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Abstract:   

Sorghum and maize share a close evolutionary history that can be explored through 

comparative genomics. To perform a large-scale comparison of the genomic variation between 

these two species, we analyzed 13 million variants identified from whole genome resequencing 

of 468 sorghum lines together with 25 million variants previously identified in 1,218 maize lines. 

Deleterious mutations in both species were prevalent in pericentromeric regions, enriched in 

non-syntenic genes, and present at low allele frequencies. A comparison of deleterious burden 

between sorghum and maize revealed that sorghum, in contrast to maize, departed from the 

“domestication cost” hypothesis that predicts a higher deleterious burden among domesticates 

compared to wild lines. Additionally, sorghum and maize population genetic summary statistics 

were used to predict a gene deleterious index with an accuracy higher than 0.5. This research 

represents a key step towards understanding the evolutionary dynamics of deleterious variants 

in sorghum and provides a comparative genomics framework to start prioritizing them for 

removal through genome editing and breeding.   
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Main text: 

Sorghum (Sorghum bicolor L. Moench) and maize (Zea mays L.) are both members of the 

Poaceae family and often serve as a model system for comparative plant genomics. Their 

common Poaceae ancestor underwent a whole-genome duplication (WGD) event ~96 million 

years ago 1, and a second WGD in maize corresponds closely with its divergence 12 million years 

ago from sorghum 2. The role of polyploidization in maize diversification 1 makes the sorghum-

maize system particularly powerful for comparative studies. 

Archaeobotanical studies support a single sorghum domestication event around 3000 BC in 

Eastern Sudan 3, with genetic studies supporting a potential second independent domestication 

center in west Africa 4,5. Maize, in contrast, was domesticated once from teosinte in the Balsas 

river valley in central Mexico around 9000 years ago 6,7. While some orthologs between these 

two species experienced parallel selection during domestication 8, most domestication related 

genes appear to be drawn from a non-overlapping set 9. It is well established that maize 

experienced a decline in effective population size due to a domestication bottleneck 10,11 that 

increased the burden of deleterious alleles in the domesticate compared to teosinte 12,13. 

Evidence for reduced nucleotide diversity in landraces from a genetic bottleneck 5 or population 

size decline 14 has also been  reported for sorghum.  

Sorghum has a hermaphroditic inflorescence, contributing to its predominantly self-pollinating 

nature. Domesticated sorghum has an estimated outcrossing rate of only 7 to 20% 9,15, while 

https://paperpile.com/c/mKZ6dE/r7Ekc
https://paperpile.com/c/mKZ6dE/zmELT
https://paperpile.com/c/mKZ6dE/r7Ekc
https://paperpile.com/c/mKZ6dE/P9lH4
https://paperpile.com/c/mKZ6dE/twXiC+J0Fly
https://paperpile.com/c/mKZ6dE/dU5ex+JOtYb
https://paperpile.com/c/mKZ6dE/dye8S
https://paperpile.com/c/mKZ6dE/GnxGZ
https://paperpile.com/c/mKZ6dE/hAjSY+kENqX
https://paperpile.com/c/mKZ6dE/jmoKp+Y67Lg
https://paperpile.com/c/mKZ6dE/J0Fly
https://paperpile.com/c/mKZ6dE/BQnpQ
https://paperpile.com/c/mKZ6dE/GnxGZ+QMnl
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the outcrossing rate tends to be higher (up to 70%16) for weedy and wild sorghum. In contrast, 

maize and its wild progenitor teosinte are monoecious and generally outcrossing at a rate of 

over 90%17. In this study, we performed a joint analysis of functional variation in sorghum and 

maize lines that span the wild-to-domesticated continuum to compare deleterious mutation 

accumulation in these two closely related species with distinct domestication histories and 

mating systems.  

First, we conducted an extensive characterization of the levels and patterns of standing genetic 

variation in a diversity panel of 468 sorghum lines using whole-genome resequencing (WGS). 

These accessions represented a wide range of molecular and phenotypic diversity, including 

wild relatives, landraces, and improved breeding lines (Table S1). The average sequencing depth 

per line was 15x (Figure S1). Variants were called using the Sorghum bicolor reference genome 

(v3.1)18 (Figure S2), followed by filtering to obtain a high-quality core set of 13.2 million SNPs 

and 1.8 million indels (Figure S3). 

Five morphological forms (races) have been previously defined within S. bicolor: bicolor, durra, 

guinea, caudatum and kafir. S. bicolor race bicolor was the first race to be domesticated 19,20, 

while the remaining four “modern” races exhibited parallel evolution for free-threshing grains. 

Additionally, these four races experienced a significant amount of introgression from wild 

relatives within various agro-climatic and geographical environments 3,21,22. Consistent with 

previous reports, we observed population structure at both the race (Fig 1A) and geographical 

levels using principal component analysis (PCA)21,22 (Fig S4). Linkage disequilibrium (LD) in the 

diversity panel decayed rapidly to 50% of its initial value within the first few Kb, reaching 

https://paperpile.com/c/mKZ6dE/xw2p
https://paperpile.com/c/mKZ6dE/7M9b
https://paperpile.com/c/mKZ6dE/13CCm
https://paperpile.com/c/mKZ6dE/VqVUA+mDXql
https://paperpile.com/c/mKZ6dE/P9lH4+7zR6+5wVr
https://paperpile.com/c/mKZ6dE/7zR6+5wVr
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background levels (r2 = 0.1) around 300 kb (Fig 1B). We observed slight differences in LD decay 

rates (Fig S5A) and more striking allele frequency differentiation (FST 0.16-0.32; Fig S5B-C) 

among races, recapitulating sorghum’s domestication and adaptation history in variable 

environments. Local LD profiles revealed a significant increase in LD around the centromeres on 

all chromosomes except chromosome 1 (Fig1C), where a large genomic interval surrounding 

the centromere is missing from the reference genome 23. 

To allow for a comparative analysis, genomic evolution and amino acid conservation modeling 

24,25 was used to catalog candidate deleterious variants across both the sorghum and maize 

genomes. Genomic evolutionary rate profiling (GERP)26 identified 64.9 Mb 25 of the sorghum 

genome (9.49%) as evolutionarily constrained (GERP > 0). In maize, this value increased to 117 

Mb27, but only represents 4.16% of its genome. As a complement, sorting intolerant from 

tolerant (SIFT)28 scores were calculated to predict the effect of amino acid substitutions on 

protein function for both maize and sorghum. In sorghum, of the 459,188 SNPs identified within 

exons, 19% (87,684) were considered putatively deleterious (SIFT < 0.05). Similarly, 8% (53,583) 

of the exonic SNPs in maize were annotated as deleterious. As expected, we found that a large 

percentage of the variants inside coding regions were also evolutionarily constrained (GERP > 0) 

in both sorghum (44%) and maize (53%) (Figure S6).  

We split coding variants into five categories based on SIFT and GERP scores: deleterious (GERP 

>= 2, SIFT <0.05), non-conserved deleterious (GERP <2, SIFT <0.05), stop mutations (either gain 

or loss), tolerated (nonsynonymous, SIFT > 0.05), and synonymous mutations (Figure S7). 

Similar to maize29, the sorghum derived allele frequency (DAF) spectrum (Figure S8) showed 

https://paperpile.com/c/mKZ6dE/jF6jB
https://paperpile.com/c/mKZ6dE/OJxlm+KdTvL
https://paperpile.com/c/mKZ6dE/86Vy8
https://paperpile.com/c/mKZ6dE/KdTvL
https://paperpile.com/c/mKZ6dE/WGFIa
https://paperpile.com/c/mKZ6dE/YHTR7
https://paperpile.com/c/mKZ6dE/S3ShN
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that the categories of deleterious mutations exhibited an excess of low frequency variants 

compared to non-deleterious variants. As in maize 27, deleterious mutations were also enriched 

in sorghum pericentromeric regions where suppressed recombination makes it difficult for the 

organism to purge these variants (Figure S9). 

After maize and sorghum split from a common ancestor, the former went through a whole 

genome duplication around  ~12 million years ago 30. Once both maize subgenomes were 

combined together within a single nucleus, the process of “fractionation” commenced, 

whereby one copy of each duplicated gene pair tends to be lost 30. We investigated whether 

the fractionation and syntenic status between these two species is associated with the 

accumulation of deleterious variants. We found the proportion of variants within each of the 

five categories to be similar between fractionated and non-fractionated genes in both maize 

and sorghum, but the number of deleterious variants was significantly higher in non-syntenic 

genes for both species (Figure 2A). Our data suggest that non-syntenic genes, potentially less 

essential, carry deleterious variants at higher levels in both species.   

We also explored the deleterious burden of wild relatives, landraces, and improved lines in 

both maize and sorghum. The “cost of domestication” hypothesis 31 predicts that the process of 

domestication and crop improvement is likely to result in an increased number of deleterious 

variants in the genome. Our results in maize agreed with previous findings of an excess of 

overall deleterious alleles among improved maize lines relative to the wild relative Z. mays ssp. 

parviglumis 12 (Figure 2B). In sorghum, however, wild relatives had the highest accumulation of 

deleterious alleles. When analyzing each sorghum race independently, we observed three tiers 

https://paperpile.com/c/mKZ6dE/WGFIa
https://paperpile.com/c/mKZ6dE/MSJEU
https://paperpile.com/c/mKZ6dE/MSJEU
https://paperpile.com/c/mKZ6dE/TMxNE
https://paperpile.com/c/mKZ6dE/jmoKp
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of deleterious mutations, whereby wild relatives had the highest burden followed by the 

bicolor race and weedy lines. The modern agro-climatic adapted races showed the lowest 

burden (Figure S10). This departure could be explained partially by the inherent difference in 

mating systems of sorghum (selfing) and maize (outcrossing), especially from the transition to 

higher selfing rates in sorghum post-domestication. Notably, simulations that include an 

increase in the rate of selfing after domestication recapitulated the decrease in genetic load of 

landraces compared to wild taxa, which coheres with our interpretation of the data (Figure 2C-

S11). This difference in burden is not driven by a lower genetic diversity observed in wild 

sorghum, as they follow the expected pattern (wild > landrace > improved) (Figure 2D-S12). 

Additionally, Hamblin et al 32 showed that sorghum domestication is a complex process that 

might have included ancestral population structure, multiple domestication events, and/or 

introgressions from wild relatives. A recent study 14 has further shown that genetic load could 

have been reduced in modern lines by introgression with wild sorghum relatives. We 

hypothesize that the differences observed in load accumulation between maize and sorghum 

might be driven by both their different mating systems and domestication histories. 

Given the recent development of supervised machine learning applied to population genetics 

and genomics inference 33,34, we evaluated the efficacy of convolutional neural networks 

(CNNs) in building an evolutionary model capable of predicting a deleterious index (average 

SIFT score) and syntenic state for sorghum genes. We split the sorghum genome into segments 

with each gene as a centroid and calculated 12 features per window, four of which were 

derived from maize. We incorporated predictors of functional importance, conservation of 

synteny and fractionation of maize genes, levels of gene expression variance, and several 

https://paperpile.com/c/mKZ6dE/5caUJ
https://paperpile.com/c/mKZ6dE/BQnpQ
https://paperpile.com/c/mKZ6dE/EBED2+zSBkx
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molecular evolution statistics (Figure 3). 

Through the implementation of this model, we predicted the average SIFT score per gene, a 

statistic that reflects how likely a genic mutation would be deleterious. Our model had a 

prediction accuracy of 0.53 and outperformed linear regression models by 10% (Figure S13). 

The importance of individual features was assessed with a “leave one variable out” approach. 

We found that four features were most impactful. Two of them—average GERP score and 

number of variants in the CDS—were expected to be important as they both reflect the 

strength of purifying selection at a locus (Figure 4A-B). The other two impactful features were 

RNA expression variance in sorghum and maize syntelogs, supporting previous research in 

maize where the dysregulation of expression was correlated with rare-allele burden35. We also 

used the model to predict the syntenic state of the focal gene in each window with an AUC ~ 

0.9. Two maize related features were most relevant: ssw, a measure of conservation between 

two genomes using short kmer alignments (see methods), and maize nucleotide diversity (π) 

(Figure 4C).  

In summary, we performed a joint variant analysis of sorghum and maize genomic variation 

across the wild-to-domesticated continuum to highlight their differences in genetic load 

accumulation. We also prototyped an evolutionary model using supervised machine learning 

that exploited the syntenic relationship between these two species. Overall, we constructed a 

landscape of the sorghum genome that can be used to support GWAS results, variance 

component estimates, and inform whole-genome prediction in a comparative genomics 

framework. 

https://paperpile.com/c/mKZ6dE/3lR5I
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Figure 1. Population structure and linkage disequilibrium patterns in sorghum: a, Principal component analysis 

(PCA) of sorghum lines. b, LD decay rate as determined by the squared correlations of allele frequencies (r2) 

against physical distance (kb) between polymorphic SNP loci. c, Mean LD scores estimated with a 1Mb window. 

The reference genome is missing the majority of the centromeric region on chromosome 1.  
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Figure 2. Comparative analysis of deleterious alleles in sorghum and maize: a, Distribution of variants inside 

coding sequences for sorghum (left) and maize (right). Variants were divided into five categories: synonymous 

mutations (mutations that do not change the encoded amino acid), tolerated mutations (nonsynonymous 

mutations, SIFT > 0.05), stop-codon mutations (either gain or loss), non-conserved deleterious mutations (NC, 

deleterious, SIFT <0.05, GERP < 2), and conserved deleterious mutations (Deleterious, SIFT <0.05, GERP > 2). The 

genes were divided into three categories: fractionated (sorghum gene with one syntelog in maize), non-

fractionated (sorghum gene with two syntelogs in maize), and non-syntenic. Different letters represent significant 

differences between groups using a two-proportion Z-test. b, Deleterious burden was calculated for sorghum (left) 

and maize (right). Burden was calculated as the sum of homozygous derived alleles at deleterious sites over the 

total number of sites available for each individual (recessive model). c, Distribution of genetic load under a 

simulation scenario. Simulations were based on the mean population size 10,000 years ago for sorghum landrace 

and wild lines inferred by SMC++36. The effect of increased selfing during sorghum domestication was explored by 

changing the inbreeding probability from 0 (no selfing) to 1 (selfing). d, Nucleotide diversity (π) estimates across 
chromosome 6 were calculated in 1Mb bins for improved (yellow), landrace (blue), and wild lines (red). The dotted 

line marks a major decline in nucleotide diversity for improved and landrace lines relative to wild lines. This 

https://paperpile.com/c/mKZ6dE/4lnO
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genomic region (42Mb) colocalizes with dw2 and ma1, which are known height and maturity loci 21. See Figure S10 

for plots of all 10 chromosomes. 
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Figure 3. Genomic landscape of sorghum. a, Gene density heatmap. b, SNP density. c, Indel density. d, rho (⍴) 

population recombination rates were calculated using FASTEPRR in 500kb windows. e, Nucleotide diversity (𝜋) in 

1Mb windows for each sorghum race, the color codes are the same as used in Figure 1A, (red=kafir, 

blue=caudatum, yellow=durra, dark green=guinea). f, Tajima’s D for each sorghum race. g, Average GERP score per 

1Mb window, with a divergent red-blue scale where blue represents high GERP score. h, Genomic distribution of 

sorghum non-fractionated genes. 
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Figure 4. Convolutional neural network architecture. a, The sorghum genome was divided into ~34k windows, 

with each gene serving as a centroid. For each window, 12 features were calculated. Four of these features were 

calculated to exploit the syntenic relationships between maize and sorghum; nucleotide diversity (𝜋) of the 

syntenic segment in maize (maize pi), ssw short alignments (ssw; see methods) between sorghum and maize, 

coefficient of variation (CV) of the expression from syntenic maize genes (maize exp), and syntenic state 

(fractionation). The remaining features were calculated in sorghum: nucleotide diversity (sorghum pi), 

conservation score (mean GERP score per window, gerp), neutral substitution rate (nr) per focal gene, average SIFT 

score (SIFT), number of variants in the CDS of the focal gene (CDS variants), population recombination rates (⍴), 

coefficient of variation (CV) of the expression of the focal gene across different developmental stages and 

treatments (sorghum exp), window length (wind length), and focal gene length (gene length). The CNN was trained 

to predict the average SIFT score per gene and the syntenic state of the focal gene (fractionated, non-fractionated, 

or non-syntenic). To assess the relative importance of each feature, we calculated the decrease in accuracy 

(Accuracy delta) after removing a single feature for predicting b, average SIFT score (continuous) and c, syntenic 

state (categorical). 
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Methods: 

 

Plant material 

The plant material used in this study is comprised of sorghum lines that represent a wide range 

of molecular and phenotypic diversity. Overall, 485 lines (468 of which are unique) were used 

to build a sorghum haplotype map. Only unique lines were considered for further analysis. The 

material has three different origins, Mace et al. 5 (n = 42), TERRA-MEPP project (n = 240, 

https://terra-mepp.illinois.edu) and TERRA-REF (n = 203, http://terraref.org/). Information for 

each line is included in Table S1.  

 

Sequencing and variant identification 

The samples from all three datasets were sequenced using Illumina paired-end reads of 100bp 

or 150bp in length. The sequencing depth for each line ranged from 0.03 to 74.15x (Table S1, 

Figure S1). This was estimated based on the number of reads, expected sorghum genome size 

(732Mb), and read length. Variant calling was performed using Sentieon’s DNAseq pipeline 
201711.03 37, a proprietary implementation of the GATK variant calling pipeline 38. Briefly, BWA 
39 version 0.7.13 was used to align the raw sequence reads to the BTx623 reference genome 

v3.1 available in Phytozome 18. Next, duplicated reads were removed and local realignment was 

performed around the indels. Then, base quality score recalibration (BQSR) was also performed 

using SNP markers identified in a previous sorghum hapmap 25 built with the 240 TERRA-MEPP 

accessions. Finally, gvcf files were generated using the Haplotyper in the emit_mode gvcf. The 

485 gvcfs were then jointly called to produce a single VCF file using the GVCFtyper mode. For 

more details on the pipeline see Figure S2A and code in the GitHub repository 

(https://github.com/GoreLab/Sorghum-HapMap).     

 

After variant calling, a vcf file containing  ~41 million markers was generated. Of these, 

35,025,902 were biallelic SNPs and 3,486,787 were biallelic indels (See Figure S2B for details). 

Hard filters were applied using GATK best practices recommendations. Briefly, SNP markers 

having a QualByDepth (QD) < 2, FisherStrand (FS) > 60.0, RMSMappingQuality (MQ) < 40.0, 

MappingQualityRankSumTest (MQRankSum) < -12.5, or ReadPosRankSumTest 

(ReadPosRankSum) < -8.0 were removed. Similarly, indels with QualByDepth (QD) < 2.0, 

FisherStrand (FS) > 200.0, or ReadPosRankSumTest (ReadPosRankSum) < -20.0 were also 

removed (Figure S2B). The average inbreeding coefficient (F) at filtering STAGE 2 was 0.68. This 

value contrasted with our expectation of high homozygosity for sorghum inbred lines. We 

applied to the data an “allele balance” filter (see GitHub repository vcfaddanot.py) that 

calculated the ratio between the number of reads supporting the heterozygous (het) calls and 

the total number of reads:  

 𝐴𝐵 =  # 𝑟𝑒𝑎𝑑𝑠 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑖𝑛𝑔 ℎ𝑒𝑡 𝑐𝑎𝑙𝑙 𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑟𝑒𝑎𝑑𝑠  ∗ 100 

 

https://paperpile.com/c/mKZ6dE/J0Fly
https://terra-mepp.illinois.edu/
http://terraref.org/
https://paperpile.com/c/mKZ6dE/qh2zF
https://paperpile.com/c/mKZ6dE/N2FZQ
https://paperpile.com/c/mKZ6dE/APRxv
https://paperpile.com/c/mKZ6dE/13CCm
https://paperpile.com/c/mKZ6dE/KdTvL
https://github.com/GoreLab/Sorghum-HapMap
https://github.com/GoreLab/Sorghum-HapMap/blob/master/HAPMAP/vcfaddanot.py
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According to previous research40 most of the variants with an AB value above 30 could be 

validated using Sanger sequencing. Applying this same threshold, heterozygous calls with a 

value of AB lower than 30 were masked. Additionally, vcftools 41 was used to mask genotypes 

with a read depth (minDP) lower than 4, markers that were monomorphic, and markers with 

call rates lower than 50%. Finally, SNPs with an inbreeding coefficient lower than 0 were 

removed. The inbreeding coefficient per marker was calculated as: 

 𝐼𝐶 =  1−𝐻𝑜𝑏𝑠 𝐻𝑒𝑥𝑝 , 

 

where Hobs and Hexp are the observed and expected heterozygosity under Hardy-Weinberg 

Equilibrium (HWE). Finally, the missing genotypes were imputed and phased into haplotypes 

using Beagle 4.1 42 using a default window size of 50,000 SNPs and an Ne = 150,000. In total, 

13,170,712 SNPs and 1,804,397 indels were called and imputed for the 485 accessions. Variants 

were called for all lines, however, only unique lines with sequencing depth higher than 2X were 

considered for further analysis (n = 466). 

 

Linkage Disequilibrium 

Linkage disequilibrium (LD) decay was calculated using PopLDdecay v3.31 

(https://github.com/BGI-shenzhen/PopLDdecay). Measures of LD (r2) were calculated for the 

entire population, but also for each chromosome and subpopulation. Pairwise r2 estimates 

were calculated from the unimputed SNP dataset with MAF > 0.05 and maximum missing rate < 

0.25. LDscores were calculated using the Genome-wide Complex Trait Analysis (GCTA) suite 43,44 

with default settings. 

 

Deleterious mutations 

Candidate deleterious alleles identification: 

We used sorting intolerant from tolerant (SIFT) 45 to annotate sorghum and maize SNP data. 

The SIFT algorithm predicts whether an amino acid substitution is deleterious to protein 

function 28. SIFT uses protein alignments to identify conserved amino acids and provide a score 

of the putative deleterious effect for each position of the protein. These scores range from 0 to 

1, and positions with a SIFT score < 0.05 are predicted to be deleterious. 

 

In sorghum, GERP (genomic evolutionary rate profiling) scores 26 estimated from the alignment 

of six species including Zea mays, Oryza sativa, Setaria italica, Brachypodium distachyon, 

Hordeum vulgare and Musa acuminate 46  were used to identify evolutionary constrained 

nucleotides. From the ~13 million SNPs, 455,546 variants were located within coding sequence 

(CDS) and were split into 5 categories based on SIFT and GERP scores as follows: synonymous 

mutations (mutations that do not change the encoded amino acid), tolerated mutations 

(nonsynonymous mutations, SIFT > 0.05), stop-codon mutations (either gain or loss), non-

conserved deleterious mutations (SIFT <0.05, GERP < 2), and conserved deleterious mutations 

https://paperpile.com/c/mKZ6dE/SEGrc
https://paperpile.com/c/mKZ6dE/Smxad
https://paperpile.com/c/mKZ6dE/r3zAw
https://github.com/BGI-shenzhen/PopLDdecay
https://paperpile.com/c/mKZ6dE/9y4KQ+TH4Hp
https://paperpile.com/c/mKZ6dE/ll1eY
https://paperpile.com/c/mKZ6dE/YHTR7
https://paperpile.com/c/mKZ6dE/86Vy8
https://paperpile.com/c/mKZ6dE/zUhCJ
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(SIFT <0.05, GERP > 2).    

 

The derived site frequency spectrum was calculated for the 455,546 CDS variants using both 

Zea mays (AGPv3.22 annotation) 47 and Setaria italica (Setaria italica v2.2, DOE-JGI, 

http://phytozome.jgi.doe.gov/) as outgroups to determine the ancestral state. Briefly, each 

sorghum gene was aligned with its syntenic orthologs 48 using clustal omega 49 in both maize 

and setaria. For each variant, the corresponding nucleotide in maize (both subgenomes) and 

setaria were identified and the sts-ufs software 50 was used to infer the probability of the 

derived vs. ancestral allelic state. The same approach was used to annotate deleterious alleles 

in maize. Briefly, maize HapMap v3 51 (1200 individuals) was used to annotate deleterious 

alleles. Only markers with the “LLD” flag present and the “NI5” flag absent were used, as 
suggested by the authors. The “LLD” flag includes SNPs that are confirmed to be in LD with GBS 

anchor markers and the “NI5” flag is used to mark SNPs within 5bp of an indel. Together, the 
“LLD” flag present and the “NI5” flag absent represents the cleanest marker set 51. Maize 

annotation on the v3 reference genome (AGPv3.22) 47 was used to calculate SIFT scores. GERP 

scores were available from Rodgers-Melnick et al. 52. Sorghum and setaria were used as 

outgroups for maize to infer the derived/ancestral allele using the sts-ufs software50.  

 

Utilizing a single reference genome for a species when calculating GERP and SIFT scores 

introduces a bias that underestimates the number of deleterious alleles in domesticated 

material versus wild relatives 12. It has been previously shown that annotation of markers for 

which the reference allele is derived might be unreliable 53. To mitigate this bias, we calculated 

the probability that each reference-derived allele would have been classified as it was 

(deleterious, NC deleterious, etc) had the reference allele been ancestral separately for maize 

and sorghum. Briefly, all the alleles for which BTx623 (sorghum reference genome genotype) or 

B73 (maize reference genome genotype) where ancestral were divided into bins of 1% derived 

allele frequency and the fraction of reference-ancestral sites in each functional category was 

calculated. Those fractions were used as weights for all the reference-derived sites.  

 

Deleterious Burden calculations: 

The fitness for a variant was calculated relative to the ancestral state 54. The ancestral allele was 

set as the non-deleterious marker (coded as 0 in the dosage matrix) and the derived allele as 

the potential deleterious allele. We then calculated the burden of each line using the 

unimputed marker matrix. The homozygous burden (recessive model) was defined as the sum 

of homozygous deleterious sites (coded as 2 in the dosage file) over the total deleterious sites 

called for each individual (not considering missing genotype calls). The heterozygous burden  

was defined as the sum of heterozygous deleterious sites (coded as 1 in the dosage file) over 

the total deleterious sites called for each individual. The individuals used for the comparison 

between improved lines, landraces, and wild relatives for maize and sorghum are included in 

Table S2. 

 

Deleterious Burden simulations: 

To understand the potential reason for decreased burden in landraces compared to wild 

sorghum, we simulated different scenarios. To parameterize our simulations to fit the empirical 

https://paperpile.com/c/mKZ6dE/sOTeJ
https://paperpile.com/c/mKZ6dE/FacfC
https://paperpile.com/c/mKZ6dE/GqsA6
https://paperpile.com/c/mKZ6dE/uQ4qg
https://paperpile.com/c/mKZ6dE/lfE1y
https://paperpile.com/c/mKZ6dE/lfE1y
https://paperpile.com/c/mKZ6dE/sOTeJ
https://paperpile.com/c/mKZ6dE/KxzDY
https://paperpile.com/c/mKZ6dE/uQ4qg
https://paperpile.com/c/mKZ6dE/jmoKp
https://paperpile.com/c/mKZ6dE/bz7Q8
https://paperpile.com/c/mKZ6dE/nxxxD
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data, we estimated the population history of sorghum using SMC++ 36. We selected five lines 

from each group (wild, landrace, and improved) to ensure equal sampling. We used the repeat 

masking of the sorghum reference genome version 3.0.1 to create input files for each line of a 

group as a distinct lineage. We used forward in time simulations in fwdpy11 

(https://github.com/molpopgen/fwdpy11), a Python package using the fwdpp library 55 to 

simulate a diploid random mating population. We simulated a 100 Mb region where deleterious 

mutations occurred at 1% of a neutral mutation rate of 3x10-8 mutations/bp/generation and a 

recombination rate equal to the neutral mutation rate. 

 

The effect size of deleterious mutations followed an exponential distribution with a mean of -

0.05. Based on the mean population size 10,000 years ago for the landrace and wild lines 

inferred by SMC++, we simulated an equilibrium population having a constant size of Nanc= 

11270 for 10 Nanc generations before changing parameters. The demographies used followed 

the inferred demography for the last 10,000 years. We tested the effect of increased inbreeding 

from selfing during sorghum domestication by changing the inbreeding probability from 0 

(completely outcrossing) to 1 (complete inbreeding) and from 0.5 to 1. We replicated each 

parameter combination 100 times. At the end of the simulation, we recoded the fitness of 50 

random individuals. We calculated burden as the difference in fitness of an individual and the 

fittest individual with the same ancestral inbreeding. 

 

Convolutional neural network model 

The sorghum genome was divided into windows containing a single focal gene. Then, several 

summary statistics from both sorghum and maize were calculated for each window. These 

windows were randomly split into training, validation, and test sets and a CNN framework was 

used to build a model for predicting average deleterious score (SIFT) and syntenic state. 

Syntenic state refers to whether the focal sorghum gene in each window is fractionated, non-

fractionated, or non-syntenic when compared with maize. Each of the features used in the 

model are detailed in the next section. 

 

Defining sorghum genome windows: 

The midpoint distance between adjacent genes was calculated, allowing for the calculation of a 

series of intervals that covered each chromosome from start to end. In total, the sorghum 

genome was divided into 34,028 windows (Table S3).  

 

Nucleotide diversity (pi), Tajima's D and per site Fst: 

Nucleotide diversity 56 and Tajimas’s D were calculated with the sorghum and maize SNPs using 
vcftools --site-pi 41 ,  --TajimaD, and --weir-fst-pop. Using bedtools, we calculated the average 

pi/TD/Fst value per window counting every nucleotide site inside the window and giving a value 

of 0 for monomorphic positions. 

 

GERP (Genomic evolutionary rate profiling): 

Sorghum GERP 26 scores were estimated from the alignment of six species including Zea mays, 

Oryza sativa, Setaria italica, Brachypodium distachyon, Hordeum vulgare and Musa acuminate 
46. For further information, please refer to Valluru et al. 25. We used maize GERP scores 

https://paperpile.com/c/mKZ6dE/4lnO
https://github.com/molpopgen/fwdpy11
https://paperpile.com/c/mKZ6dE/WrqJ
https://paperpile.com/c/mKZ6dE/egT24
https://paperpile.com/c/mKZ6dE/Smxad
https://paperpile.com/c/mKZ6dE/86Vy8
https://paperpile.com/c/mKZ6dE/zUhCJ
https://paperpile.com/c/mKZ6dE/KdTvL
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calculated previously by Rodgers-Melnick et al. 52. Average GERP scores were calculated per 

window. Additionally, average neutral substitution rates (nr, sum of the tree branch lengths) 

were calculated for each focal gene.  

 

SIFT (Sorting Intolerant From Tolerant): 

Sorghum SIFT annotations were calculated with a sorghum database created using the 

Sbicolor_313.v3.1 gene annotation. Only primary transcripts were taken into consideration. 

Sift4g was used to evaluate the 13 million sorghum variants. Raw SIFT results are available 

through the CyVerse repository associated with this manuscript 

(http://datacommons.cyverse.org/browse/iplant/home/shared/GoreLab/dataFromPubs). 

Maize SIFT scores were calculated on a subset of the HapMap v3 markers 51, only including 

those with the “LLD” flag present and the “NI5” flag absent (29 million variants). For maize, the 
pre-computed SIFT database on the v3 reference genome (AGPv3.22) was used. Raw SIFT 

results are available in the CyVerse repository associated with this manuscript. Average SIFT 

scores per gene were calculated.   

 

SSW (SSW alignment between sorghum and maize): 

The sorghum reference genome was aligned to the maize genome with a sliding window of 

20bp using the Complete Striped Smith Waterman library (SSW; 

https://github.com/mengyao/Complete-Striped-Smith-Waterman-Library) for faster 

alignments. We reported the number of times each 20bp tag from sorghum aligned to maize, 

the maximum alignment score of the 20bp tag, and the average of multiple alignment scores of 

each 20bp tag. For each window used in the evolutionary model, the average maximum 

alignment score was calculated and used as a proxy of local conservation between the sorghum 

and maize genomes. 

 

Rho (⍴, population recombination rate) 

Population recombination rates were calculated in the entire panel using the software 

FASTEPRR57. and also to calculate the recombination rate for each of the gene windows used to 

build the evolutionary model (FASTEPRR_segments.R). 

 

Sorghum and maize gene expression 

Six sorghum (PRE0023, PRE0028, PRE0146, PRE0295, PRE1441 and Grass1) and two (B73 and 

Mo17) maize lines were grown under the same greenhouse experimental conditions. Plant 

material for RNA sequencing was collected from two tissues (growing point and leaves) at four 

developmental stages (three, five, six, and seven leaf stage) during day and night conditions. In 

total, 192 and 64 sample combinations of genotypes, developmental stages, tissue types, and 

diurnal conditions for sorghum and maize were obtained, respectively. Samples were processed 

according to Kremling et al. 35. Briefly, RNA was extracted using TRIzol (Invitrogen) with Direct-

zol columns (Zymo Research) and 3′RNA-seq libraries were prepared from 500 ng total RNA in 

96-well plates on an NXp liquid handler (Beckman Coulter) using QuantSeq FWD kits (Lexogen) 

according to the manufacturer’s instructions. Libraries were pooled to 96-plex and were 

sequenced with 90 bp single-end reads using Illumina TruSeq primers on an Illumina NextSeq 

500 with v2 chemistry at the Cornell University Biotechnology Resource Center (BRC). 

https://paperpile.com/c/mKZ6dE/KxzDY
http://datacommons.cyverse.org/browse/iplant/home/shared/GoreLab/dataFromPubs
https://paperpile.com/c/mKZ6dE/lfE1y
https://github.com/mengyao/Complete-Striped-Smith-Waterman-Library
https://paperpile.com/c/mKZ6dE/4O9ZF
https://paperpile.com/c/mKZ6dE/3lR5I
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The first 12 bp and Illumina Truseq adapter remnants were removed from each read using 

Trimmomatic version 0.32. The splice-aware STAR aligner v.2.4.2a was used to align reads 

against either the sorghum v3.1 or the maize AGPv3 reference genome annotations, allowing 

reads to map to at most 10 locations (-outFilterMultimapNmax 10) with at most 4% mismatches 

(–outFilterMismatchNoverLmax 0.04), while filtering out all non-canonical intron motifs (–
outFilterIntronMotifs RemoveNoncanonicalUnannotated). Default settings from STAR v.2.4.2a 

aligner were used to obtain gene-level counts (--quantModel GeneCounts) from the resulting 

BAM files.  

CNN architecture 

A deep residual convolutional neural network was developed (DeepEvolution), tailored to 

predict different population genetics parameters in classification and regression problems. The 

DeepEvolution architecture is composed of one input layer, nine one-dimensional convolutional 

layers, two max pooling layers, two fully connected layers, and one output layer (Figure 4a). In 

order to better exploit deeper low and high level representations from the input space, residual 

blocks over the network were used as motivated by the ResNet architecture 58 and batch 

normalization after convolutional layers. ReLU activations were applied on the hidden layers to 

better leverage nonlinearities from the population genetics parameters space. A decreasing 

number of channels and filter sizes were chosen, which is common in many efficient computer 

vision algorithms like the AlexNet architecture 59. For the regression problem of predicting 

average SIFT score, a linear activation function was used in the output layer. In the classification 

framework, the softmax activation function was implemented to predict the probability of the 

three classes of syntenic state (2 copies, non-fractionated; 1 copy, fractionated; 0 copy, non-

syntenic). The network for average SIFT score was optimized using the Adam algorithm with a 

learning rate of 0.001 to minimize the mean-squared error function for regression, while for 

and syntenic state categorical cross-entropy was used for classification. Additional details about 

the model architecture, cross-validation, and feature importance analysis can be reviewed in 

the documented code (https://github.com/GoreLab/Sorghum-

HapMap/tree/master/CNN/codes). The DeepEvolution model was fitted using the library keras 

2.1.6 and python 3.6. To compare with accuracies obtained from the CNN, we used linear 

regression (average SIFT score) and multinomial logistic regression (syntenic state) models 

using the same predictors as in the CNN. Accuracies from each model were calculated using a 

10-fold cross-validation scheme.   

 

Data availability 

The raw sequencing data for the TERRA-MEPP lines are available through the NCBI BioProject 

PRJNA513297. Mace et al. raw data are available through the BioProject PRJNA182489, TERRA-

REF raw data are available through the data commons database at CyVerse: 

http://datacommons.cyverse.org/browse/iplant/home/shared/terraref. Gene expression raw 

data are available through the Bioproject PRJNA503076. SIFT raw results and VCF files among 

others are available through the CyVerse repository: 

http://datacommons.cyverse.org/browse/iplant/home/shared/GoreLab/dataFromPubs   

(DOI:10.####/pending once accepted). Code used throughout the article is available at the 

GitHub repository: https://github.com/GoreLab/Sorghum-HapMap.  

https://paperpile.com/c/mKZ6dE/Sva05
https://paperpile.com/c/mKZ6dE/3b1kX
https://github.com/GoreLab/Sorghum-HapMap/tree/master/CNN/codes
https://github.com/GoreLab/Sorghum-HapMap/tree/master/CNN/codes
http://datacommons.cyverse.org/browse/iplant/home/shared/terraref
http://datacommons.cyverse.org/browse/iplant/home/shared/GoreLab/dataFromPubs/Lozano_MaizeSorghum_2019
https://github.com/GoreLab/Sorghum-HapMap
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