shoots 

and the parasites. Studies have uncovered the fact of horizontal movement of genetic 

material from hosts to parasites and in the opposite direction (Davis and Wurdack 2004, 

Mower et al. 2004). In some cases, the frequency of HGT can be on a large scale. For 

example, Rafflesiaceae harbored 41% of its mitochondrial genes via HGT (Xi et al. 

2013). Horizontal transfer can also involve intron transfer, such as the relatively well-
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studied case of HGT comes from the cox1 intron, being acquired in many angiosperm 

lineages by mitochondria-to-mitochondria movement. This also illustrated that the 

horizontal transfer in mitochondria is not limited to protein-coding genes (Alverson et al. 

2010, Barkman et al. 2007, Cho et al. 1998, Sanchez-Puerta et al. 2008). Briefly, studies 

have implied that plant mitogenomes experience rampant HGT, and parasitic plants are 

particularly active in HGT. 

4.2 RNA Editing in Plant Mitochondrial Genome 

RNA editing is a widespread post-transcriptional process that changes the coding 

information of mRNAs. In angiosperms, RNA editing was first recognized in the 

mitogenome by comparing DNA and RNA sequences in 1989 (Hiesel et al. 1989, 

Takenaka et al. 2008). The most common RNA editing effect is the conversion from 

cytidines to uridines (C-to-U), which has been reported in all major land plant lineages 

but is absent from green algae (Chaw et al. 2008, Guo et al. 2016, Oda et al. 1992, Unseld 

et al. 1997). Another type of editing involves the U-to-C reverse RNA editing, which is 

distributed in some specific lineages in ferns, mosses, and lycophytes (Grewe et al. 2009, 

Kugita et al. 2003). RNA editing can create initiation and termination codons or remove 

premature stop codons, but most often it restores internal codons with strong functional 

relevance in protein-coding genes. RNA editing can also occur in non-coding regions of 

the mitogenome, which in some cases improve intron splicing efficiency and tRNA 

processing (Castandet et al. 2010, Grewe et al. 2011). 
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4.2.1 Variation in the Frequency of RNA Editing 

The frequency of mitogenome RNA editing is significantly different among all the major 

lineages within land plants. All examined land plants examined to date perform C-to-U 

RNA editing except the complex thalloid liverworts (Marchantiidae) (Steinhauser 1999), 

whereas no editing has been reported yet in any green algae. Thus, we can speculate that 

C-to-U RNA editing originated from the common ancestor of land plants and was 

subsequently lost from the complex thalloid liverworts.  

Angiosperm mitogenomes are diverse in RNA editing based on extensive studies across 

the clade. To date, 12 mitogenomes have been shown to have various editing numbers: 

Arabidopsis (441 sites) (Giege and Brennicke 1999), Oryza (491 sites) (Notsu et al. 

2002), Brassica (427 sites) (Handa 2003), Beta (357 sites) (Mower and Palmer 2006), 

Vitis (401 sites) (Picardi et al. 2010), Silene (287 sites in Silene latifolia and 189 sites in 

Silene noctiflora) (Sloan et al. 2010), Citrullus (463 sites) (Alverson et al. 2010), 

Cucurbita (444 sites) (Alverson et al. 2010), Amborella (779 sites) (Rice et al. 2013), 

Liriodendron (781 sites) (Richardson et al. 2013), Oenothera (362 sites) (Richardson et 

al. 2013) and Nicotiana (463 sites) (Richardson et al. 2013). These studies show that the 

C-to-U RNA editing occurs ~200-800 sites per species in angiosperms. 

Unlike the relatively rich sequencing data from angiosperms, RNA editing analyses from 

other vascular plants are very limited. In gymnosperms, only three species have been 

described the RNA editing frequency: in Cycas, it was estimated to retain approximately 

1200 editing sites (Chaw et al. 2008); in Ginkgo, there was 1306 predicted editing sites; 

whereas in Welwitschia, only 226 sites were estimated in its coding genes (Guo et al. 
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2016). In addition to the gymnosperms, there are three reported lycophytes, I. 

engelmannii, S. moellendorffii, and H. squarrosa with editing counts of 1782, 2152 and 

~300, respectively (Grewe et al. 2009, Hecht et al. 2011, Liu et al. 2012). In bryophytes, 

Physcomitrella patens has the minimal identified editing sites of only 11 (Rüdinger et al. 

2009), while the liverwort lineage Marchantiidae have no edit sites (Groth-Malonek et al. 

2007, Oda et al. 1992, Rudinger et al. 2008). Thus, although sequencing results from 

species outside of the angiosperms is limited, it can be deduced that the frequency of 

RNA editing is substantially different in land plants. 

4.2.2 RNA Editing Loss with Retroprocessing 

Retroprocessing usually refers to the re-integration of a reverse transcribed transcript into 

the genome. A gene that has been retroprocessed could result in the loss of introns, along 

with the elimination of RNA editing sites (Bowe and dePamphilis 1996, Ran et al. 2010). 

However, the extent of RNA editing and intron loss can occur to different levels. First, it 

is possible that retroprocessing could affect the entire mature transcript, which means all 

of the introns would be lost and all of the U’s produced by editing would be seen as T’s 

in the retroprocessed genes (Hepburn et al. 2012). For instance, in the rps3 gene of many 

conifers, two introns shared by many gymnosperm species were missing, and no editing 

sites were detected from this gene (Ran et al. 2010). A second possible outcome of 

retroprocessing is that the process may affect only part of the gene, resulting in the loss of 

some introns and the nearby edit sites, but distant introns and edit sites would remain. 

This model was supported from several previous studies, such as the cox2 and nad7 

genes in Silene and the cox2, nad1, and nad2 genes in Isoetes, in which an intron and 

surrounding edit sites were lost, while other introns and edit sites remain (Grewe et al. 
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2011, Sloan et al. 2010). In the third outcome, reverse transcription of a spliced but 

mostly unedited transcript would result in a sporadic loss of edit sites (Hepburn et al. 

2012). Evidence for this process is difficult to obtain, because it would not remove many 

edit sites. 

4.3 Plastid Genome Reduction in Parasitic Plants 

Starting with the investigation of the plastid genome from holoparasite Epifagus 

virginiana over 20 years ago (Wolfe et al. 1992), the pseudogenization and loss of the 

plastid genes from parasitic plants has been described many times (Krause 2012, Krause 

and Scharff 2014). The heterotrophic lifestyle has a dramatic impact on the plastome, 

particularly in holoparasites in which the photosynthetic ability has been lost. It also has 

been speculated that the early stage of plastome reduction was the loss of many 

noncoding and possibly unimportant parts of the plastome sequences (Funk et al. 2007). 

So far, more than 20 plastomes from parasitic plants have been published including 12 

complete plastomes from Orobanchaceae (Li et al. 2013, Uribe-Convers et al. 2014, 

Wicke et al. 2013), which displays a varying degree of reduction. Previous studies have 

documented gene loss affecting ndh genes, photosystem genes, the rbcL gene, ribosomal 

protein genes, rpo genes, hypothetical conserved reading frames (ycfs) and tRNAs 

(Delannoy et al. 2011, McNeal et al. 2007, Morden et al. 1991, van der Kooij et al. 2000, 

Wolfe et al. 1992). 

Overall, as the adaptations to parasitism becomes more pronounced, resulting in more 

pseudogenization and functional loss of the plastid genes (Krause 2012). For those 

parasitic plants which still retain the ability of photosynthesis, their plastomes generally 
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retain the genes coding for photosynthetic components and the transcriptional and 

translational apparatus. For instance, the Schwalbea americana (Orobanchaceae) 

plastome has experienced no gene loss with only several genes pseudogenized. For those 

non-photosynthetic plants, massive gene loss has been observed frequently. Based on the 

current sequencing results, typically 27-35 genes are retained in the plastome (Barrett et 

al. 2014, Wicke et al. 2011, 2013). For example, the holoparasite Cuscuta lacks the 

subunits of the NADH dehydrogenase complex (ndh genes), some ribosomal protein 

genes and a few more genes, such as psaI, matK, rpo genes, etc (Funk et al. 2007). A 

very recent study on the holoparastie Hydnora visseri (Hydnoraceae) also revealed the 

elimination of all photosynthesis-related genes (Naumann et al. 2016). One of the 

remarkable examples of plastome reduction is in the holoparasite Rafflesia lagascae 

(Rafflesiaceae). Whole genomic DNA studies from this particular organism tentatively 

suggested that the entire plastid genome has been lost (Molina et al. 2014). 

5 Research Goals 

Green plant organellar genomes exhibit widespread diversity across lineages over the 

millions of years of evolution. The mitogenomes have conservative features to some 

extent (e.g. gene content), some very divergent features (e.g. genome size), along with 

some unique features (e.g. frequent HGT and RNA editing). In some cases, this diversity 

may be attributable to lifestyle. For instance, the mitogenomes of parasitic mistletoes in 

Viscum and heterotrophic algae in Polytomella are extremely reduced in size and content. 

Plastome features are highly conserved in most green plants, such as quadripartite 

structure and the gene content related to photosynthesis, but there is some extreme 
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diversity based on plant lifestyles and living environments, most often associated with the 

loss of photosynthetic genes due to a non-photosynthetic lifestyle. In my research, I 

performed a comparative analysis of organellar genomes from plants with atypical 

lifestyles to better understand the effects of their lifestyles on organelle genome size, 

structure, and genetic content. 

In Chapter 2, I discuss the organelle genomic diversity in free-living and endosymbiotic 

green algae using newly sequenced and assembled genomes from three green algae 

species: Chlorella heliozoae, Chlorella sp. ATCC30562 and Micractinium conductrix. 

These species are endosymbionts living in different hosts, although all of them can also 

survive after isolation from their hosts. By comparing their organelle genomes with those 

of selected free-living algae, I examined whether and how their endosymbiotic lifestyle 

affects the evolution of organellar genomes. 

Chapter 3 examines the organelle genomic diversity in parasitic plants. The effect of a 

parasitic plant lifestyle has been relatively well carried out for the chloroplast genome, 

but there is little information for the mitogenome counterparts. The Orobanchaceae 

family contains non-parasitic, hemiparasitic and holoparasitic lineages, so I analyzed 

genomic data from representative species within this group in order to assess the 

organellar genomic diversity in parasitic plants. 

The goal of Chapter 4 is to analyze one of the peculiar features of plant mitogenomes: 

RNA editing. In an earlier publication, I helped to show that there is a massive loss of 

RNA editing sites from the xerophyte Welwitschia mirabilis, which is a compelling 



18 

contrast to its closely related species. In this thesis chapter, I used this example to explore 

the various mechanisms to possibly explain this massive amount of RNA editing loss. 
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TABLES 

Table 1-1. Overview of gene content in green plants mitogenome 

Function   Genes 

NADH dehydrogenase subunits 
(Complex I) 

 nad1, nad2, nad3, nad4, nad4L, nad5, nad6, 

nad7, nad9, nad10* 

Succinate dehydrogenase            
(Complex II) 

 

sdh3, sdh4 

Cytochrome bc1 complex subunits 
(Complex III) 

 

cob 

Cytochrome c oxidase subunits 
(Complex IV) 

 

cox1, cox2, cox3 

ATP synthase subunits                 
(Complex V) 

 

atp1, atp4, atp6, atp8, atp9 

Cytochrome c maturation proteins 

 

ccmB, ccmC, ccmFn, ccmFc 

Ribosomal proteins 
 

rpl2, rpl5, rpl6, rpl10, rpl14*, rpl16, rpl31*, 

rps1, rps2, rps3, rps4, rps7, rps8, rps10, 

rps11, rps12, rps13, rps14, rps19 

A putative protein transporter 

 

mttB/tatC 

Maturase-related protein 
  

matR 

*green algae only 
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Table 1-2. Plastid protein-encoding genes in green plants 

Function Genes 

Photosynthetic dark reaction 

related proteins 

  
 

inner membrane protein cemA 

 
Protochloro-phylide reductase chlB, chlI*, chlL, chlN 

 
Cytochrome c biogenesis protein ccsA 

 
large subunit of RuBisCO rbcL 

Photosynthetic light reactions 

related proteins  
 

 
ATP synthase atpA, atpB, atpE, atpF, atpH, atpI 

 
Photosystem I psaA, psaB, psaC, psaI, psaJ, psaM* 

 

Photosystem II 
psbA, psbB, psbC, psbD, psbE, psbF, 

psbH, psbI, psbJ, psbK, psbL, psbM, 

psbN, psbT, psbZ 

 

NADH dehydrogenase+ ndhA, ndhB, ndhC, ndhD, ndhE, 

ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK 

 
Cytochrome complex petA, petB, petD, petG, petL, petN

+
 

 
Photosystem I assembly factor ycf3, ycf4 

Proteins not related to 

photosynthesis  
 

 
involved in lipid acid synthesis accD 

 
cell division ftsh* 

 

putative ABC-containing sulfate 
transporter genes cysA, cyst 

 
protein quality control clpP 

 
homing Endonuclease I-CvuI* 

 
rRNA Ile-lysidine synthetase tilS* 

Genetic apparatus  matK
+
 

Translation and post-

transcriptional modification  
 

 

DNA-dependent RNA 
polymerase rpoA, rpoB, rpoC1, rpoC2 

Translation and protein-

modifying enzymes  
 

 

translation factor infA, tufA* 

 

division factor minD*, minE* 

 

large ribosomal proteins 

rpl2, rpl5*, rpl12*, rpl14, rpl16, 

rpl19*, rpl20, rpl21, rpl22, rpl23, 

rpl32, rpl33, rpl36 

 

small ribosomal proteins 
rps2, rps3, rps4, rps7, rps8, rps9*, 

rps11, rps12, rps14, rps15, rps16, 

rps18, rps19 

Proteins of unknown function   ycf1, ycf2, ycf12*, ycf20*, ycf47* 

* algae only 
  + land plants only 
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ABSTRACT 

Endosymbiotic bacteria have been reported with extraordinary reduced genome in 

numerous cases. Many endosymbiotic green algae also show extreme genomic reduction 

of their nuclear genomes, but they may retain a fully functional plastid genome if they 

maintain photosynthetic ability or if they can survive outside of their host. In order to 

better understand how the endosymbiotic lifestyle has affected the organellar genomes of 

photosynthetic green algae, we generated the complete organellar genome sequences 

from three green algal endosymbionts (Chlorella heliozoae, Chlorella sp. ATCC30562 

and Micractinium conductrix) isolated from a ciliate and heliozoan. Compared with other 

trebouxiophycean green algae, the three newly sequenced species have regular genome 

size and gene content in both the mitochondria and the plastid genome, providing no 

evidence for organellar genomic reduction in these endosymbionts. Instead, the 

organellar genomes of the three endosymbionts are generally larger and more intron rich 

than other species of Chlorella. Phylogenetic analysis of plastid and mitochondrial genes 

demonstrated that M. conductrix clusters together with Chlorella strains, suggesting that 

it should be considered a species of Chlorella. In addition, the three endosymbionts do 

not form a monophyletic group, indicating that the endosymbiotic lifestyle has evolved 

multiple times within Chlorella. 
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INTRODUCTION 

The mitochondrion originated ~1.5 billion years ago from an α-Proteobacterial 

endosymbiont. The ancestral genome of the endosymbiotic organism contained thousands 

of genes whereas the mitogenome of eukaryotes today typically retain <100 genes, 

indicating massive reduction of gene content over time. The origin of plastids formed 

somewhat later (~1 billion years ago) through the primary endosymbiosis of a 

cyanobacterium, which is also widely recognized as the origin of the photosynthetic 

organelles. Today, only 5-10% of the genes have been retained in the plastome compared 

with their cyanobacteria ancestor (Martin et al. 2002, Wolf 2012). Another cyanobacterial 

endosymbiont, which was established as a novel photosynthetic organelle (the 

“chromatophore”) of the amoeba Paulinella chromatophora, has a genome that was 

extensively reduced. The P. chromatophora chromatophore has retained only 26% of the 

genescompared with its free-living relative. Genome-wide reduction was also reported 

from other bacterial endosymbionts, such as Candidatus Carsonella ruddii andCandidatus 

Tremblaya princeps, which possess only ~2-30% of the regular genome size (Husnik et 

al. 2013, McCutcheon et al. 2009, Nakabachi et al. 2006, Sloan et al. 2014). 

Some green and red algal lineages also live as endosymbionts of other eukaryotes. In 

many cases, the algal live as endosymbionts due to their photosynthetic abilities. This 

relationship has led to the retention of the algal plastid genome, while the remnant 

nucleus genome (nucleomorph) has lost most of its genes except for the chloroplast-

located proteins, and the mitogenome of endosymbionts get lost. For example, the non-

photosynthetic host in the cryptomonads captured a photosynthetic red alga, which serves 
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as an endosymbiont with a functional chloroplast and highly reduced nucleomorph 

genome (Douglas et al. 2001). Similarly, a green alga was captured by the 

chlorarachniophyte Bigelowiellanatans, and the endosymbiont alga has retained essential 

plastid protein genes (Gilson et al. 2006, Lane et al. 2007). Some green algal species 

form lichen together with fungi, and their organelle genomes have regular features 

similar to free-living algae (Del Campo et al. 2010). Conversely, reduction or even loss 

of the entire plastid genome tends to occur if the algae are no longer required to be 

photosynthetic. For example, the non-photosynthetic trebouxiophyte Helicosporidium 

sp.contains the smallest known plastid genome (37.5 kb), resulting from the lack of all 

photosynthesis-related genes and tiny intergenic spaces (de Koning and Keeling 2006). 

The malaria parasite Plasmodium falciparum also surprisingly has 35 kb circular 

apicoplast genome (Arisue et al. 2012). One notable example of plastid reduction in non-

photosynthetic green algae is the free-living, freshwater unicellular green algal genus, 

Polytomella. Although it is closely related to the model algae species Chlamydomonas 

reinhardtii, no plastid genome was detectable through next generation sequencing (Smith 

et al. 2013). 

Many green algae form symbiotic relationships with ciliates (e.g. Paramecium), 

heliozoans (e.g. Acanthocystis), and invertebrates (e.g. Hydra) (Reisser 1992, 1994). 

Irrespective of the mutual relationship between the endosymbionts and their host, the 

endosymbiotic algae retain the ability to live without the host, and are thus facultative 

endosymbionts. One well-studied endosymbiotic association involves the ciliate 

Paramecium bursaria and several species of green algae in Chlorella. Previous studies 

have shown that P. bursaria harbors many endosymbiont species, and these 
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endosymbiont infections can affect the gene expression of the host (Kodama et al. 2014). 

However, there are no studies that have examined the effect of this relationship on the 

organellar genomes of the endosymbionts and their ciliate hosts, which raises several 

outstanding questions: will the organellar genomes of the endosymbiotic green algae be 

reduced, similar to the cases in bacterial genomes and algal nucleomorph genomes? 

Alternatively, will they remain intact due to the requirement of full mitochondria and 

plastid function? 

Trebouxiophyceae is a class in the Chlorophyta clade of green algae, comprising species 

forming symbioses with fungi to form lichens (e.g. Trebouxia and Myrmecia), 

photosynthetic symbionts in ciliates or plants (e.g. Chorella and Elliptochloris), non-

photosynthetic species (e.g. Prototheca and Helicosporodium) and also free-living 

representatives (e.g. Chlorella sp. ArM0029B) (de Koning and Keeling 2006, Friedl and 

Rokitta 1997, Jeong et al. 2014, Perez-Ortega et al. 2010, Pombert et al. 2014, Proschold 

et al. 2011, Ueno et al. 2003). To date, a total of 35 plastomes and nine mitogenomes 

from Trebouxiophyceae have been fully sequenced.  Plastid genome (plastome) sizes 

range from 37.5 kb to ~300 kb containing 54-114 genes, while mitochondrial genome 

(mitogenome) sizes vary from ~49 kb to ~85 kb with some ~65 genes. To explore 

organelle genome interactions in the endosymbiotic lifestyles, the complete plastid and 

mitochondrial genomes were sequenced from three unicellular, endosymbiotic green 

algae: Chlorella sp. ATCC30562 (isolated from P. bursaria), Chlorella heliozoae 

(isolated from Acanthocystis turfacea) and Micractinium conductrix (isolated from P. 

bursaria). Their genomes sequences were compared to the organellar genomes of other 
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trebouxiophycean green algae in order to assess the effects of an endosymbiont lifestyle 

on the organellar genomes of green algae. 

MATERIALS AND METHODS 

Source of species 

Pelleted cell cultures of Chlorella heliozoae, Chlorella sp. ATCC30562 and 

Micractinium conductrix were obtained from Dr. Van Etten’s lab (Morrison Center, 

University of Nebraska-Lincoln). All cells were stored at -80˚C prior to DNA extraction. 

DNA extraction and genome sequencing 

DNA extraction was performed using a modified preparation protocol (Anwaruzzaman et 

al. 2004, Lin et al. 2010). About 0.2g of the harvested cells were resuspended in 375 µL 

SDS-EB buffer (2% SDS, 100 mM Tris-HCl pH 8.0, 400 mM NaCl, 40 mM EDTA 

pH8.0), and then an equal volume of water was added, followed by 750 µL 

phenol:chloroform:isoamyl alcohol (25 : 24 : 1). To break the cell wall, 25 mg glass 

beads were added in the same tube, and the sample was vortexed for 5 min. Cellular 

debris was pelleted by centrifuging for 5 min at 12,000 ×g. The aqueous solution was 

transferred to a new tube, and 2 µL RNase (10 mM) was added, followed by 30 min 

incubation at 37 ˚C. The phenol:chloroform:isoamyl alcohol and centrifugation steps 

were repeated without using glass beads, and the aqueous solution was then treated with 

750 µL chloroform. The supernatant was transferred to a new tube, and then twice the 

volume of 100% ethanol was added and incubated 1 hour at -20 ˚C. The DNA was 
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collected by centrifugation for 20 min at 12,000 followed by washing with 70% ethanol. 

The DNA was air dried and then resuspended in 50 µL water. 

The DNA samples were sent to the High-Throughput DNA Sequencing and Genotyping 

Core Facility at UNMC (Omaha, NE). For each sample, 20–30 M reads of 100 bp were 

sequenced from a 500 bp paired-end library on an Illumina HiSeq 2500. 

Genome assembly and annotation 

The organellar genomes of C. sp. ATCC30562, C. heliozoae and M. conductrix were 

assembled from the Illumina sequence reads by running Velvet version 1.2.03 (Zerbino 

and Birney 2008) using different pairwise combinations of Kmer (61, 71, 81, 91) and 

expected coverage (50, 100, 200, 500, 1000) values, as described previously (Grewe et al. 

2014, Zhu et al. 2014). Scaffolding was turned off with paired-end containing data set 

and 10% of expected coverage was set as the minimum coverage parameter. For each 

assembly, plastid and mitochondrial contigs were detected by blastn searches with known 

organellar gene sequences from related Chlorellales species used as queries. The final 

consensus sequence for each species was constructed by aligning the mitochondrial and 

plastid contigs from the best draft assemblies (that maximized the average length of 

plastid or mitochondrial contigs). Circular genomes were confirmed by aligning the 

overlapping terminal regions of the contigs, which was further supported by read pairs 

that spanned both ends of the assembly. Using this strategy, a single completed circular 

chromosome was assembled for the plastome and mitogenome of each species. To 

evaluate the depth of coverage of the genome assemblies, read pairs were mapped onto 

respective consensus sequences with Bowtie 2.0 (Langmead and Salzberg 2012). 
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Protein-coding genes from C. sp. ATCC30562, C. heliozoae and M. conductrix complete 

mitochondrial genomes were annotated by blast against the database from National 

Center for Biotechnology Information. The protein genes from plastome of the three 

organisms were initially annotated by using the Web-based annotation package Dual 

Organellar Genome Annotator (DOGMA) (Wyman et al. 2004) with a 60% cutoff and a 

Blast E-value of 1e-5, followed by manual adjustment as necessary. Genes coding for 

ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs) were identified by blastn searches 

(de Koning and Keeling 2006) and tRNAscan-SE (Lowe and Eddy 1997), respectively. 

To identify potentially novel genes, blastn and blastx searches were also applied to all 

noncoding regions but no additional genes were identified. The annotated mitogenomes 

and plastomes will deposit in GenBank. 

RNA extraction and cDNA sequencing 

To verify the intron content in the mitochondrial large ribosomal RNA (rrnL), 

experimental approaches were applied to the three organisms. Total RNA isolation from 

C. heliozoae, C. sp. ATCC30562 and M. conductrix cells (~1×109 cells) was performed 

with the following modified Trizol protocol. Harvested cells were spread on the wall of 

the Eppendorf tube before freezing in liquid nitrogen for 1 min, then 3 ml of Trizol was 

immediately added to the frozen pellet and the tube was vortexed for 10 min. The 

homogenized sample was incubated for another 5 min at room temperature followed by 

centrifuge at 12,000 ×g for 10 min at 4˚C to remove insoluble material and 

polysaccharides. The supernatant was transferred to a new tube, 0.75 ml of chloroform 

was added with vigorously shaking for 30 seconds, and then the tube was vortexed for 2 

min. An additional 5 min incubation was undertaken at room temperature before 
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centrifugation at 12,000 ×g for 15 min at 4˚C. The aqueous phase was transferred to a 

clean tube, an equal volume of phenol:chloroform:isoalcohol (25:24:1) was added, and 

then vortexed for 2 min. The centrifugation process was repeated, and then the aqueous 

phase of the sample was transferred to a new tube and an equal volume of isopropanol 

was added to the solution, followed by incubation at -20˚C for 30 min. The RNA was 

collected by centrifugation, washed, air dried and redissolved following the 

manufacturer’s protocol.  

With the isolated RNA as template, RT-PCR and cDNA sequencing were carried out by 

the approaches described previously (Hepburn et al. 2012). Species-specific primers were 

designed for various regions of rrnL to amplify the total length of this cDNA. The PCR-

amplified rrnL cDNAs were Sanger sequenced on both strands at Genscript (NJ, 

GenScript USA Inc.). 

Genome structural analyses 

To compare the plastome and mitogenome structural organization of the three species 

sequenced in this study, alignments of whole genomes from these three species and three 

additional Chlorellales species were carried out using the ProgressiveMauve algorithm of 

Mauve 2.3.1 (Darling et al. 2010). 

Phylogenetic analysis 

Both plastid and mitochondrial phylogenies were generated in this study. In addition to 

the three newly sequenced species, organellar genomes from 22 representative 

chlorophytes and six streptophytes (Table S1) were collected from GenBank as ingroup 

and outgroup, respectively. Individual protein-coding genes were extracted with a 
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customized perl script and then manually checked to avoid misannotation. Those genes 

(74 plastid genes and 32 mitochondrial genes) that that were present in more than half of 

the taxa were aligned by codons using MUSCLE (version 3.8.31) (Edgar 2004), and 

manually adjusted in BioEdit (version 7.2.0) if necessary. Plastid and mitochondrial 

protein gene data sets were concatenated seperately by FASconCAT (version 1.0) (Kuck 

and Meusemann 2010). The ambiguously aligned regions in the concatenated alignments 

were excluded using Gblocks (version 0.91b) (Castresana 2000) with relaxed parameters 

(t=c, b2=15, b4=5, b5=half).  

Phylogenetic analyses were inferred from plastid and mitochondrial data sets using the 

Maximum Likelihood (ML) approach in PhyML version 3.0 (Guindon et al. 2010) and 

Bayesian inference (BI) in MrBayes version 3.2 (Ronquist et al. 2012). ML trees were 

estimated with the GTR+G+I model and confidence of branching was estimated by 

bootstrap (BS) analyses with 1000 replicates. For BI analyses, the GTR+G model was 

used and other default parameters were applied to the runs. To ensure convergence during 

the BI runs, 100,000 and 200,000 generations were set for plastid and mitochondrial data 

sets, respectively, in order to make the standard deviation of split frequencies below 0.01.  

RESULTS 

Comparative analysis of Chlorellales mitochondrial genomes 

The three newly sequenced endosymbiotic green algae C. heliozoae, C. sp. ATCC30562 

and M. conductrix have circular mitochondrial genomes of 62477 bp, 79601 bp and 

74708 bp in length, respectively (Figure S1). A broader comparison of mitogenomes 
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from species in Trebouxiophyceae shows that genome size varies from 49 kb to 79 kb 

(Table 2-1). Notably, the four endosymbionts (C. heliozoae, C. sp. ATCC30562, C. 

variabilis and M. conductrix ) tend to have relatively larger mitogenome sizes compared 

with free-living individuals (C. sp.ArM0029B, C. sorokiniana, Coccomyxa sp. C-169 and 

Trebouxiophyceae sp.) and substantially larger mitogenome sizes compared with 

parasitic, non-photosynthetic green algae (Helicosporidium sp. and Prototheca 

wickerhamii). In terms of adenine and thymine (AT) content, all three newly sequenced 

algae are ~70% similar to that of C. sp. ArM0029B (71.5%), C. sorokiniana (70.9%) and 

C. variabilis (71.8%), but lower than the two AT-rich species Helicosporidium sp. 

(74.4%) and P. wickerhamii (74.2%), and in contrast to that of Coccomyxa sp. (46.9%) 

and Trebouxiophyceae sp. (46.6%) (Table 2-1). 

Despite the wide range of sizes, it is noteworthy that the Trebouxiophyceae mitogenomes 

carry very similar gene content (Table 2-1). In fact, the mitogenomes from all five 

Chlorella species and M. conductrix share the same set of 32 protein-coding genes, three 

rRNAs, and 27 tRNAs, indicating that mitochondrial gene content is not drastically 

affected by the different lifestyles. In contrast to the stable gene content, introns are 

highly variable among Trebouxiophyceae mitogenomes (Table 2-2), ranging from a 

minimum of one intron (C. sp. ArM0029B and C. sorokiniana) to a maximum of 11 

introns (Trebouxiophyceae sp.). The large ribosomal RNA (rrnL) contains the most 

introns, although there is substantial variation in content among the Chlorella and M. 

conductrix species (Table 2-2 and Figure 2-1). The free-living C. sp. ArM0029B does not 

have any introns, and the free-living C. sorokiniana has only one, while the four 

endosymbiotic Chlorellales species have 3-7 introns (Figure 2-1). Homology searches 
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against all Trebouxiophyceae and Pedinophyceae mitochondrial and plastid genomes and 

against all nuclear rRNA introns shows many matches between mitochondrial and plastid 

rRNA introns, suggesting the transfer of some rRNA introns between organelles. 

To compare the structural diversification of the study group, we examined the syntenic 

segments of the genomes (Figure 2-2A), which showed there were a large number of 

inversion and/or translocation events occurred during Chlorellales evolution. However, 

the C. sp. ATCC30562 and C. variabilis displayed a highly conserved genome order in 

addition to the similarities in terms of genome size, gene content, AT content and intron 

content. This implies that they share the most recent common ancestor and are very 

closely related species.  

Comparative analysis of Chlorellales plastid genomes 

The plastid DNA sequences from C. heliozoae, C. sp.ATCC30562 and M. conductrix 

also have circularly mapping structures, with lengths of 124,353 bp, 124,881 bp, and 

129,436 bp, respectively (Figure S2). They harbored 79 (C. heliozoae and C. sp. 

ATCC30562) or 78 (M. conductrix) protein-coding genes (Table 2-1). The missing gene 

in M. conductrix is tRNA(Ile)-lysidine synthetase (tilS), which is responsible for 

modifying the CAU anticodon of a unique tRNA that allows the amino acid change to 

isoleucine (Fabret et al. 2011). Comparing the general plastome structure features of 

these endosymbionts with other selected Trebouxiophyceae with various lifestyles, there 

is no indications of reduction in genome size or gene content. These endosymbiont 

plastid genomes show more similarities with free-living collections instead of parasitic 

counterparts according to plastome size and gene content. The significant gene loss 
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occurred in Helicosporidium sp.and P.wickerhamii due to loss of photosynthesis ability 

(de Koning and Keeling 2006, Pombert and Keeling 2010).  

The AT content has the irregular distribution in this group: two of the four free-living 

algae (C. sp. C-169 and Trebouxiophyceae sp.) have less than 50% AT content; whereas 

the free-living C. sp. ArM0029Band C. sorokiniana, (66.1% and 65.9% in AT content, 

respectively) have AT content that is very close to the endosymbiotic Chlorellales 

lineages (64.7%-66.1%) lineages. The parasitic, non-photosynthetic algae 

(Heliosporidium sp. and P. wickerhamii) have the highes AT together with a drastic 

decrease in genome size (Table 2-1). Altogether, this suggests that the AT content does 

not significantly relate to their lifestyles. 

A comparison of intron content among species also indicates substantial variation (Table 

2-2). M. conductrix was determined to be extremely intron rich with 10 introns and four 

of them (petB, psaC, psbD and rps12) were not found in other comparable 

trebouxiophytes. The other taxa in Chlorellales contain 1-3 introns and the unclassified 

Trebouxiophyceae sp. retains five introns (Table 2-2).  

Plastome structural and organization of the recently sequenced endosymbiotic 

chlorophytes and C. variabilis were compared with two free-living green algae. All of the 

six comparable species do not carry the inverted repeat (IR) region (Figure 2-2B) (Jeong 

et al. 2014). Overall, the plastomes are highly conserved with large blocks having 

complete synteny and a few inversion events (Figure 2-2B). It is also difficult to tell the 

discrepancies correlated to their living styles. Notably, C. sp. ATCC30562 and C. 

variabilis display exactly the same gene order which is consistent with the highly 



45 

similarity in their mitogenome. Moreover, most of the gene clusters conserved in green 

algae (Turmel et al. 2009) are also conserved in these three endosymbionts. Our result 

also shows that the gene order of “trnC-rpoB-rpoC1-rpoC2-rbcL-rps14” matches M. 

conductrix and C. sp. ATCC30562, but not in C. heliozoae, which contradicts a previous 

study suggesting that this cluster is well conserved and may be specific to Chlorella 

species (Jeong et al. 2014). The overlap of the 5’ coding region of the psbC with the 3’ 

coding region of the psbD gene, which occurs in most of the Trebouxiophyceae 

sequences (Jeong et al. 2014), also exists in all three sequenced endosymbiotic algae. 

Phylogenetic analysis 

In order to evaluate and understand evolution within Chlorophyta, we performed ML 

(GTR+G+I model) and BI (GTR+G model) phylogenetic analyses on data sets containing 

32 mitochondrial genes or 74 plastid genes from the three new Chlorellaceae genomes 

plus selected green algae of which complete organelle genome are available (Table S1). 

The phylogenetic relationships of the three endosymbionts within the Chlorophyta clade 

was investigated using the phylogenetic trees inferred from 74 plastid genes (Figure 2-

3A) and 32 mitochondrial genes (Figure 2-3B) of 22 chlorophytes and six streptophytes. 

Consistent phylogenies constructed by either the plastid or mitochondrial genes indicate 

that all five Chlorella species and M. conductrix group together with maximal support 

(100%). In other words, both trees, using ML and BI method, show strong support that 

M. conductrix is nested in the clade of Chlorella. This indicates that Micractinium should 

not be considered as a separate genus, but should be considered a species of Chlorella 

(Hoshina Ryo et al. 2010). The grouping of C. variabilis and C. sp. ATCC30562 also 
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received maximal statistical support in both trees (Figure2-3), which is accordant with the 

strong similarities in their plastomes and mitogenomes. 

The phylogenies also suggest that the endosymbiont lifestyle evolved multiple times in 

Chlorella. The common ancestor of four endosymbionts and the two free-living Chlorella 

species received maximal support in both analyses, as reflected by the BS value and 

posterior probability (PP) of 100% (Figure 2-3). In both trees, C. sp. ArM0029B, a free-

living green alga, was positioned as sister taxa with an endosymbiotic one, M. conductrix 

with strong support (BS>85%, PP=100%); while the free-living C. sorokiniana, was 

sister to the endosymbiotic C. heliozoae (BS=73%, PP=100% inferred from plastid 

genes). The closer genus to Chlorella spp. was the two parasitic non-photosynthetic P. 

wickerhamii and Helicosporidium sp. with strong support from the mitochondrial dataset 

(100% BS/PP support) (Figure 2-3B). Given the phylogenetic affiliation, the four 

endosymbiont species do not group together in a single clade. Therefore, the non-

monophyletic endosymbionts assemblage implies that the endosymbiont lifestyle evolved 

more than once in Chlorella. Alternative topologies constrain the endosymbiotic lineages 

to a single clade forming a monophyletic group were rejected by the Shimodaira-

Hasegawa (SH) Test (Shimodaira 2002) with P<0.05 (P=0.000*). This result further 

supports the multiple evolution events, consistent with the previous study of symbioses in 

P. bursaria (Hoshina and Imamura 2008). 
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DISCUSSION 

A lack of organellar genome reduction in the green algal endosymbionts 

In this study, we determined the complete mitochondrial and plastid genomes from C. sp. 

ATCC30562, C. heliozoae and M. conductrix to elucidate the genomic effects of an 

endosymbiotic lifestyle and their phylogenetic positions within Trebouxiophyceae. These 

three newly sequenced species are all endosymbionts, isolated from P. bursaria (C. sp. 

ATCC30562 and M. conductrix) or A. turfacea (C. heliozoae). However, they retained a 

regular genome size with an intact organellar gene content (Table 2-1), providing no 

evidence of functional degeneration as seen in the cases of algal nucleomorph genomes 

or endosymbiotic bacteria. In the plastid genome, the newly sequenced green algal 

species retained 78 or 79 genes, which is the same number compared with free-living 

trebouxiophyte species (C. sp. ArM0029B, C. sorokiniana, C. sp. C-169 and 

Trebouxiophyceae sp.) and another endosymbiotic Chlorella species (C. variabilis), but 

contrasts with the two heterotrophic algae (Helicosporidium sp. and P. wickerhamii) that 

have been sequenced from trebouxiophytes. P. wickerhamii is a nonphotosynthetic, 

predominantly free-living alga that is also an opportunistic vertebrate parasite, and it has 

lost all photosynthesis-related genes. Helicosporidium sp. is an obligate parasite of 

invertebrates and it lacks all genes for function in photosynthesis. Other than the selected 

species in our study, the loss of plastid-encoded photosynthesis-related genes or even the 

complete plastid genome has also been documented many times, such as Cryptomonas 

paramecium and Polytomella (Donaher et al. 2009, Smith et al. 2013). These examples 

suggest that the loss of photosynthesis causes the loss of most or all of the related genes, 

leading to dramatic changes in plastomes. Conversely, our three endosymbiont species 
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did not show a reduction in plastome gene content. Thus, these endosymbiotic algae 

appear to need the ability to create energy for themselves or for their hosts by 

photosynthesis. This ability also allows them to grow outside of their host cells, although 

they may need the additional resources, such as nitrogen and vitamins, in order to 

survive.  

As to the mitogenome, based on the comparison among species in this study, there is a 

very similar set of protein-coding genes within the various trebouxiophytes with different 

lifestyles. This is to be expected since the mitochondrial genes are essential for 

respiration, and this metabolism process is required for algae in all living styles. In fact, 

there are limited examples of massive reduction or loss of the mitochondrial genome in 

eukaryotes. The mitogenome of  the colorless green alga Polytomella parva encodes only 

seven protein genes in two linear mitochondrial DNA components (Fan and Lee 2002). 

Several other green algae, like C. reinhardtii and other members of the 

Chlamydomonadales,  also have a reduced mitogenome relative to other green algae 

(Gray and Boer 1988). In addition, the recently described mitogenomes from 

hemiparasitic mistletoes (Viscum spp.) have lost all genes for complex I of the 

mitochondrial electron transport chain (Petersen et al. 2015, Skippington et al. 2015). 

Moreover, mitogenome reduction has also occurred in parasitic protists, such as the 

human malarial parasite Plasmodium falciparum, whose mitogenome harbors only three 

protein genes with only ~6 kb in genome size (Feagin 1992). Loss of respiration-related 

genes also occurred in those lineages in which the mitochondrion was converted to a 

mitochondrion-related organelle (e.g. hydrogenosome, mitosome), which retains very 

limited metabolic capacity. Trichomonas vaginalis has a relic mitochondrion called a 
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“hydrogenosome”, which retains the incomplete TCA cycle and electron transport chain 

(Bui et al. 1996, Lindmark and Müller 1973). Another mitochondrion-derived organelle 

called a “mitosome” has very limited metabolic capacity, and a genome that is even more 

reduced than hydrogenomes. These mitosomes have been found in species such as 

Entamoeba histolytica (Clark and Roger 1995), Mastigamoeba balamuthi (Gill et al. 

2007), Encephalitozoon cuniculi (Goldberg et al. 2008).  

Overall, our results did not show any evidence of genome reduction for the 

endosymbiotic green algae, in contrast to the reduction in genome content observed for 

endosymbiotic bacteria and other endosymbiotic algae. It is possible that the degenerated 

organellar genomes will only occur once the endosymbiotic relationship becomes fully 

obligatory for both endosymbiont and host, or if the relationship becomes parasitic rather 

than symbiotic, as observed in parasitic land plants and parasitic algae. Thus, further 

investigation with broader and deeper sampling of organisms with various lifestyles will 

be necessary to better address this question. 

Intron variation in organelle genome 

In the mitochondrial genome of Trebouxiophyceae species, two protein-coding genes 

(cob and cox1), the rrnL ribosomal RNA gene and three tRNAs were split by intron(s). 

The intron located in cob gene is unique to C. heliozoae and was not detected in all the 

other trebouxiophytes, assuming that this intron propagated only in the specific lineage. 

Interestingly, the cox1 gene was split into two exons by the group I intron in C. heliozoae 

and M. conductrix, whereas no intron was detected in C. sp. ATCC30562 and C. 

sorokiniana. Previous studies have demonstrated that the cox1 intron was found in C. sp. 
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ArM0029B, Chlorella vulgaris, Helicosporidium sp. and P. wickerhamii but not in C. sp. 

C-169 and Trebouxiophyceae sp. (Jeong et al. 2014, Pombert and Keeling 2010, Servin-

Garciduenas and Martinez-Romero 2012, Smith et al. 2011, Wolff et al. 1994). The rrnL 

introns are also sporadically distributed among algae. All the selected trebouxiophyceans 

except C. sp. ArM0029B have intron(s) in rrnL, with their intron numbers varying among 

species (1-7 introns) (Table 2-2). Notably, the endosymbiotic lineages generally retain 

more introns than the free-living taxa in rrnL. On the contrary, the introns in tRNAs are 

distributed only in the two free-living species C. sp. C-169 and Trebouxiophyceae sp. 

(Table 2-2). The sporadic distribution of these introns suggest that some green algal 

species have acquired these introns horizontally, which has been observed for several 

introns in other plant lineages (Sanchez-Puerta et al. 2008). If horizontal transfer is the 

explanation for the distribution of introns within Chlorellales, it raises the question of the 

intron donors: are they other algal species, other genomes within the algae, the 

endosymbiotic hosts or some other evolutionarily distant species? On the other hand, we 

cannot completely eliminate the possibility that these introns were gained at the common 

ancestor of the Chlorellales and then lost multiple times in the specific lineages. Thus, it 

is still unclear how introns spread in green algae and comprehensive analysis of intron 

distribution among green algae may shed light on this mystery. 

In the plastid genome, the three endosymbiotic species tend to be intron rich, possessing 

10 introns in M. conductrix, three in C. sp. ATCC30562 and two in C. heliozoae. The 

presence or absence of introns in Trebouxiophyceae plastomes appears to be sporadic and 

diverse. Group I introns were supposed to be found in diverse lineages and at extremely 

unbalanced frequencies (Haugen et al. 2005), so our results consistent with this 
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statement. Moreover, C. heliozoae and M. conductrix both have rrnL introns in the 

mitogenome and plastome, but the introns do not show any similarity between the two 

organelles. This suggests that there was no horizontal transfer of the rrnL introns between 

organelles. Further phylogenetic and structural analyses with increased sampling of new 

algal mitogenomes are needed to assess whether these introns were acquired horizontally. 

Endosymbionts evolve from different origins 

The endosymbiotic lifestyle has evolved multiple times in green algae, as evidenced by 

the multiple independent clades of endosymbiont algae in a phylogenetic tree based on 

the ITS2 or 18S rRNA sequences (Hoshina et al. 2006). Even within the Chlorella clade, 

endosymbionts did not cluster together in molecular phylogenies, suggesting that this 

lifestyle evolved multiple times (Hoshina and Imamura 2008, Krienitz et al. 2004, 

Summerer et al. 2008). However, the main limitation in these previous studies was the 

very small datasets used to construct the tree, such as the dataset containing only 1687 bp 

of 18S rRNA sequences. In our study, phylogenies inferred from the plastid (74 genes) 

and mitochondrial (32 genes) dataset revealed that the recent sequence-generated 

endosymbionts among Chlorella species are polyphyletic. Two paramecian 

endosymbionts C. sp. ATCC30562 and M. conductrix did not cluster together, but instead 

each of them were nested with another free-living organism, providing evidence for 

multiple origins of the endosymbiotic lifestyle. Overall, the present results combined with 

previous studies (Hoshina and Imamura 2008, Summerer et al. 2008) strongly suggest 

that the endosymbiotic lifestyle arose multiple times in Chlorellales. Similarly, some 

algal symbionts in lichens were found to be closely related, yet these lichen 
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endosymbioses still appear to have independent origins (Piercey-Normore and Depriest 

2001, Zoller and Lutzoni 2003).  

Taxonomic treatment of Micractinium 

The M. conductrix species used in our study is an algal endosymbiont of the ciliate P. 

bursaria, but the classification and identification of the P. bursaria endosymbionts are 

still unclear or controversial (Hoshina and Imamura 2008). Based on the phylogenetic 

analyses inferred from almost all mitochondrial and plastid genes, our study has indicated 

that M. conductrix clusters within the group of Chlorellales, grouping specifically as the 

sister taxon to C. sp. ArM0029B. If this is the true classification, why was M. conductrix 

given a separate genus name and not named a species of Chlorella? Initially, the genus 

name “Micractinium” was given to those hydra symbionts which show the genetic 

distinct features from the known algae (Hoshina 2011). Then, there was an argument 

between “Micractinium resseri” and “Micractinium conductrix” because the 

Micractinium reisseri is the P. bursaria endosymbiotic alga while the name “conductrix” 

originally referred to the endosymbionts of Hydra. Interestingly, the species used in our 

study was isolated from P. bursaria as well.  

To classify the species into genus Chlorella, it should meet the requirements in three 

criteria: morphology, cytology and molecular phylogeny. Hoshina et al.(2010) has 

demonstrated that the M. reisseri fulfill all of these requirements. Therefore, it is possible 

that the so called “M. conductrix” is the “M. reisseri” which may nest together with true 

Chlorella species. However, previous study has differentiated Micractinium and 

Chlorella by their ITS sequences (Luo et al. 2010). 
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We speculated that the M. conductrix species used in our study should be a Chlorella 

species mainly due to the robust organellar genomic phylogenies. Because of the 

difficulties and limitations of algal identification based on the morphological and 

ultrastructural characters, our results suggest that organellar genome phylogenies may be 

the preferred method for classification (Hoshina et al. 2004, Mattox 1984, Turmel et al. 

2009). Similarly, the newly described chloroplast genomes in Trebouxiophyceae and 

Pedinophyceae have provided valuable insights into the relationships within the 

Trebouxiophyceae (Lemieux et al. 2014). However, our speculation was limited by the 

single sample from the genus Micractinium. To more fully address the issues discussed 

above, broad sequencing of organellar genomes from multiple Micractinium taxa may 

help to identify their taxonomic position. 
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TABLES 

Table 2-1. General features comparison among selected Trebouxiophyceae 

 

 

Table 2-2. Comparison of mitochondrial and plastid genome intron content 

 

  

Size (bp) A+T (%) Protein-coding tRNAs rRNAs Introns Size (bp) A+T (%) Protein-coding tRNAs rRNAs Introns
Chlorella  ArM0029B 65049 71.5 32 27 3 1 119989 66.1 79 32 3 1
Chlorella heliozoae 62477 68.3 32 27 3 7 124353 64.7 79 31 3 2
Chlorella sp. ATCC30562 79601 71.9 32 27 3 7 124881 66.1 79 32 3 3
Chlorella sorokiniana 52528 70.9 32 27 3 1 109811 65.9 78 31 3 2
Chlorella variabilis 78500 71.8 32 27 3 6 124579 66.1 79 32 3 3
Coccomyxa sp.  C-169 65497 46.9 30 26 3 5 175731 49.3 79 33 3 1
Helicosporidium sp. 49343 74.4 32 25 3 4 37454 73.1 26 25 3 1
Micractinium conductrix 74708 70.6 32 27 3 5 129436 65.2 78 32 3 10
Prototheca wickerhamii 55328 74.2 30 26 3 5 55636 68.8 40 28 3 1
Trebouxiophyceae sp. 74423 46.6 30 23 3 11 149707 43.8 79 33 3 5

Mitochondrial Genome Plastid Genome
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FIGURES 

 

 

 

Figure 2-1. Comparison of mitogenome rrnL intron content. The exons are marked by 

gray rectangular boxes, connecting by the intron regions (black lines). Introns are ordered 

by name labelling under lines. Homologous exon regions are highlighted by gray shadow. 

Species name are shown on the left and the maps are drawn approximately to scale. 
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Figure 2-2. Selected green algae organellar genome synteny. (A) Mitochondrial genome 

synteny. (B) Plastid genome synteny. Images were generated using Mauve with default 

settings (Darling 2004). Color-coded syntenic blocks indicate conserved segments 

identified by Mauve. Plots of sequences similarity are shown within each syntenic block. 

Regions with no color indicate no detectable homology between the two genomes with 

the settings used in Mauve. The species names were labeled on the right.  
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Figure 2-3. Phylogenetic analysis of selected trebouxiophytes by (A) 74 plastid genes 

and (B) 32 mitochondrial genes. The trees shown were generated by maximum likelihood 

(left) and Bayesian (right) inference indicated at each node. Weak support values (<50%) 

were eliminated from the figure. Trees were rooted on streptophytes. The scale bars were 

shown at the bottom right for each tree.  
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SUPPORTING INFORMATION 

Table S1. GenBank accession numbers for taxa used in analysis 
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Figure S1. Mitogenome maps of the C. heliozoae, C. sp. ATCC30562 and M. conductrix. 

Outer genes are transcribed counter-clockwise; inner genes are transcribed clockwise. 

Gene and intron colors correspond to the functional categories listed in the key at the 

bottom right. GC content is shown on the inner circle by dark grey bars. The map was 

drawn with OgDraw (http://ogdraw.mpimp-golm.mpg.de/). 
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Figure S2. Plastid genome maps of the C. heliozoae, C. sp. ATCC30562 and M. 

conductrix. Outer genes are transcribed counter-clockwise; inner genes are transcribed 

clockwise. Gene and intron colors correspond to the functional categories listed in the 

key at the bottom right. GC content is shown on the inner circle by dark grey bars. The 

map was drawn with OgDraw (http://ogdraw.mpimp-golm.mpg.de/).  
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ABSTRACT 

In parasitic plants, the reduction in plastid genome (plastome) size and content is driven 

predominantly by the loss of photosynthetic genes. The first completed mitochondrial 

genomes (mitogenomes) from parasitic mistletoes also exhibit significant degradation, 

but the generality of this observation for other parasitic plants is unknown. We sequenced 

the complete mitogenome and plastome of the hemiparasite Castilleja paramensis 

(Orobanchaceae) and compared them with additional holoparasitic, hemiparasitic and 

nonparasitic species from Orobanchaceae. Comparative mitogenomic analysis revealed 

minimal gene loss among the seven Orobanchaceae species, indicating the retention of 

typical mitochondrial function among Orobanchaceae species. Phylogenetic analysis 

provided evidence for horizontal transfer of six genes, lending further support that the 

parasite lifestyle facilitates transfer among species. However, the mobile cox1 intron was 

acquired vertically from a nonparasitic ancestor, arguing against a role for plant 

parasitism in the horizontal acquisition or distribution of this intron. The C. paramensis 

plastome has retained nearly all genes except for the recent pseudogenization of four 

subunits of the NAD(P)H dehydrogenase complex, indicating a very early stage of 

plastome degradation. These results lend support to the notion that loss of ndh gene 

function is the first step of plastome degradation in the transition to a parasitic lifestyle. 
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INTRODUCTION 

One of the defining characteristics of plants is the presence of a plastid, which enables the 

fixation of carbon to produce organic molecules via photosynthesis. Parasitic plants 

represent a dramatic departure from the typical autotrophic lifestyle of plants because 

they obtain organic carbon sources heterotrophically, using specialized organs called 

haustoria to make direct connections with the vascular tissue in the roots or shoots of a 

host plant. Parasitic plants, which comprise approximately 1% of all angiosperms 

(Westwood et al. 2010), can be subdivided based on the extent of their reliance on 

heterotrophy: hemiparasites retain the ability to photosynthesize and obtain only some of 

their nutrients from their hosts, while holoparasites have lost photosynthetic ability and 

must obtain all of their nutrition from hosts. Mycoheterotrophic plants, which obtain 

nutrients from fungi associated with other plants (Merckx et al. 2009), do not utilize 

haustoria for obtaining nutrients are therefore distinct from the haustorial parasitic plants 

under consideration in this study. 

The transition from an autotrophic to a heterotrophic lifestyle has had a dramatic impact 

on the plastid genomes (plastome) of parasitic plants. Studies of parasitic plant plastomes 

have established a wide range of genomic degradation, defined primarily by the presence 

or absence of photosynthetic activity. For example, the hemiparasite Schwalbea 

americana (Orobanchaceae) possesses a large 160 kb plastome with minimal 

pseudogenization/loss of only six ndh genes, which encode subunits of the plastid 

NAD(P)H dehydrogenase complex (Wicke et al. 2013). Plastomes of hemiparasitic 

mistletoes (Viscaceae) are slightly more degraded, exhibiting both a reduction in size 
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(down to 126–147 kb) and the loss of all 11 ndh genes plus a small number (1–6) of non-

photosynthetic genes (Petersen et al. 2015a). Within Cuscuta (Convolvulaceae), the four 

sequenced plastomes range from 85 to 125 kb in size and have experienced more 

extensive gene loss, yet they still retain all (or all but one) photosynthetic genes (Funk et 

al. 2007, McNeal J. R. et al. 2007), which is consistent with at least low levels of 

photosynthetic activity (van der Kooij et al. 2000). Other Cuscuta species are clearly non-

photosynthetic and their plastomes have lost numerous photosynthetic and non-

photosynthetic genes (Braukmann et al. 2013, van der Kooij et al. 2000). Plastomes in the 

holoparasitic species of Orobanchaceae are also heavily degraded (Cusimano and Wicke 

2016, Li et al. 2013, Wicke et al. 2013, Wolfe et al. 1992), most extensively in 

Conopholis americana whose plastome is only 46 kb in size with just 21 intact protein-

coding genes. Even greater genomic reduction was reported in Pilostyles 

(Apodanthaceae), whose plastomes are reduced to just 11–15 kb and may contain only 

five or six functional genes(Bellot and Renner 2016). In some holoparasites, such as 

Rafflesia lagascae (Rafflesiaceae), the entire plastome may have been lost (Molina et al. 

2014). 

Much less is known about the effects of a parasitic lifestyle on the mitochondrial 

genomes (mitogenomes) of plants. In fact, only a single genus of parasitic plants has a 

completely sequenced mitogenome, from the hemiparasitic mistletoes Viscum 

scurruloideum  and Viscum album, along with draft genomes from two additional Viscum 

species (Petersen et al. 2015b, Skippington et al. 2015). Compared with other land plants, 

V. scurruloideum has the smallest mitogenome (66kb) and all four Viscum sequences 

have lost functional copies of all nine nad genes encoding subunits of the mitochondrial 
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NADH dehydrogenase complex I, the first reported loss of this complex from any 

multicellular eukaryote (Skippington et al. 2015). In contrast, the draft mitogenome from 

the holoparasite R. lagascae has a typical size (estimated at >300 kb) for an angiosperm 

and contains a nearly complete set of protein-coding genes, including at least seven of 

nine nad genes (Molina et al. 2014).  

Despite the limited mitogenomic information for parasitic plants, it is well established 

that their mitochondrial DNA undergoes frequent horizontal transfer, which is likely 

facilitated by the direct physical connection between parasitic and host plants (Davis and 

Xi 2015, Mower Jeffrey P et al. 2012a, Sanchez-Puerta Maria Virginia 2014). Perhaps 

the best studied example of plant horizontal transfer involves the mobile group I intron of 

the cytochrome oxidase subunit 1 (cox1) gene. This intron was originally acquired from 

fungi and has been subsequently transferred many times during angiosperm evolution 

(Cho et al. 1998, Sanchez-Puerta M. V. et al. 2008, Vaughn et al. 1995). Intriguingly, this 

cox1 intron is highly overrepresented in the parasitic plants that have been examined to 

date, suggesting that parasitic plants may serve as mediators of horizontal intron transfer 

among angiosperms (Barkman et al. 2007). Although this hypothesis was not supported 

in an analysis with limited sampling of parasitic plants (Barkman et al. 2007), denser 

sampling of parasites and closely related nonparasitic taxa is needed before the 

hypothesis should be rejected. 

The Orobanchaceae is an ideal family for studies on parasitic plant evolution because it 

contains the full range of trophic specialization, including a nonparasitic lineage 

(Lindenbergia), numerous hemiparasitic lineages with varying degrees of photosynthetic 

activity (e.g., Bartsia, Castilleja, Schwalbea, Striga), and at least three transitions to 
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holoparasitism (e.g., Lathraea, Orobanche, Hyobanche) resulting in a complete loss of 

photosynthesis (Bennett and Mathews 2006, McNeal Joel R et al. 2013, Young et al. 

1999). Complete plastome sequences are available from 12 species in Orobanchaceae, 

but only from a single hemiparasite (S. americana), while data from the mitogenome in 

this family is lacking. To improve our understanding of organellar genomic evolution in 

hemiparasitic plants, we sequenced the complete mitochondrial and plastid genomes from 

the hemiparasite Castilleja paramensis. Furthermore, to assess mitogenomic diversity 

within the Orobanchaceae, we generated draft mitogenome sequences from six additional 

species representing the range of trophic diversity: the autotroph Lindenbergia 

philippensis, the hemiparisites Bartsia pedicularioides and S. americana, and the 

holoparasites Orobanche crenata, Orobanche gracilis, and Phelipanche ramosa. These 

sequences were compared to assess the degree of genomic degradation and the extent of 

horizontal gene transfer resulting from the parasitic lifestyle. 

MATERIALS AND METHODS 

Sample collection and organellar genome sequencing 

A C. paramensis individual was collected from a páramo in the department of Boyacá, 

Colombia on March 21, 2014 (voucher N. Pabón-Mora et al. 299, HUA). A B. 

pedicularioides individual was collected from a páramo in Cajas National Park, Ecuador 

on December 17, 2010 (voucher J. P. Mower et al. 2064, QCA). Total genomic DNA 

was extracted from silica-dried leaves using the Plant DNeasy Kit (Qiagen). DNA 

samples were sequenced on the Illumina HiSeq2000 platform at BGI (Shenzhen, China), 
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which generated 6 Gb (for B. pedicularioides) or 8 Gb (for C. paramensis) of 100-bp 

paired-end reads from an 800-bp library.  

Genome assembly and annotation 

Draft organellar genomes of C. paramensis and B. pedicularioides were assembled from 

the Illumina sequence reads with Velvet version 1.2.03 (Zerbino and Birney 2008) using 

multiple combinations of kmer (61, 71, 81, 91) and expected coverage (50, 100, 200, 500, 

1000) values, as described previously (Guo et al. 2014, Zhu et al. 2014). Organellar 

contigs were identified in each assembly by using default blastn searches with known 

organellar gene sequences from related Lamiales species as queries. For each targeted 

genome, the best assembly that maximized total mitochondrial or plastid length in the 

fewest number of contigs was used for further scaffolding. Scaffolding was performed by 

mapping read pairs onto the contig sequences using blastn (e-value ≤1x10-10, hit length 

≥90 bp, sequence identity ≥90%), and read pairs spanning two different contigs were 

used to infer contig joins and repeat regions. Using this strategy, circular-mappingplastid 

and mitochondrial genomes were assembled for C. paramensis, and a draft mitogenome 

was assembled for B. pedicularioides. The C. paramensis and B. pedicularioides 

mitogenome assemblies were annotated as described previously (Guo et al. 2016, Mower 

et al. 2012b, Zhu et al. 2014). The C. paramensis plastid genome was annotated using 

DOGMA (Wyman et al. 2004) followed by manual adjustment as necessary.  

To survey mitochondrial gene content in additional Orobanchaceae species, 454 

pyrosequencing data from a previous study (Piednoel et al. 2012) were downloaded from 

the NCBI sequence read archive (accession SRA047928) for one hemiparasite (S. 
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americana), three holoparasites (O. crenata, O. gracilis, P. ramosa)and one nonparasite 

(L. philippensis). The downloaded 454 data were assembled with Velvet 1.2.03 as 

described above using various pairwise combinations of kmer (41, 51, 61, 71) and 

expected coverage (5, 10, 20, 50, 100) values. Lower kmer and expected coverage values 

were required for these data sets given the lower amount of data available (<1 Gb total 

genomic DNA for each species), resulting in assemblies with 5–10x depth of 

mitochondrial sequence coverage for each species. Scaffolding was not performed 

because the reads were unpaired. The presence of mitochondrial genes and introns was 

scored by using blastn searches with mitochondrial gene sequences from other Lamiales 

species as queries against the best 454 assemblies. Gene and intron sequences of interest 

were manually extracted from these 454 assemblies for further analysis.  

Genes identified from each assembly were assessed for potential loss of function by 

searching for frameshifting indels and/or premature stop codons. Genes were scored as 

pseudogenes if the mutations disrupted >20% of their conserved domain structure, as 

defined by a search of the NCBI Conserved Domain Database 

(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi), or if >30% of the gene was 

disrupted overall. 

Phylogenetic evaluation of horizontal transfer 

Gene sequences were extracted from the Orobanchaceae mitochondrial assemblies in this 

study and from 42 additional seed plant mitogenomes available in GenBank (Table S1). 

These DNA sequences were translated using the standard genetic code and then aligned 

using MUSCLE version 3.8.31 (Edgar 2004). Individual protein alignments were reverse 

http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
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translated into codon-based nucleotide alignments using PAL2NAL (Suyama et al. 2006), 

and each codon alignment was trimmed of poorly aligned regions with Gblocks 0.91b 

(Castresana 2000) using relaxed parameters (t=c, b2=half+1, b4=5, b5=half). 

Phylogenetic analyses of trimmed codon alignments were performed using maximum-

likelihood in PhyML 3.0 (Guindon et al. 2010). A GTR+G+I model with four 

substitution rate categories was employed. Tree topologies, branch lengths, and rate 

parameters were optimized during the run. Branch support was calculated from 500 

bootstrap replicates. The resulting phylogenetic trees were examined for strong 

phylogenetic incongruence (≥80% bootstrap support) involving one or more 

Orobanchaceae sequences. 

Trees exhibiting strong incongruence of Orobanchaceae species in the initial survey were 

further evaluated to reduce the potentially artefactual effects of low taxon sampling and 

the presence of RNA editing in the gene sequences, both of which can negatively affect 

the accuracy of phylogenetic results (Bowe and dePamphilis 1996, Zwickl and Hillis 

2002). To increase taxon sampling, additional gene sequences from phylogenetically 

diverse eudicot species were obtained from GenBank and added to the alignments (Table 

S1). To mitigate the effects of RNA editing, experimentally determined RNA sequences 

from Arabidopsis thaliana (Giegé and Brennicke 1999), Oryza sativa (Notsu et al. 2002), 

Beta vulgaris (Mower J. P. and Palmer 2006), Citrullus lanatus(Alverson et al. 2010), 

Cycas taitungensis (Salmans et al. 2010), Liriodendron tulipifera (Richardson et al. 

2013), and Amborella trichopoda(Rice et al. 2013) were used to predict edit sites in the 

alignments using the PREP-Aln server (Mower J. P. 2009) with a cutoff value of 0.2. The 

predicted RNA sequences were aligned and trimmed and phylogenetic trees were 
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constructed with PhyML, as described above. Alternative topologies constraining the 

putative horizontally transferred sequences to their expected organismal position in the 

tree were compared to the ML tree using the SH Test as implemented in PAUP* 

(Swofford 2002). 

An angiosperm cox1 intron alignment containing sequences used in previous studies 

(Sanchez-Puerta M. V. et al. 2008, Sanchez-Puerta Maria V et al. 2011), including the 

intron from the Orobanchaceae parasite E. virginiana, was provided by Dr. Virginia 

Sanchez-Puerta. Additional Orobanchaceae cox1 intron sequences were extracted from 

their best assemblies generated in this study and then manually aligned to the data set. 

Alignments were trimmed of poorly aligned regions with Gblocks 0.91b using relaxed 

parameters (b2=half+1, b4=5, b5=half). The final trimmed data set contained 958 aligned 

nucleotide positions and 194 intron sequences, representing 191 angiosperm species from 

60 families (Table S2). The cox1 intron alignment was then used to construct a 

phylogenetic tree with PhyML as described above. 

RESULTS 

The mitochondrial genome of the hemiparasite Castilleja paramensis 

The complete mitogenome of C. paramensis maps as a single circular chromosome that is 

495,499 bp in length (Figure 3-1A). The genome includes a total of 67 genes (34 protein-

coding, 3 rRNA, and 30 tRNA) and 23 introns (17 cis-spliced and 6 trans-spliced). In 

addition to these functional elements, repeats and MIPTs (mitochondrial DNA of plastid 

origin) comprise a substantial component of this genome (Figure 3-1B). There is one 
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large repeat of 8.7 kb, 15 intermediate repeats from 100 to 447 bp, and 32 small repeats 

between 50 and 100 bp. Together, these repeats cover 2.7% (13,525 bp) of the genome. A 

total of 43 MIPTs were also identified. Ranging in size from 116 bp to 7.7 kb, these 

MIPTs cover 16.6% (82,133 bp) of the mitogenome, which is the highest MIPT 

percentage observed in any plant yet sequenced. The MIPTs contain 55 full-length or 

nearly full-length plastid genes, about half of which are pseudogenes based on the 

presence of frameshifting indels and/or premature stop codons. With the exception of the 

MIPTs and repeats, the depth of sequencing coverage is consistently at ~50x throughout 

most portions of the mitogenome. The greatly increased coverage depth at most MIPTs is 

likely due to mismapping of reads in the data set that were derived from the plastome. 

The two-fold increase in coverage depth of the 8.7 kb repeat relative to the rest of the 

mitogenome is an indication that this region is in fact present in two copies in the 

genome, consistent with its status as a repeat. 

Limited gene and intron loss from the parasitic Orobanchaceae mitogenomes 

In contrast to the extensive mitochondrial gene and intron loss observed in mistletoe, 

comparative mitogenomic analysis of seven Orobanchaceae species—including a 

nonparasite (L. philippensis), three hemiparasites (B. pedicularioides, C. paramensis, S. 

americana), and three holoparasites (O. crenata, O. gracilis, P. ramosa)—revealed only 

minor variation in gene and intron content (Figure 3-2). The mitogenomes of all seven 

Orobanchaceae species share 29 protein-coding genes. This conserved set encompasses 

23 of the 24 core genes that are nearly universally present in angiosperm mitogenomes 

(Adams et al. 2002), including nine subunits for the NADH dehydrogenase complex 

(nad1, 2, 3, 4, 4L, 5, 6, 7, 9), the apocytochrome b gene for the cytochrome bc1 complex 
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(cob), three subunits for the cytochrome c oxidase complex (cox1, 2, 3), four of the five 

subunits for the ATP synthase complex (atp1, 4, 6, 8), the four cytochrome c maturation 

factors (ccmB, C, Fc, Fn), an intron maturase (matR), and a protein translocase 

(mttB/tatC).For the remaining ATP synthase subunit (atp9), the gene was detected in all 

species except L. philippensis. However, the lack of detection of this very short gene 

(only 225 bp) should be interpreted with caution because it could be an artefact of an 

incomplete draft assembly. 

There is more variability in the presence of genes encoding subunits of the ribosomal 

protein and succinate dehydrogenase complexes among the Orobanchaceae species 

(Figure 3-2). Six protein members of the large (rpl10, 16) and small (rps3, 4, 12, 14) 

ribosomal subunits were conserved in all seven Orobanchaceae mitogenomes, whereas 

the remaining seven ribosomal proteins and both succinate dehydrogenase genes were 

lost or pseudogenized in at least one species. Also, several genes (O. gracilis rps7, O. 

crenata and P. ramosa rps13, C. paramensis and L. philippensis sdh3) were tentatively 

scored as present and putatively functional in this study, although they are truncated by 

20–30% and may be pseudogenes. Further analysis is required to assess whether they 

retain functionality. 

In terms of intron content, all examined Orobanchaceae species contain either 22 or 23 

introns (Figure 3-2). In all seven Orobanchaceae species, there are 15 introns removed by 

cis splicing and 6 by trans splicing. All seven species lack cox2-i1, nad7-i3, and rpl2-i1, 

as do other sequenced Lamiales species (e.g., Boea, Mimulus), suggesting that the introns 

were lost early in Lamiales evolution prior to the radiation of Orobanchaceae. Within the 

Orobanchaceae, the cox2-i2 intron was uniquely lost from B. pedicularioides, while in 
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the rps10 pseudogenes from O. crenata and O. gracilis, remnants of the rps10 intron are 

still retained. 

Evidence for horizontal transfer of Orobanchaceae mitochondrial genes 

We used phylogenetic analysis to investigate horizontal transfer involving 

Orobanchaceae mitochondrial genes. In an initial genomic survey, we identified six genes 

(nad4L, rpl5, rps1, rps7, rps10, sdh3) exhibiting phylogenetic incongruence with strong 

bootstrap support (87–100%) for the position of one or more Orobanchaceae parasites 

(Figure S2). To evaluate the robustness of these initial results, we increased taxon 

sampling by adding gene sequences from GenBank to the data sets (Table S1) and used 

predicted RNA sequences instead of DNA sequences to eliminate the potentially 

confounding effects of RNA edit sites in a second round of phylogenetic analyses (Figure 

3-3). 

For most genes, the results between the DNA (Figure S2) and RNA (Figure 3-3) analyses 

consistently provided moderate to strong support for phylogenetic incongruence, 

implicating a horizontal origin for these Orobanchaceae mitochondrial genes. In the rpl5 

tree, O. crenata grouped unexpectedly with Salvia in both the DNA analysis (87%) and 

the RNA analysis(72%). For rps1, the O. crenata and Phelipanche pseudogenes grouped 

strongly with Daucus in Apiales (98% DNA; 96% RNA) rather than with Solanales, the 

closest relatives to Orobanchaceae in the data set. In the rps7 tree, three Orobanchaceae 

species (Bartsia, O. gracilis, and Schwalbea)were strongly excluded (89% DNA, 81% 

RNA) from their expected position within the lamiids clade, represented by Asclepias, 

Daucus, Panax, and Rhazya. Instead, O. gracilis grouped unexpectedly with Vitis (85% 
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in both analyses), while Bartsia and Schwalbea did not associate strongly with any taxa. 

The O. gracilis rps10 gene was moderately to strongly excluded from its expected 

position within the Lamiales clade (88% DNA; 76% RNA), but it did not form a strongly 

supported association with any other taxa. Similarly, the Phelipahe sdh3 gene was 

strongly excluded from the Lamiales clade (96% in both analyses) but did not associate 

closely with any other taxa. Alternative topologies constraining the putative horizontally 

transferred genes to their expected phylogenetic position based on vertical transfer 

(shown as red dots in Figure 3-3) were rejected by an SH Test for rps1 (P=0.005), rps7 

(P=0.008), rps10 (P=0.002), and sdh3 (P=0.004), but could not be rejected for the rpl5 

gene (P=0.118). 

For the nad4L gene, the DNA analysis recovered, with maximal support (100%), an 

unusual long-branched clade that included the two Orobanche sequences plus Malus 

(Figure S2). However, examination of RNA editing distribution in this alignment 

revealed that this anomalous clade was caused by the convergent loss of nearly all RNA 

editing sites, from 15 sites in most species to only a single site in the Orobanche and 

Malus sequences, most likely as a result of retroprocessing (i.e., the genomic integration 

of a mature, edited transcript). In the RNA analysis, this anomalous clade was not 

recovered (Figure 3-3). Instead, the two Orobanche sequences clustered unexpectedly 

with Symphoricarpos with weak support (54%). Overall, the nad4L DNA and RNA trees 

are highly unresolved with generally poor bootstrap support, suggesting that there is little 

phylogenetic information provided by this small gene. Nevertheless, the phylogenetic 

position expected for a vertical transfer scenario (i.e., Orobanche with Phelipanche) was 

rejected by an SH Test (P=0.012), lending further support for a horizontal transfer event. 
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The Orobanchaceae cox1 intron was acquired vertically from a non-parasitic 

ancestor 

Previous studies have identified the mobile cox1 intron in a small fraction of 

angiosperms, between 4% and 25% of the hundreds of examined species in the two most 

extensive analyses (Sanchez-Puerta M. V. et al. 2008, Sanchez-Puerta Maria V et al. 

2011). In contrast to the general scarcity of this intron among angiosperms, it was 

previously observed that a large fraction ofparasitic plants (15 out of 17 examined 

species, representing 12 distinct parasitic lineages) possess the intron, including E. 

virginiana, the only Orobanchaceae parasite to be examined thus far (Barkman et al. 

2007). In agreement with this observation, we confirmed the presence of this intron in all 

six parasitic Orobanchaceae species examined in the current study, and also in the 

nonparasitic L. philippensis (Figure 3-2).  

The mobile nature of the cox1 intron, coupled with the overrepresentation of this intron in 

parasitic plants and the fact that parasitic plants are known to facilitate the horizontal 

transfer of mitochondrial DNA among species (Davis and Xi 2015, Mower Jeffrey P et 

al. 2012a, Sanchez-Puerta Maria Virginia 2014), raises two possibilities: 1) parasitic 

plants may frequently transfer this intron to other angiosperms, explaining the abundant 

horizontal transmission of the intron among angiosperms, and 2) parasitic plants may 

frequently acquire this intron from other angiosperms, explaining the overrepresentation 

of the intron in parasitic plants. Both hypotheses can be tested phylogenetically. If 

parasitic plants are frequent donors of the intron to other angiosperms, then we would 

expect to find the introns of recipient angiosperms nested within the parasitic plant clade 

of introns. If parasitic plants are frequently receiving the intron from other angiosperms, 
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then we would expect to see the horizontally acquired introns of parasitic plants cluster 

with the donating angiosperm clades rather than in the expected organismal position for 

Orobanchaceae species within Lamiales. 

Phylogenetic analysis of the cox1 intron from Orobanchaceae sequences and a diverse 

collection of other angiosperms demonstrated that neither hypothesis is correct for the 

parasitic plants in this family (Figure 3-4; Figure S3). Within the tree, there is a clade that 

comprises all Orobanchaceae parasites, which is nested within a larger clade of Lamiales 

that includes the nonparasitic Lindenbergia,also from Orobanchaceae, plus other species 

(Catalpa, Paulownia, Rehmannia) from families that are closely related to the 

Orobanchaceae. Support for most relationships within this larger Lamiales clade is 

generally weak (<50% bootstrap support for most branches). Nevertheless, the 

monophyletic clustering of Orobanchaceae species in the more-or-less expected position 

within Lamiales indicates that this cox1 intron was most likely acquired vertically in 

parasitic Orobanchaceae from a nonparasitic ancestor. Furthermore, the absence of any 

unexpected species nested within the parasitic Orobanchaceae clade indicates that the 

parasites did not donate the cox1 intron to any of the other angiosperm species sampled in 

the analysis.  

Minimal degeneration of the Castilleja paramensis plastid genome 

The C. paramensis plastome (Figure S4) is 152,926 bp in length, with a typical 

quadripartite structure that includes the large and small single-copy regions separated by 

two copies of an inverted repeat. Relative to the gene and intron content present in a 

typical asterid, the C. paramensis plastome contains nearly a full set of protein-coding 
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genes, a full set of 4 rRNAs and 31 tRNAs, and a full set of 21 introns (Figure S4 and 

S5). The few exceptions involve the pseudogenization of ndhD and ndhF due to 

frameshifting indels and ndhH and ndhJ due to the presence of premature stop codons 

(Figure 3-5). The pseudogenization of ndhF does not apply to all Castilleja species, as an 

intact gene was sequenced from Castilleja linariifolia in a previous study (Refulio-

Rodriguez and Olmstead 2014). Like C. paramensis, the obligate hemiparasite S. 

americana has also lost functionality of several ndh genes (pseudogenization of ndhA, 

ndhD, ndhF, ndhG, ndhJ and loss of ndhI). By contrast, Orobanchaceae holoparasites in 

Cistanche, Conopholis,and Orobanche have lost ~70% of all of their genes, including 

nearly all of the photosynthesis-related genes and numerous tRNAs (Figure S5; 

Cusimano and Wicke 2016, Li et al. 2013, Wicke et al. 2013). 

DISCUSSION 

Gene loss from Orobanchaceae mitogenomes is unrelated to parasitism 

In this study, we generated one complete mitogenome from the hemiparasite C. 

paramensis and draft mitogenomes from six additional Orobanchaceae species, including 

two more hemiparasites (B. pedicularioides and S. americana), three holoparasites (O. 

crenata, O. gracilis and P. ramosa), and a nonparasite (L. philippensis). Despite the wide 

range of trophic strategies among the examined Orobanchaceae species, their 

mitogenomes display no evidence of functional degeneration that can be attributed to the 

adoption of a parasitic lifestyle. The relatively few mitochondrial genes that were lost or 

pseudogenized are limited to ribosomal proteins and succinate dehydrogenase subunits 

(Figure 3-2). The loss of these genes is unlikely attributable to the adoption of a parasitic 
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lifestyle because these same genes have also been lost from the mitogenomes of many 

non-parasitic land plants (Adams et al. 2002, Guo et al. 2016, Hecht et al. 2011, 

Skippington et al. 2015). Importantly, their loss is unlikely to have a detrimental effect on 

mitochondrial activity, as each loss event is usually preceded by the establishment of a 

homolog in the nucleus that maintains a functional product (e.g., Adams et al. 2001, 

Kobayashi et al. 1997, Mower J. P. and Bonen 2009, Nugent and Palmer 1991). Like in 

these other examples, we suggest that the functions of the missing Orobanchaceae 

mitochondrial genes have been supplanted by nuclear-encoded homologs, although 

sequencing of the nuclear genome will be required to test this prediction. 

In addition to the Orobanchaceae data reported here, large-scale mitogenomic data from a 

parasitic plant is available from four hemiparasitic mistletoes (Petersen et al. 2015b, 

Skippington et al. 2015) and three holoparasitic members of Rafflesiaceae(Xi et al. 

2013). As in the Orobanchaceae parasites, the three Rafflesiaceae holoparasites contain a 

nearly complete set of the expected mitochondrial genes, although a substantial fraction 

were reported to have been acquired horizontally (Xi et al. 2013). By contrast, in the 

hemiparasitic V. scurruloideum, the mitogenome has been greatly reduced in size, and in 

all four mistletoes the coding content has undergone extreme reduction, including the 

pseudogenization or loss of all nine nad genes encoding subunits of mitochondrial 

complex I, a NADH dehydrogenase (Petersen et al. 2015b, Skippington et al. 2015). The 

coordinated loss of functional copies of all nine nad genes, which has not been reported 

for any other multicellular eukaryote, argues against a nuclear transfer scenario and 

instead suggests that the entire complex I was lost (Skippington et al. 2015), with 
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nuclear-encoded alternative dehydrogenases(Rasmusson et al. 2004) compensating for 

the loss of complex I activity. 

Thus, while the reduced mitochondrial sequences from mistletoe suggested the possibility 

of general mitochondrial upheaval in parasitic plants, this does not appear to be the case, 

at least in Orobanchaceae and Rafflesiaceae. Overall, based on the available data from 

parasitic plants, there does not appear to be any clear correlation between mitogenomic 

degradation and the degree of host dependence. This is perhaps not surprising as the 

mitochondrion is essential for respiration and the production of ATP, and these processes 

are still required by parasitic plants to generate amino acids and other essential organic 

molecules. The putative loss of complex I from Viscum may reflect the first step in 

mitogenomic degradation in a parasitic plant, which may be tolerated due to the partially 

overlapping abilities of the alternative dehydrogenases (Skippington et al. 2015). 

Regardless, unusual mitogenomic features observed for Viscum are clearly not 

representative of all parasitic plants. Whether this complex or any other seemingly 

essential mitochondrial genes have been lost in other parasitic lineages awaits further 

investigation. 

More evidence for the role of parasitic plants in facilitating horizontal gene 

transfer 

It is now well established that horizontal transfer occurs with high frequency among 

plants, and that parasitic plants are often involved as donors or recipients (Davis and Xi 

2015, Mower Jeffrey P et al. 2012a, Sanchez-Puerta Maria Virginia 2014). With 

complete mitogenomes now available from a diverse collection of angiosperms (Figure 
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S1), it is possible to investigate the extent of horizontal transfer between angiosperms for 

any mitochondrial gene. Combining these available genome data with the Orobanchaceae 

genomes generated in this study, we identified six genes with phylogenetic incongruence 

for the placement of one or more Orobanchaceae parasites, suggestive of horizontal 

transfer (Figure S2). Expanded taxonomic sampling and alternative topology testing of 

these genes generally corroborated the suggestion of horizontal transfer (Figure 3-3), 

although bootstrap support for the incongruence fell below 80% for some of the results 

from the expanded analyses, weakening the evidence for horizontal transfer. Also, for the 

rpl5 analysis, the SH test could not reject the alternative topology that forced the O. 

crenata sequence to cluster with O. gracilis, which is the expected position based on 

vertical transfer. 

In addition to the phylogenetic support (bootstrap support and/or SH Tests) for horizontal 

transfer, there are some additional indications that horizontal transfer, rather than some 

phylogenetic artifact, is the more likely scenario. First, of the species found to be closely 

allied with the putative horizontally transferred genes in Orobanchaceae,most of them 

(Daucus, Salvia, Cannabis, and Symphoricarpos) represent larger lineages (Apiaceae, 

Lamiaceae, Cannabaceae, Dipsacales) that are commonly used as hosts by Orobanche 

and Phelipanche (Rubiales et al. 2009, Schneeweiss 2007). Second, no functional native 

copy of rps1 and rps7 has been sequenced from any Lamiales species, suggesting that 

these genes were lost in the common ancestor of the order. Thus, the detection of these 

genes in several Orobanchaceae species is consistent with a regain via horizontal transfer. 

Third, other than the putative cases of horizontal transfer involving Orobanchaceae 

sequences, there are very few examples of phylogenetic incongruence in these data sets. 
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The most notable is the weakly supported positioning of Liriodendron within monocots 

(68% bootstrap support) in the nad4L analysis and Amborella with Batis and Mahonia 

(59% bootstrap support) in the rps1 analysis (Figure 3-3). However, Liriodendron and 

Amborella are sole representatives from their respective groups (magnoliids and 

Amborellales), suggesting that these results could be due to the low taxon sampling of 

these two groups. The Orobanchaceae results are less likely to be due to poor taxon 

sampling because at least two Orobanchaceae taxa, plus multiple representatives from 

other closely related lineages (Lamiales, Solanales, Gentianales), are present in each 

analysis.  

If we accept that horizontal gene transfer has occurred, it remains to be determined 

whether any of these transfer events resulted in the establishment of a functional gene. 

Several of the transferred genes are clearly nonfunctional pseudogenes, while others are 

intact and potentially expressed. Because we did not detect any situations in which more 

than one intact gene was present in a genome, any foreign genes that are in fact 

functional would thus be examples of replacement transfer, in which the foreign copy 

replaced the function of the native copy. Further sequencing of Orobanchaceae genomes 

will be necessary to corroborate these horizontal transfer cases, particularly from 

Orobanche and Phelipanche which are involved in most of the cases identified here. 

Finally, it should be noted that taxon sampling in these analyses is not deep enough to 

unambiguously identify the donor species, even in cases where an Orobanchaceae 

parasite groups strongly with an unexpected species (e.g., O. crenata rpl5 with Salvia; O. 

crenata and P. ramosa rps1 with Daucus; O. gracilis rps7 with Vitis). Vitis, for example, 

was the only species sampled from all of Vitales, which includes >800 species. In the 
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rpl5 tree, Salvia was the lone representative of the >7000 species in Lamiaceae. And 

Daucus, as the lone campanulid representative in the rps1 tree,is representing the >33000 

species in this group. Denser sampling of these large clades, as well as clades of common 

hosts, will be important in defining the most likely sources of these transferred genes.  

No evidence that the cox1 intron was acquired or distributed horizontally by 

Orobanchaceae parasites 

Studies have indicated that the angiosperm cox1 intron was acquired from a fungal donor 

and then horizontally transferred numerous times among species, evidenced primarily by 

the sporadic distribution of the intron among species and extensive phylogenetic 

incongruence in the intron tree (Cho et al. 1998, Sanchez-Puerta M. V. et al. 2008, 

Vaughn et al. 1995). Barkman et al. (2007) made the intriguing observation that nearly 

all examined parasitic plants possess this intron, but they found no evidence that the 

intron was acquired from their putative hosts. Alternatively, parasitic plants, particularly 

those with nonspecific host preferences, may serve as key players in the horizontal spread 

of the intron.  

Using the multiple Orobanchaceae cox1 introns assembled in this study, we demonstrated 

that the Orobanchaceae introns were acquired vertically from a nonparasitic ancestor 

(Figure 3-4; Figure S3), consistent with the initial results of Barkman et al.(2007) using a 

single Orobanchaceae intron sequence. Furthermore, we found no evidence that the 

Orobanchaceae parasites facilitated the spread of the intron to any of the other intron-

containing species included in the phylogeny. Overall, there are no indications that the 

parasitic lifestyle has had any influence on the presence of the cox1 intron in 
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Orobanchaceae or its transfer to other species. Thus, it remains unclear why parasitic 

plants tend to have the cox1 intron, or whether the proclivity of parasitic plants for 

horizontal transfer plays any role in the intron’s spread. Broad sampling from additional 

parasitic plant lineages may help to shed light on any potential connections between the 

parasitic lifestyle and the distribution cox1 intron. 

Plastid genome degeneration in parasitic plants 

Unlike the mitogenome of C. paramensis, which exhibits few signs of functional 

degradation, the C. paramensis plastome has frameshift mutations or premature stop 

codons in four subunits of the plastid NAD(P)H dehydrogenase complex (Figure 3-5). 

These mutations in the well-conserved ndh genes are likely to lead to a reduction or loss 

of gene function. This pattern of ndh-specific degradation in the C. paramensis plastome 

is similar to observations in other hemiparasites such as S. americana and some species 

of Cuscuta (Figure S5; Funk et al. 2007, McNeal J. R. et al. 2007, Wicke et al. 2013). 

The draft plastome from the hemiparasite Bartsia inaequalis also lacks intact, full-length 

copies of several ndh genes (ndhD, ndhE, ndhG, and ndhI), although it cannot be ruled 

out that these genes were missed due to the incomplete nature of the genome (Uribe-

Convers et al. 2014). Compared with other sequenced hemiparasites, the C. paramensis 

plastome appears to be in the very earliest stages of degradation, as indicated by the small 

number of genes so-far affected, the limited number of deleterious mutations that have 

accumulated in each affected gene and the lack of any genes that were deleted 

completely. Furthermore, an intact ndhF gene was detected in another Castilleja species, 

indicating that the pseudogenization of the C. paramensis ndhF gene occurred recently 

within the genus, at some point after C. paramensis diverged from other members of the 
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genus. The C. paramensis plastome thus provides strong support for the idea that loss of 

the NAD(P)H dehydrogenase complex is the first step of plastome degradation in the 

evolution of heterotrophy in plants (Barrett and Davis 2012, Barrett et al. 2014, Wicke et 

al. 2013). By contrast, the plastomes from nonphotosynthetic holoparasites are generally 

much more degraded than those of hemiparasites, affecting not only the full spectrum of 

photosynthetic genes but also many genes not directly related to photosynthesis (Figure 

S5; Braukmann et al. 2013, Wicke et al. 2013, Wolfe et al. 1992). Taken together, the 

collective evidence from available parasitic plastomes provides a clear connection 

between the degree of plastomic degeneration and heterotrophic dependence. 

Although it is possible that these genes have been functionally transferred to the nuclear 

genome in C. paramensis, there has been no demonstration of functional ndh gene 

transfer for any seed plants that have lost the plastid ndh genes. Fragments of some ndh 

genes were identified in the nucleus of several Orobanchaceae species (Cusimano and 

Wicke 2016), but there is no indication that these fragments produce functional proteins. 

Instead, mounting evidence in multiple lineages—including the pine family, gnetophytes, 

several orchids, and several species of Erodium (Geraniaceae)—has shown that these lost 

plastid genes were not relocated to the nucleus, and furthermore, that many of the 

nuclear-encoded subunits of this complex have also been lost (Ruhlman et al. 2015). 

These results strongly suggest that the entire NAD(P)H complex has been eliminated 

from these species. 
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FIGURES 

 

 

Figure 3-1. The Castilleja paramensis mitogenome. A) Gene and intron map. Top genes 

are transcribed in the forward direction; bottom genes are transcribed in the reverse 

direction. Colors correspond to the functional categories listed in the key. B) Correlation 

of repeats and MIPTs with depth of sequencing coverage. The location of all repeats 

(black) and MIPTs (green) >100 bp in length are shown. Genome maps were drawn with 

OgDraw (http://ogdraw.mpimp-golm.mpg.de/). 
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Figure 3-2. Mitochondrial gene and intron content in Orobanchaceae and selected 

asterids. Genes and introns present in each genome are marked with a plus symbol (“+”). 

Lost genes and introns (“–”), pseudogenized genes and introns (“ψ”), and missing introns 

due to loss of the host gene (“x”) are shaded gray. The 28 genes include atp1, atp4, atp6, 

atp8, ccmB, ccmC, ccmFc, ccmFn, cob, cox1, cox2, cox3, matR, mttB, nad1, nad2, nad3, 

nad4, nad4L, nad5, nad6, nad7, nad9, rpl10, rpl16, rps3, rps4, and rps12. The 14 cis-

arrangedintrons include ccmFc-i1, nad1-i2, nad2-i1, nad2-i3, nad2-i4, nad4-i1, nad4-i2, 

nad4-i3, nad5-i1, nad5-i4, nad7-i1, nad7-i2, nad7-i4, and rps3-i1. The six trans-
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arrangedintrons include nad1-i1, nad1-i3,nad1-i4, nad2-i2, nad5-i2, and nad5-i3. Cpa = 

Castilleja paramensis; Bpe = Bartsia pedicularioides; Ocr = Orobanche crenata; Ogr = 

Orobanche gracilis; Pra = Phelipanche ramosa; Sam = Schwalbea americana; Lph = 

Lindenbergia philippensis; Mgu = Mimulus guttatus; Bhy = Boea hygrometrica; Nta = 

Nicotiana tabacum; Dca = Daucus carota. 
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Figure 3-3. Phylogenetic evidence for horizontal gene transfer. Shown are the expanded 

reanalyses of the six genes identified from the initial genome survey for one or more 

Orobanchaceae species. The incongruently placed taxa and relevant bootstrap values 

supporting the incongruent placement are shown in bold red text, and their expected 

phylogenetic position under a scenario of vertical transfer is marked with a red dot. P-

value results of an SH Test constraining the incongruently placed taxa at their expected 

vertical transfer position are shown in bold red text. Asterids are shown in purple, 
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caryophyllids in brown, rosids in blue, monocots in green, and other seed plants in black. 

Bootstrap values for all branches with ≥50% support are shown above the branch. 

Pseudogenes are marked with a “ψ”. All trees were drawn to the same scale, shown at 

bottom left. 

 

Figure 3-4. Phylogenetic analysis of the mobile cox1 intron. The tree results from 

maximum likelihood evaluation of 194 intron sequences from diverse angiosperms. The 

expanded section of the tree depicts a clade of Lamiales sequences from the seven 

Orobanchaceae species (large, bold text) and closely related families. Family names are 

labeled to the right of the subtree. Bootstrap values ≥50% from 1000 replicates are shown 

on the branch. The subtree is drawn to a 2-fold expanded scale relative to the full tree; 

scale bars for the subtree and full tree are shown at top right and bottom right, 

respectively. 
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Figure 3-5. Evidence for pseudogenization of Castilleja paramensis ndh genes. Shown 

are sections of four ndh gene alignments with evidence of pseudogenization. The 

frameshifting indels and premature stop codons leading to loss of function are shaded in 

gray. The full length of functional versions of each gene is shown in parentheses next to 

each gene name. C. = Castilleja. 
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SUPPORTING INFORMATION 

Table S1. GenBank accession numbers for mitochondrial sequences used in phylogenetic 
analysis 
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Table S2. GenBank accession numbers for all cox1 intron sequences used in 
phylogenetic analysis 
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ABSTRACT 

Analysis of mitochondrial genome diversity within gymnosperms has suggested an 

extensive loss of RNA editing sites in the xerophytic plant Welwitschia mirabilis. 

However, there is a lack of empirical data to confirm this loss of editing, and the 

mechanisms responsible for the loss of so many edit sites are still unclear. In order to 

gain insight on the abundance of mitochondrial RNA editing in W. mirabilis and examine 

potential mechanisms of edit site loss, we performed a comprehensive analysis of RNA 

editing by RT-PCR and cDNA sequencingof 29 protein-coding mitogenes. We found 

only 46 editing sites located in nine genes, which is substantially less than the 226 that 

were expected based on predicted data. Most of the editing sites were lost due either to 

genomic mutation or to gene conversion with a reverse-transcribed product (i.e. 

retroprocessing). The higher substitution rate in Welwitschia suggests that genomic 

mutation has led to some level of editing site loss. However, the nonrandom loss of 

editing in ccmFc, mttB and nad7 and the correlated loss of editing sites and introns 

provide stronger evidence for the retroprocessing mechanism. Further studies will be 

required to determine the driving force of RNA editing loss in Welwitschia. 
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INTRODUCTION 

In the mitochondrial genome (mitogenome) of land plants, a post-transcriptional process 

named RNA editing converts cytidines to uridines (C-to-U) at specific sites, and it could 

also involve in U-to-C editing in some species (Covello and Gray 1989, Hein et al. 2016, 

Hiesel et al. 1989, Maier et al. 1996, Shikanai 2006). RNA editing has been observed in 

all major groups of land plants (Chaw et al. 2008, Grewe et al. 2011, Oda et al. 1992, 

Unseld et al. 1997) suggesting a very early gain in land plant evolution (Malek et al. 

1996), although the origins and the mechanism of this process are still unclear. Editing 

sites are preferentially located at first or second codon positions in protein-coding genes, 

whereas third position editing, which is silent because it doesn’t alter the amino acid 

encoded by the codon, is much less frequent (Gray 2003). Some C-to-U RNA editing 

events can create start or stop codons, while U-to-C editing can remove the premature 

stop codons to restore internal codons (Brennicke et al. 1999, Carrillo et al. 2001). Thus, 

the identification of RNA editing is particularly important for the understanding of the 

genetic systems. 

The frequency of RNA editing is very diverse among vascular plant, and several species 

have experienced a massive loss of editing sites. In lycophytes, editing was detected at 

over 2152 sites in the spike moss Selaginella moellendorffii (Hecht et al. 2011) and 1782 

positions in the quillwort Isoetes engelmannii (Grewe et al. 2011),indicating a high 

frequency of RNA editing in this clade. However, another lycophyte, Huperziasquarrosa, 

was predicted to have only ~300-500 editing sites (Liu et al. 2012), suggesting a heavy 

reduction of editing in this species. In gymnosperms, based on the predicted 1214 sites in 

Cycas taitungensis (Chaw et al. 2008) and 1306 sites in Ginkgo biloba (Guo et al. 2016), 
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the ancestral number of RNA editing in this cluster was inferred to be around 1200-1300. 

In contrast, Welwitschia mirabilis was recently described as having extensive loss of 

RNA editing sites with only 226 predicted sites, which is less than 20% of the ancestral 

gymnosperm number (Guo et al. 2016). C-to-U RNA editing occurs less frequently in 

angiosperms, from 189 editing sites in Silene noctiflora (Sloan et al. 2010) to 835 sites in 

Amborella trichopoda (Rice et al. 2013). The ancestral count in angiosperms was inferred 

to be around 800 (Richardson et al. 2013), indicating that the 189 editing sites in S. 

noctiflora was due to a substantial loss of sites (Sloan et al. 2010).  

Several mechanisms have been proposed for generating the variation in RNA editing 

frequency, particularly the massive loss of RNA editing, but they have not been fully 

clarified. First, mutation rate variation has been proposed as one explanation. High 

mutation pressure was postulated to drive lower editing rates due to the difficulty of 

maintaining the proper editing recognition sites under high mutation rates (Lynch et al. 

2006). On the other hand, low mutation rates in plant mitochondria should exhibit more 

frequent RNA editing. In agreement with this model, species in Pelargonium 

(Geraniaceae) and Silene (Caryophyllaceae) have major increases in the mitochondrial 

synonymous substitution rate, and they have very few RNA editing sites (Parkinson et al. 

2005, Sloan et al. 2010), while the extraordinarily slowly evolving species Liriodendron 

tulipifera is rich in RNA editing sites (Richardson et al. 2013). Also, in gymnosperms, 

the slowly evolving species Ginkgo and Cycas have high editing counts, while the faster 

evolving Welwitschia was predicted to have many fewer sites (Guo et al. 2016), 

suggesting that at least some of the edit loss in Welwitschia could be due to its increased 

substitution rate. 
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A second proposed mechanism for RNA editing loss is retroprocessing, which describes 

a process involving RNA-mediated gene conversion. Theoretically, this process could 

fully eliminate all edit sites and all introns from a gene. However, the available evidence 

suggests that this process usually affects only segments of a gene, driving the loss of a 

subset of introns together with the nearby editing sites (Itchoda et al. 2002, Sloan et al. 

2010). The retroprocessing model predicts that multiple adjacent edit sites should 

frequently be lost together, but several statistical studies have provided little evidence 

that adjacent edit sites are more likely to be lost together than expected by random chance 

(Shields and Wolfe 1997, Sloan et al. 2010). Nevertheless, the clearest indications of 

retroprocessing come from the rps3 gene in conifers (Ran et al. 2010) and the cox2, nad1 

and nad4 genes in Isoetes engelmannii (Grewe et al. 2011), in which an intron and a large 

number of neighboring edit sites were eliminated. In addition, species in Pelargonium 

and Welwitschia, which have very few edit sites, also have a low number of introns (Guo 

et al. 2016, Park et al. 2015), consistent with expectations of retroprocessing. Overall, the 

generality of this process in driving edit site loss is unclear. 

A third mechanism for edit site loss is the loss of recognition of an edit site by the RNA 

editing machinery. Editing sites recognition refers to the selection of the edited cytidines 

involving in the conversion from cytidines to uridines, which is highly specific (Hermann 

and Bock 1999). This recognition is substantially dependent on the 5’ flanking RNA 

sequence (Mulligan et al. 1999). Analysis of the rps12 and rps3 transcript editing status 

suggested that the sufficient editing site recognition is critical to editing sites (Williams et 

al. 1998). Study in cauliflower also suggested that the nucleotide identity is important 

(Neuwirt et al. 2005). Although the editing complex is not fully defined, it is well 
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established that pentatricopeptide repeat (PPR) proteins are needed to site-specifically 

identify the sites to be edited (Barkan and Small 2014). Thus, loss of a particular PPR 

protein could result in the loss of recognition of an edit site although it has not been 

approved in Welwitschia. 

Welwitschia mirabilis is the only species in the family of Welwitchiaceae (so the 

following text will use Welwitschia to represent W. mirabilis), and it is one of the three 

reported species in gymnosperm with a completed mitogenomic sequence (Chaw et al. 

2008, Guo et al. 2016). Comparative analysis from the gymnosperm mitogenomes has 

shown some unusual features in Welwitschia: expanded size, numerous losses of protein 

and tRNA genes as well as introns, massive loss of RNA editing sites and higher 

substitution rate (Guo et al. 2016). However, the massive editing loss in Welwitschia was 

inferred using only predicted data, so experimental data is needed to confirm the editing 

sites loss. In this study, I have comprehensively examined the frequency of RNA editing 

in order to determine whether the massive editing loss is true, and if so, to explore 

whether the loss is due to accelerated substitution rates, retroprocessing, or a loss of 

editing recognition.  

MATERIALS AND METHODS 

Plant material and RNA extraction 

Welwitschia was grown in the Beadle Center greenhouse at the University of Nebraska-

Lincoln. Fresh leaf tissue was collected for RNA extraction. Total RNA was isolated 

using the TRIzol reagent (Life Technologies Corporation, U.S.A) according to the 
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suggested procedures provided by the manufacturer. To remove potential genomic DNA 

contamination, the isolated RNA was incubated with RNase-free DNase I (Thermo Fisher 

Scientific Inc. U.S.A) for 30 min at 37 °C. The reaction was terminated by adding EDTA 

(0.5M). 

Reverse transcription, PCR amplification and sequencing 

First-strand cDNA was generated from the isolated RNA by reverse transcription using 

random hexamers and M-MLV reverse transcriptase (Promega Corporation, U.S.A) in 

accordance with manufacturer’s recommendations. A negative control sample, using the 

same amount of nuclease-free water instead of reverse transcriptase, was also prepared 

and used in cDNA construction. This control was used to test for potential DNA 

contamination in later analyses. 

Reverse-transcription PCR (RT-PCR) assays were performed using the first-strand cDNA 

as template and degenerate primers. RT-PCR primers were designed to amplify all the 

protein-coding genes of Welwitschia (Table S1), taking care to exclude any predicted 

editing sites from the primer sequences to avoid enriching for unedited or partially edited 

transcripts (Mower and Palmer 2006). Two primers were designed and used for the 

upstream sequence of mttB, because no single best sequence was identified. Additional 

internal primer sets were designed for genes longer than 1 kb (ccmFn, matR, rps3) to 

assist in sequencing. The RT-PCR program settings were used as described before 

(Hepburn et al. 2012) except the annealing temperature for each reaction was set to 5°C 

below the lowest Tm of the particular pair of primers used.  
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RT-PCR products were directly sequenced on both strands at GenScript (NJ, GenScript 

USA Inc.). Sequences were assembled with CodonCode Aligner version 5.0.1 

(CodonCode Corporation). Newly generated sequences will be deposited in GenBank, 

and additional sequences used in this study were extracted from GenBank (Table S2).  

Identification of RNA editing sites 

Both empirical and computational methods were used for identification of RNA editing 

sites in Welwitschia. RNA editing sites were empirically determined by comparing the 

aligned cDNA sequences with the DNA sequences (Hepburn et al. 2012, Rice et al. 2013, 

Richardson et al. 2013). Computational prediction data of RNA editing sites was from the 

PREP-Mt online server (Mower 2009), with a cutoff value of 0.2. For the nad1 and nad7 

gene sequences, an expanded analysis of RNA editing used experimentally determined 

(Ginkgo and Welwitschia) and predicted (Araucaria, Cycas, Gnetum and Pinus) edit sites 

that were collected from six selected seed plants (Table S2). 

Sequencing analysis 

All Welwitschia mitochondrial coding genes were aligned either with its cDNA sequence 

(for identification of RNA editing sites) or with gene sequences from other species (for 

determination of RNA editing loss) using MUSCLE version 3.8.31 (Edgar 2004) with 

default parameters. When necessary, alignments were adjusted manually. To better 

understand whether the intron loss is associated with RNA editing site loss, the intron 

positions were also manually inserted into the alignments of intron-containing genes 

using BioEdit (Hall 1999). To calculate the different evolutionary transitions that result in 

editing site loss, the nucleotide status of each species was counted for every position in 
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the alignment that was edited in at least one species. This analysis was based on 

alignments for the 21 protein-coding genes that were present in all species and could be 

unambiguously aligned. The other genes were excluded because data for some species 

were missing or the genes were too divergent to be aligned. 

In order to test whether the loss of editing sites is random (as expected in a mutation rate 

model) or clustered (as expected in a retroprocessing model), the probability of editing 

sites in specific group (every 250 bp was designed as a group) was calculated. The 

editing site variance caused by intron loss or retention was also estimated by divided all 

the editing sites into two groups: intron effect region (intron sites ± 100 bp) and non-

effect region. A chi-square test was then applied based on the expected number and the 

observed number. 

All topologies used in this study were constructed according to relationships defined on 

the Angiosperm Phylogeny Website, version 12 

(http://www.mobot.org/MOBOT/research/APweb/). 

RESULTS 

Low levels of RNA editing in Welwitschia mirabilis mitochondrial genes 

By comparison of mitochondrial cDNA and genomic sequences, a total number of 46 C-

to-U RNA editing sites were identified in nine genes (Table 4-1, Table S3) out of the 29 

protein-coding genes in the Welwitschia mitogenome (Table 4-2), and no U-to-C edited 

sites were detected. For each editing site, we summarized the gene location, the codon 

position, the codon sequence, and encoded amino acid (Table 4-1, Table S3). The editing 
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events were predominantly located in ccm genes (45.7%) and nad genes (23.9%) in 

Welwitschia. The maturase gene (matR) and membrane transport protein gene (mttB) also 

exhibited a relatively high editing count, representing 10.9% of the total editing sites. In 

terms of the editing locations, the second codon position possessed a very large portion 

(76.1%), whereas third position edits were very infrequent (4.3%). The RNA editing 

events did not create any start or stop codons.  

Prediction of C-to-U editing sites was also conducted using PREP-Mt online tool (Mower 

2009) with a cutoff of 0.2. Surprisingly, the number of editing sites determined from 

experimental data was much less than from the prediction. In total, 226 edit sites were 

predicted (Guo et al. 2016). Of these, 171 editing sites were located in the regions 

empirically examined by amplified RT-PCR products, whereas only 46 sited were 

experimentally identified (Table 4-2). The 73% difference between predicted and 

observed editing sites is affecting almost all genes, where empirical editing counts are 

consistently lower than predicted counts. Specifically, no editing sites were detected for 

all five atp genes, including atp4 which was predicted to contain 11 editing sites. 

Similarly, the ccmFn and rps3 genes were predicted to have 15 and 13 editing sites, 

respectively, but no edit sites were detected by RT-PCR. The total number of editing sites 

in Welwitschia is lower in comparison with all other vascular plants that have been 

examined to date. 
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Low editing levels are due to extensive loss of RNA editing sites from 

Welwitschia mitogenes 

In a previous study, the low level of editing in Welwitschia was suggested to be due to a 

massive loss of editing relative to the common ancestor of gymnosperms, which was 

inferred to be rich in introns and edit sites (Guo et al. 2016). We compared the number of 

RNA editing sites in Welwitschia with the other cDNA sequences in gymnosperm (Cycas 

and/or Ginkgo), which confirmed the massive RNA editing loss in this lineage (Figure 4-

1). Among all 29 mitochondrial genes in Welwitschia, only nine genes exhibit RNA 

editing (Figure S1). This is much lower than in homologous genes from other species in 

gymnosperms. For ccmB, which has relatively more editing sites (10 sites in the 

examined region) compared with other Welwitschia genes, Cycas still contains over three 

times more editing sites. In fact, for every Welwitschia gene, empirical editing counts are 

lower compared with Cycas or Ginkgo.  

To further assess the evolution of editing in Welwitschia compared with other 

gymnosperms, the status of editing in the nad1 and nad7 genes were shown in a 

phylogenetic context (Figure 4-2). The editing sites in Cycas, Ginkgo, and Pinus are all 

abundant and largely shared, indicating that the ancestral state of gymnosperm was 

probably rich in editing sites (Guo et al. 2016). In contrast, these two genes show that the 

massive RNA editing loss occurred in the Welwitschia lineage. Taking into account the 

topology, Gnetum also displayed less editing sites than the other taxa although not as low 

as Welwitschia, suggesting that some of this RNA editing loss began in the common 

ancestor of Gnetum and Welwitschia. However, since no empirical data available for 

Gnetum, this hypothesis need to be further tested. 
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Mechanisms of editing loss in Welwitschia 

To further investigate the mechanism of editing sites loss, the pattern of edit site loss was 

examined in order to distinguish among the three possibilities: (1) Loss of editing site 

recognition by the machinery that performs RNA editing, (2) Genomic mutation, and (3) 

retroprocessing.  If the recognition of the edit site is lost, we would observe a change in 

the gene sequence from an edited C to an unedited C (Table 4-3, E>C). A genomic 

mutation would appear as a change from an edited C to another nucleotide (adenine (A), 

guanine (G), or T). These mutations would have a random distribution in the gene, and 

would have no correlation to the positions of introns (E>R or E>T). Retroprocessing 

would look like a change from an edited C to a T in the gene (E>T). Because 

retroprocessing is a gene conversion process, it should tend to remove edit sites and 

introns nonrandomly. That is, adjacent edit sites and introns should be preferentially 

eliminated, leaving behind clusters of retained edit sites and introns. 

The loss of editing recognition was identified by calculating the change as E>C. The 

overall percentage of E>C in Welwitschia is 0.16 which is the lowest proportion 

comparing with other selected seed plants (Table 4-3). In fact, this process is about two-

fold lower when compared to the other gymnosperms Cycas and Ginkgo. These results 

indicate that the loss of RNA editing recognition has occurred for some sites, but it 

happens less frequently in Welwitschia than in other seed plants. In other words, this does 

not appear to be the main mechanism for editing site loss in Welwitschia. 

The evidence of editing sites loss involving the genomic mutation model was examined 

by calculating the nucleotide changes from edited C to A or G (E>R). 
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Welwitschiapossesses the highest percentage of loss (0.07) compared with other species 

(Table 4-3). The higher frequency of E>R changes in Welwitschia suggests that loss of 

RNA editing sites due to genomic mutation may be slightly higher in Welwitschia 

compared with other species. However, in all species, E>R mutations make up only a 

small fraction of all lost edit sites. 

The most common type of substitution frequency resulting in a loss of editing is the 

change from an edited C to T (E>T). This type of substitution could be due to either 

retroprocessing or genomic mutation.  Compared with other gymnosperms, Welwitschia 

has a substantially higher value (0.77). The Welwitschia frequency is more similar to the 

values observed in angiosperms. Because angiosperms have a lower frequency of editing 

compared to other vascular plants, it is possible that the mechanisms reducing editing 

counts in Welwitschia are similar to angiosperms.  

In order to distinguish genomic mutation from retroprocessing, the distribution of the lost 

edit sites were examined. Loss of editing sites by genomic mutation should be random, 

which means that the edit sites retained in a gene should also have a random distribution. 

In contrast, retroprocessing should remove clusters of edit sites, which should also result 

in a nonrandom clustering of sites that were retained. For several genes, such as ccmFc, 

mttB and nad7, the pattern of editing loss appears to be nonrandom (Figure 4-1, Figure 

S1). Three of the retained sites in ccmFc are located at the 3’ end of the sequence, and the 

probability of three retained sites clustering together is significantly lower than expected 

for a random distribution (P=0.0046). Similarly, the five retained editing sites in mttB are 

nonrandomly clustered at the 5’ end of the gene while the rest of the gene lost all editing 

sites (P=0.0041). Likewise, the editing site distribution of the nad7 gene is also 
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nonrandomly clustered (P=0.0002) at the 3’ end. All of these genes with clustered edit 

sites are consistent with retroprocessing but not expected for the other loss models. 

Because this test requires the retention of several edit sites, most of the other Welwitschia 

genes cannot be tested due to their loss of most or all edit sites. 

Retroprocessing is also predicted to lose introns together with large scale editing sites. 

Thus, a correlated loss of editing and introns provides evidence of the retroprocessing 

mechanism, whereas genomic mutation should show no such correlation. For those 

intron-containing genes, Welwitschia has lost most if not all editing sites in combination 

with a loss of several introns. In cox2, nad2, nad4, and rps3, all edited sites were lost 

together with some level of intron loss (Figure 4-1, Figure S1). For the other four intron-

containing genes (ccmFc, nad1, nad5 and nad7) a few editing sites were retained even 

though they also had the highly reduced number of editing, and they also experienced one 

or two intron losses (Figure 4-1, Figure 4-2). A similar pattern of intron and editing loss 

was also observed for Araucaria and Gnetum nad7 based on the evolutionary view of 

editing loss (Figure 4-2). However, a chi-square test for the correlation between intron 

loss and edit site loss in three genes (ccmFc, nad1 and nad7) of Welwitschia did not show 

significant difference with the P value of 0.3102, 0.5247 and 1, respectively. 

DISCUSSION 

Massive loss of mitochondrial RNA editing in Welwitschia 

Our previous study on the mitogenomes of gymnosperms indicated a dramatic loss of 

RNA editing sites in Welwitschia relative to the ancestral high level of editing in 
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gymnosperms. In this study, empirical data confirmed that RNA editing is very low in 

Welwitschia, and surprisingly, even lower than the predicted number. Within the 29 

functional protein-coding genes in Welwitschia mitogenome, RNA editing sites were 

detected from only nine of them. Three of the genes were predicted to have no editing 

sites (atp6, atp9 and nad9), and two of them were confirmed by cDNA sequencing results 

(the third gene, atp6, could not be amplified by RT-PCR). Another 17 genes, although 

they were predicted to have some level of editing, had no detectable edit sites by the 

reverse transcription sequencing approach. RNA editing loss from a single gene has been 

reported in seed plants; for example, the cox3 and rps13 lacked RNA editing in Iridaceae 

and Amaryllidaceae (Lopez et al. 2007). However, such a massive RNA editing loss from 

most of the genes in a seed plant mitogenome has not been reported yet. 

The discrepancy between empirical results and predicted results was surprising. PREP-

Mt was used to predict the RNA editing sites, which has been shown to be accurate in 

previous studies (Guo et al. 2016, Mower 2009). The reason this program did not perform 

well for Welwitschia is unclear, but it could be related to the high substitution rate or to 

the highly lineage-specific loss of editing in this species. In particular, genes such as 

ccmFc, ccmFn, matR,and rps3 were very difficult to align to other homologs due to their 

high level of divergence, and they had some of the worst prediction results, suggesting a 

negative correlation between substitution rate and editing prediction accuracy. 

In Gnetum, the nad1 and nad7 aligned results in this study also suggested the RNA 

editing loss. Prediction analysis was performed for all genes in this species, suggesting a 

decrease in editing sites, although not to the same degree as in Welwitschia (data not 

shown). Given the inaccuracy for Welwitschia prediction results, the lack of cDNA or 
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transcriptome data from Gnetum makes it difficult to evaluate whether the prediction is 

accurate in this species. It may also prove to have fewer edit sites than suggested by the 

prediction. Accordingly, the loss of RNA editing in both Gnetum and Welwitschia 

suggests that these lineage-specific losses of editing are problematic for PREP-Mt 

accuracy. 

Retroprocessing model for the loss of RNA editing sites 

Several different evolutionary models have been proposed for the loss of RNA editing in 

plants, including the loss of editing site recognition, increased substitution rates, and 

RNA-mediated gene conversion (retroprocessing). A retroprocessing model is most often 

cited in the literature to explain some of the RNA editing loss (Grewe et al. 2011, Ran et 

al. 2010, Sloan et al. 2010), resulting in preferential C-to-T substitution at RNA editing 

sites. Generally, retroprocessing is mentioned because one or more intron losses occurred 

along with the surrounding editing sites loss, which is most easily attributable to the 

effect of retroprocessing. The other two models do not predict any correlation between 

intron loss and editing loss. The retroprocessing model also predicts a clustered loss of 

editing sites, although this expectation has previously not been supported with statistical 

analyses (Shields and Wolfe 1997, Sloan et al. 2010). 

In Welwitschia, there are three genes (ccmFc, mttB, nad7) that showed a significantly 

nonrandom distribution of edit sites, consistent with retroprocessing (Figure 4-1, Figure 

S1). In addition, there are four genes, including ccmFc, nad1, nad5 and nad7, that have 

lost introns and surrounding edit sites, which could be best explained by retroprocessing. 

For example, the phylogenetic distribution of introns and editing sites in nad7 (Figure 4-
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2B) shows that the first intron was lost in three lineages (Araucaria, Gnetum and 

Welwitschia), together with all adjacent editing sites. In addition, the third intron is 

lacking in Araucaria and Welwitschia, and the region around this intron has also 

experienced dramatic editing loss in these two species, from 5 (compared with Cycas) to 

11 (compared with Pinus). Thus, the retroprocessing mechanism seems to be a good 

explanation for editing sites loss from the nad7 gene of all three species due to the 

simultaneous loss of introns and flanking editing sites. However, a second statistical 

analysis looking for a significant association between intron loss and editing sites was not 

significant for these genes in Welwitschia. It may be due to the very few edit sites 

remaining in these genes, which may be too low for the chi-square test, which generally 

requires at least five data points. .Thus, RNA editing loss in Welwitschia seems to be 

attributable to retroprocessing, although this conclusion is tentative until more data 

becomes available. 

In contrast, there is little unambiguous support for the other models. E to C rates are 

lower in Welwitschia than all other seed plants examined, arguing against a major role for 

the loss of editing recognition. E to R rates are slightly higher in Welwitschia compared 

with other species. This suggests that the higher substitution rate in Welwitschia is 

leading to an increased rate of genomic mutation to eliminate edit sites. Unfortunately, 

for most genes, the loss of editing is so extensive that is not possible to distinguish 

between expected patterns for genomic mutation and retroprocessing. Further studies of 

RNA editing patterns in other gneotphyte species (Gnetum and Ephedra) are required to 

help determine whether the editing loss is more strongly correlated with intron loss or 

substitution rates. 
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TABLES AND FIGURES 

Table 4-1. Summary of RNA editing sites in Welwitschia mirabilis mitochondrial genes 

 
 

    Number Percentage 
   

 
Total C-to-U 

 
46 100.0 

   

  
ccmB 14 30.4 

   

  
ccmC 3 6.5 

   

  
ccmFc 4 8.7 

   

  
matR 5 10.9 

   

  
mttB 5 10.9 

   

  
nad1 3 6.5 

   

  
nad5 1 2.2 

   

  
nad7 7 15.2 

   

  
rps4 4 8.7 

   

 
Coding 

      

  
1st 9 19.6 

   

  
2nd 35 76.1 

   

 
  3rd 2 4.4 
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Table 4-2. Accuracy of edit site prediction in Welwitschia mirabilis 

Gene Predicted* Observed O-P   Gene Predicted* Observed O-P 

atp1 2 0 -2 

 

nad1 4 3 -1 

atp4 8 0 -8 

 

nad2 2 0 -2 

atp6 0 - 0 

 

nad3 2 0 -2 

atp8 6 0 -6 

 

nad4 1 0 -1 

atp9 0 0 0 

 

nad4L 4 0 -4 

ccmB 19 14 -5 

 

nad5 4 1 -3 

ccmC 6 3 -3 

 

nad6 12 0 -12 

ccmFc 11 4 -7 

 

nad7 8 7 -1 

ccmFn 15 0 -15 

 

nad9 0 0 0 

cob 3 0 -3 

 

rpl10 6 0 -6 

cox1 2 0 -2 

 

rps3 13 0 -13 

cox2 2 0 -2 

 

rps4 9 4 -5 

cox3 1 0 -1 

 

rps12 0 0 0 

matR 17 5 -12 

 

sdh4 2 0 -2 

mttB 12 5 -7   Total 171 46   

 

* Predicted counts are taken from the regions that were amplified for empirical analysis 
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Table 4-3. Substitution frequencies at edited sites in mitochondrial genes of seed plants 

  Angiosperms  Gymnosperms 

Process Change Amborella Arabidopsis Beta Liriodendron Nicotiana  

Cyca

s 

Ginkg

o 

Welwitschi

a 

Loss of edit 
site 

recognition 
E>C 0.24 0.19 0.18 0.27 0.20  0.31 0.34 0.16 

           
Genomic 

mutation or 
retroprocessin

g 

E>T 0.72 0.78 0.79 0.70 0.78  0.64 0.61 0.77 

           
Genomic 
mutation 

E>R 0.04 0.02 0.02 0.03 0.02  0.05 0.05 0.07 

 

E refers to the editing sites 

R refers to either adenine (A) or guanine (G)  
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Figure 4-1. Loss of RNA editing sites and introns in selected Welwitschia mitochondrial 

genes. Vertical lines indicate RNA editing sites. Non-silent and silent C-to-U editing are 

displayed in black and red, respectively. Selected gene names and species names are 

shown on the left. For each gene, only the amplified shared region was displayed and the 

length bar show at the bottom. This figure was generated by PREPACT with default 

graphic tool option. 
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Figure 4-2. Phylogenetic distribution of nad1 and nad7 introns and RNA editing sites in 

selected seed plants. The editing sites are indicated by vertical lines. Empirical RNA 

editing (underlined) was used for two species and other species used predicted data by 

PREP-mt (Mower 2009). The yellow shadow regions are intron absent, coinciding with 

regions lacking RNA editing sites. The scale bar was drawn at the bottom. The 

phylogenetic relationships are based on angiosperm phylogeny website 

(http://www.mobot.org/mobot/research/apweb/). 
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SUPPORTING INFORMATION 

Table S1. Gene specific primers for Welwitschia 

Name Sequence 
 

Name Sequence 

atp1_Wel_F ATGGTGAACAACTTGGAGAGC 
 

nad1_Wel_F GGACATTGCTATATACGCCTC 
atp1_Wel_R GGTCCTTACTAATGGTGTCAC 

 
nad1_Wel_R CGGTATTACTTGAAAGGTGACC 

atp4_Wel_F GCTGCTATTCTCTTGATAAGTG 
 

nad2_Wel_F GGAGTTGTATTTAGTACCTCG 
atp4_Wel_R ATAGAGCCATTCGTGATACC 

 
nad2_Wel_R TCACAGATAGAAACTTAGTGCC 

atp8_Wel_F TTCTTCTGGTTATGCCTG 
 

nad3_Wel_F GTTTGCTAGTTTCTTTGATC 
atp8_Wel_R TTACGGTACGATGTGAAC 

 
nad3_Wel_R AGCACCCTTCTTCCATTC 

atp9_Wel_F GCTGCTGTTGGTATTGGAAACG 
 

nad4_Wel_F CGACTTATGTCAGAATGCTC 
atp9_Wel_R TCAGAAACCCCATCATTAAGG 

 
nad4_Wel_R GCACTAAGTTACCTACGGA 

ccmB_Wel_F GTATATCGTAGTAACGCCCTT 
 

nad4L_Wel_F GCTCACAACTACAATGAAGGC 

ccmB_Wel_R GCCATTTTTTCTTGTAAACC 
 

nad4L_Wel_
R TCTACTGCGATGGTCCCT 

ccmC_Wel_F CCCAACCTTCTGTATTTATG 
 

nad5_Wel_F GGAACCGCCATAGTAACCACC 

ccmC_Wel_R 
GTAAAGGAATAGGAAGTTAGC
C 

 
nad5_Wel_R AGCACCTTTGTCTAATATGACG 

ccmFc_Wel_F AGCACCCGTACTCTTGAAATGG 
 

nad6_Wel_F CCTATTTATGGTCTCTGGGTTG 
ccmFc_Wel_R ACAAACTACACAAGCCTCC 

 
nad6_Wel_R TTCGCATATCGCCATGTC 

ccmFn_Wel_F1 ATGGAAGGGTGTTTTCGTTGC 
 

nad7_Wel_F ACCTCAACATCCTGCTGC 
ccmFn_Wel_F2 CGCTCCCGAAACGAAGGTTC 

 
nad7_Wel_R CTATCTACCTCTCCAAACAC 

ccmFn_Wel_F3 GCTACGCAATAGAAGCCT 
 

nad9_Wel_F CTGAGAGATACTTTACCCAA 
ccmFn_Wel_R1 GGAGCCTTCCCTCATTTTGAA 

 
nad9_Wel_R GACCGCCATAAAGTACCA 

ccmFn_Wel_R2 AAACATATCGGCTTCGTAGTGG 
 

rpl10_Wel_F GAGTCAAACCCAGGACAC 
ccmFn_Wel_R3 CTGAGTTACCCCTTCTGCTCT 

 
rpl10_Wel_R CTATCGTTCGTTCCCGCTTC 

cob_Wel_F TCTATTCTCAAACAACCC 
 

rps12_Wel_F CTTTGGAGAAATGTCCTCAG 
cob_Wel_R TCCAACTCGTCCCAGAAT 

 
rps12_Wel_R GGATCTGCTACTTTTTCG 

cox1_Wel_F CCACTAACCACAAGGATATAGG 
 

rps3_Wel_F1 CAAGATGTGAATCAACGAG 
cox1_Wel_R CTATGGATTGATAGAGGTCTCC 

 
rps3_Wel_F2 CGATAAGCGAAGCAACAAT 

cox2_Wel_F ACTTGCTGCTTACTCTCC 
 

rps3_Wel_F3 GAGCGGCGATCATATCAAGC 
cox2_Wel_R GACGAGTTTATTGGATACCC 

 
rps3_Wel_R1 GCCAATATGCTTCTGTTCAA 

cox3_Wel_F 
ATGGTAGCAGAACAGAAGAGG
C 

 
rps3_Wel_R2 AACACTGGACCGCTGGAA 

cox3_Wel_R TCATAGACCTCCCCACCAATAG 
 

rps3_Wel_R3 CACGCTGCTATATGAGATCCAC 

matR_Wel_F1 GGTTGAAGTTTAGACCGCTAAC 
 

rps4_Wel_F 
CTGACAAGAATACAACGCCGC
A 

matR_Wel_F2 GCTCCGCAGGATCAACAA 
 

rps4_Wel_R CTCTGAGTGACGCTGCTCTC 
matR_Wel_R1 GTGGGGAACGACTTCTAC 

 
sdh4_Wel_F CTATTGGTGGGGAGGTCTATG 

matR_Wel_R2 CTGATATAGGGTCTTGTACGC 
 

sdh4_Wel_R 
CCCAGATAGATGAAAATCCAG
C 

mttB_Wel_F1 TTGCATTGAAAACTCCTC 
   mttB_Wel_F2 GGTCTTAGTTTGACATGGTT 
   mttB_Wel_R ATAGTTCGCACCCGAGGC 
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Table S2. GenBank accession numbers for mitochondrial sequences used in the study 
 

Species/Genes Accn. No. 
Araucaria heterophylla/nad1 KM672352 
Araucaria heterophylla/nad7 KM672359 
Cycas taitungensis AP009381 
Ginkgo biloba NC_027976 
Gnetum gnemon/nad1 KM672389 
Gnetum gnemon/nad7 KM672396 
Pinus strobus/nad1 KM672422 
Pinus strobus/nad7 KM672429 
Welwitschia mirabilis NC_029130 
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Table S3. Welwitschia mirabilis mitochondrial editing locations 

Gene Nucleotide 

Number 

Codon 

Position 

Genomic 

AA 

cDNA 

AA 

Genomic 

Codon 

cDNA 

Codon ccmB 157 1 R W CGG TGG 
ccmB 163 1 P S CCT TCT 
ccmB 175 1 P S CCG TCG 
ccmB 224 2 P L CCC CTC 
ccmB 239 2 S L TCA TTA 
ccmB 341 2 S L TCG TTG 
ccmB 470 2 S L TCG TTG 
ccmB 491 2 P L CCG CTG 
ccmB 500 2 S L TCG TTG 
ccmB 554 2 S L TCA TTA 
ccmB 557 2 S L TCG TTG 
ccmB 569 2 S F TCC TTT 
ccmB 570 3 S F TCC TTT 
ccmB 575 2 P L CCG CTG 
ccmC 258 3 F F TTC TTT 
ccmC 538 1 R W CGG TGG 
ccmC 551 2 S L TCG TTG 
ccmFc 145 1 L F CTT TTT 
ccmFc 1370 2 A V GCG GTG 
ccmFc 1400 2 P L CCA CTA 
ccmFc 1409 2 P L CCG CTG 
matR 74 2 P L CCC CTC 
matR 1088 2 P L CCA CTA 
matR 1163 2 P L CCG CTG 
matR 1223 2 S F TCC TTC 
matR 1226 2 P L CCC CTC 
mttB 88 1 R C CGT TGT 
mttB 110 2 S L TCA TTA 
mttB 119 2 P L CCA CTA 
mttB 137 2 P L CCG CTG 
mttB 224 2 S F TCC TTC 
nad1 674 2 S F TCT TTT 
nad1 751 1 R W CGG TGG 
nad1 953 2 P L CCG CTG 
nad5 1483 1 R W CGG TGG 
nad7 644 2 S L TCG TTG 
nad7 926 2 S L TCA TTA 
nad7 944 2 P L CCC CTC 
nad7 982 1 H Y CAT TAT 
nad7 1079 2 S F TCT TTT 
nad7 1103 2 S F TCT TTT 
nad7 1124 2 P L CCA CTA 
rps4 269 2 S L TCG TTG 
rps4 281 2 P L CCG CTG 
rps4 326 2 P L CCG CTG 
rps4 350 2 A V GCG GTG 
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Figure S1.Introns and RNA editing sites distribution in Welwitschia mitogenes. The 

genes either were detected editing sites or contained introns were displayed. Gene name 

were listed at left and the position scale bar was shown at bottom. 

 

 

  



148 

 

 

CHAPTER 5 

Conclusions 
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In this study, comparative genomics was used to assess the effects of different lifestyles 

(parasitism, endosymbiosis, xerophytism) in shaping the architecture of organellar 

genome in green plants.  

In the three endosymbiotic green algae selected for study from Chlorellaceae, the 

organellar genomes did not exhibit genome reduction, in contrast to the extensive 

genome reduction that has been previously observed in endosymbiotic bacteria and some 

parasitic algae. Instead, the algal organellar genomes show relatively larger genome size 

and more introns. Because this endosymbiont lifestyle evolved independently in the three 

algal species examined, this lack of genomic reduction seems to be a common 

evolutionary outcome for endosymbionts in the Chlorellaceae. Whether these features are 

representative of all endosymbiotic green algae are still unclear. Further investigations of 

other endosymbiont lineages, not only in Chlorella and Micractinium but also in other 

diverse groups, will be important to corroborate how the endosymbiotic lifestyle impacts 

the plant genome. 

In the study of parasitic plants, hemiparasites from Orobanchaceae show no evidence of 

mitogenome degradation, which completely contrasts with results from some other 

reported parasitic plant mitogenomes. The Orobanchaceae mitogenomes also showed 

some evidence for horizontal transfer of mitochondrial genes, which is consistent with 

observations that the parasitic lifestyle increases the propensity for the transmission of 

foreign DNA between different plant species. In the Orobanchaceae plastomes, the 

detection of several ndh pseudogenes provides strong support that the degradation of the 

NAD(P)H complex is the initial stage of the transition from fully functional to degraded 

plastome, in agreement with previous suggestions. However, the hemiparasitic species in 
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Orobanchaceae may not be representative of all hemiparasites in the green plants. Denser 

sampling of genomes and transcriptomes of hemiparasites in other families is needed to 

provide a more comprehensive view of plastome and mitogenome diversity in parasitic 

plants. Additionally, it will be worthwhile to assess the extent to which parasitic plants 

show the propensity of HGT in their mitogenome.  

In the xerophytic plant Welwitschia, a gymnosperm lineage, the massive loss of introns 

and RNA editing sites from its mitogenome was peculiar in comparison with other plant 

mitogenomes. However, current understanding of the mechanisms leading to RNA 

editing variation is limited and biased towards angiosperm species. In Welwitschia, the 

loss of editing sites could be attributed to genomic mutation and retroprocessing, but 

there are so few edit sites remaining in most genes that statistical analysis was limited. A 

deeper survey in land plants is needed to reveal the origin and evolution of RNA editing. 

The study of editing loss mechanisms could also determine whether lineage-specific loss 

of RNA editing is associated with different living styles. 

In a broad sense, these findings and results have contributed to a greater understanding of 

evolutionary diversity in organellar genome across green plants. With the fast developing 

sequencing technologies, future studies could answer more comprehensive questions: 

What is the evolutionary driving force of the organelle genome diversity? To what extent 

does the photoautotrophic lifestyle affect the conservation of the plastid genome? What is 

the evolutionary trend of the mitogenome of parasitic plants and what are the key factors 

that drive these changes? I anticipate that the fantastic and mysterious world of plant 

organellar genomes will bring even more exciting insights. 


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Summer 7-26-2016

	Comparative Evolutionary Analysis of Organellar Genomic Diversity in Green Plants
	Weishu Fan

	tmp.1469812866.pdf.t2QwH

