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Comparative Experiments with a New 
Adaptive Controller for Robot Arms 

Louis L. Whitcomb, Member, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE, Alfred A. Rizzi, Member, IEEE, and Daniel E. Koditschek, Member, IEEE 

Abstract- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis paper presents a new model-based adaptive 
controller and proof of its global asymptotic stability with re- 
spect to the standard rigid-body model of robot-arm dynam- 
ics. Experimental data from a study of one new and several 
established globally asymptotically stable adaptive controllers 
on two very different robot arms 1) demonstrate the superior 
tracking performance afforded by the model-based algorithms 
over conventional PD control, 2) demonstrate and compare the 
superior performance of adaptive model-based algorithms over 
their nonadaptive counterparts, 3) reconcile several previous 
contrasting empirical studies, and 4) examine contexts that com- 
promise their advantage. 

I. INTRODUCTION 

EVERAL years ago, a flurry of activity among robotic S control theorists [ l l ] ,  1141, [26], [28], 1341, resulted in 

a new class of adaptive controllers for robot-arm manipu- 

lators. These algorithms comprised the first in the literature 
whose stability could be proven rigorously with respect to 

the highly nonlinear rigid-body dynamical model. While many 

of these authors empirically demonstrated significant perfor- 

mance gains over traditional PD controllers, no systematic 

empirical comparisons between the provably correct rigid- 

body model-based schemes, as applied to various robot plants, 
seem to have been attempted. Moreover, while these al- 

gorithms were typically implemented on high-performance 

laboratory arms, prior [30] and subsequent 1171 authors have 

argued that infidelities present in industrial robots must vitiate 
any real benefits from model-based controllers that rely upon 

the rigid-body assumptions. 

The purpose of the present paper is twofold. First, we offer 

the first reported empirical comparison within this family of 

closely related but conceptually and algorithmically distinct 

adaptive controllers. Second, we present a new rigid-body 
model-based adaptive controller that achieves a slight but po- 
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tentially significant theoretical advance over past contributions. 
The experiments were performed both on an industrial SCARA 

arm and on our new “Yale Buhgler” three-degree-of-freedom 
(3-DOF) direct-drive juggling robot. Our data corroborate, in 

part, claims made both by the proponents and the detractors of 

model-reference adaptive control for robot arms. In particular, 

they suggest the following: 

1) The tracking performance of rigid-body model-based 

controllers is generally superior to conventional PD 

algorithms. 

2) Adaptive model-based control algorithms consistently 
outperform their nonadaptive counterparts. There is only 

a marginal performance distinction between the various 
adaptive controllers. 

3) Model-based algorithms that feedforward reference tra- 
jectory information rather than actual state information 

yield significant performance benefits when the con- 
troller model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis valid; they fail dramatically (in relative 

terms) when the actuator model is violated (such as 

actuator torque saturation). 
4) As has been independently verified, e.g., [ 11, the degree 

of performance improvement afforded by all model- 

based algorithms is strictly limited by the accuracy of 

the plant model employed. 

Of course, as in any other academic paper, there is a 
methodological “subtext” lurking in this presentation worth ar- 

ticulating directly. We have taken the modest step of presenting 

an objective measure of tracking performance - root-mean- 
squared error- in addition to displaying plots of individual 

joint tracking error over time. We presume that the robotics 
research community will benefit by adopting some uniform 

convention for objective and statistically meaningful presen- 

tation of tracking data, and we call explicit attention to our 

own choice in this paper as a means of inviting further public 

debate concerning the proper standard. 

11. THEORY REVIEW 

The equations of motion of a mechanical system in local 

coordinates resulting from application of the Euler-Lagrange 

operator, to the kinetic energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK = ( l / 2 )qTM(q )q  of a 
kinematic chain in the presence of external forces arising 

from the Earth’s gravitational potential g, and independently 
controlled torque actuators 7 ,  take the form 

1042-296X/93%03 00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1993 IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Supposing that some reference trajectory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ( t )  has been 

specified in advance, we have in our possession as well the 
additional signals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ( t) , i . ‘ ( t) .  We assume that all of these are 

bounded, suptER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIld(i)r/dtill zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= pi < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00, i = 0,1,2. 

The problem addressed in this paper is the construction of 
a control law ~ ( t )  that causes the robot’s position to track T 

asymptotically exactly, that is, q1 + T .  This section reviews 

a family of provably correct solutions to the stated problem 
that have been proposed in the literature and presents a new 

addition to this family. 

A. PD: Fixed Proportional and Derivative Feedback Control 

Adopt the standard choice of error coordinates, e = 
[eT, e;]’ = [ (T - q)T, (i - 4)T]T. The control algorithm 

against which all controllers are measured is the proportional- 

derivative linear controller, labeled PD in the figures of 

Section IV, given by Tpd = Ke; K = [Kl, Kz]. We assume 
throughout this paper that Ki = KT > 0. With the addition 

of an (often gain-scheduled) integral term, it is used in 
nearly every industrial robot available today. While this simple 

algorithm does not provide asymptotically exact tracking, it 

does guarantee a bounded error Ile(t)ll when the gain matrices 

are positive definite and symmetric. Moreover, the steady-state 
magnitude of ( (e((  may be reduced by selecting higher feedback 

gains [15], [16], [33]. 

As in the case of the computed torque algorithm (2), this error 

system is globally asymptotically stable when K i  = KT > 
0. However, the demonstration is no longer as straightfor- 

ward. The (time-varying analogue of) “total energy,” q = 
(1/2)e:Klel+ (1/2)eTM(ql)e2, has a time derivative along 
the motions of this system that is negative semidefinite. 

Unfortunately, this is of no use in consideration of asymptotic 

stability, since LaSalle’s invariance principle does not apply 

to nonautonomous systems. A complete stability argument for 

this error system is given in Subsection B of the Appendix. 

C. IDA: A New Adaptive Controller 

The stability proof of the fixed model-based controller (3) 

in turn affords for the first time a proof for the following 

adaptive version: 

Tida = w(q, 4 1  i ,  + Tpd (6) 

8 = K,WT[e2 + c(el)el]; €(el)  = ~ ( 1 +  IIelII)-l 

(7) 

(derived in Subsection C of the Appendix), which is both 

globally asymptotically stable in plant tracking error and 
globally stable in controller parameter error. 

D. IDC and IDCA: “Critically Damped” Inverse Dynamics 

Several years ago it was observed that the solutions to the B. ID: Fixed Inverse Dynamics 
closed-loop system arising from the controller 

As of this writing, the most widely familiar algorithm that 
achieves robot tracking is the “computed torque controller” Ti& = w(q1, Q2, f ’ ,  ?’)e* + Tpd,  i’ = 1‘ + ne, (8) 

resulting in asymptotically stable linear time-invariant error 

dynamics, and thus asymptotically exact tracking [12], [20]. 

We shall use, instead of (2), a less well known variation, 
(3), labeled ID in the figures of Section IV, that provides for 

asymptotically exact tracking without exact linearization. We 

choose this approach because it admits of adaptive extensions 

that are globally convergent in both state and parameter error, 
unlike adaptive versions of (2), which have been shown to be 

globally convergent in plant state error and only locally stable 
in parameter error and which may require instrumentation of 

joint acceleration [ 1 I]. Consider the control law 

labeled IDC in the following sections, and the plant (1)  
converge, in an L2 sense, to the stable first-order subspace 

e2 = -Ael. Since an exponentially stable system forced by 
an input that decays to zero has an output that decays to zero, 
it follows that e .+. 0. This useful observation was reported 

independently, first by Slotine and Li [28] and subsequently 

by Horowitz and Sadegh [26], leading to the first provably 

correct differentiator free adaptive controller for a robot arm, 
(9) and (lo), labeled IDCA in the figures to follow. 

(9) 

(10) 

= w(q, 4, i’, ?’)8 + Tpd 

8 = K,w(q, 4, i’, ?’)TK;lKe. 

(4) 
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(a) (b )  

Fig. I .  (a)The GMFanuc model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA-500 and (b)  the Yale Buhgler 

111. EXPERIMENTAL SETUP 

A. Hardware 

We will study the performance of the controllers imple- 

mented on two different robots. The first, the Yale-GMFanuc 

A-500 Industrial Arm, is a classical industrial manipulator. 
The second, the Yale Biihgler, was designed to support our 

research program in robot juggling [24]. 

The GMFanuc Robotics Model A-500, a 4-DOF SCARA- 

type arm, is shown in Fig. 1. The manufacturer’s control 
system was replaced with our own custom system. The first 

two revolute degrees of freedom were used in these experi- 
ments. The “elbow joint” (joint zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) is driven by a GMFanuc 
Model 1-0 three-phase dc brushless motor and a 47: 1 spiroidal 

gear box. It is representative of the highly geared drive systems 

used in most conventional industrial robots. The “shoulder 

joint” (joint 0), is direct-drive driven by a 14-in NSK direct- 

drive variable-reluctance (VR) motor capable of delivering a 
static torque of 250 N.m. 

The Yale Biihgler Arm, a direct-drive 3-DOF essentially 
spherical robot arm, is depicted in Fig. 1 .  Each joint is driven 
directly by a VR motor manufactured by the Superior Electric 

Corporation. These are high-performance units whose low- 

velocity peak-torque and relatively high torque-to-mass ratio 

makes them particularly suited to direct-drive design. 

The computational hardware for these implementations is 
the Yale XP/DCS [ 191, a distributed real-time controller based 

upon the SGS-Thomson INMOS Transputer floating-point 
microprocessor 1241. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Sofware 

It has long been known [ 5 ]  that the mathematical represen- 

tation of the controllers explored here hides to a considerable 

degree their rather startling computational complexity. Indeed, 

many experimenters use approximations of reduced com- 
plexity either by making simplifying assumptions about the 

structure of link inertia tensors [7] or by using (theoretically 

unjustified) approximations to the exact dynamics expression 
1181. It is well known, e.g., [6], that the computational com- 

plexity of evaluating the rigid-body robot dynamical model 

varies linearly with n, the degrees of freedom. For example, 

[ IO]  reports a complexity of 1267, - 99 multiplications and 
10671 - 92 additions. 

We employ the exact Lagrangian dynamical equations for 

fully general link inertial tensors (including the off-diagonal 

terms), without omission or approximation of a single term. 

The equations were generated by a program’ written for 
the symbolic mathematics environment Mathematica, though 
any home-made or commercially available general derivation 
program would suffice. In either case, with a derivation 

utility in hand, its application to any particular robot is a 

straightforward and nowadays a commonplace exercise. The 
input to these derivation programs is a file containing the 
kinematic (four per link) and dynamic (ten per link) parameters 

of a robot.* The symbolic derivations for the A-500 and 

Buhgler each take less than 25 s of CPU time on a Sparc-1 

workstation. The output is an explicit closed-form expression 

for the equations listed above, from which computer source 

code is automatically generated. 
The A-500 control laws are all completely evaluated at 1 

kHz. The Buhgler control laws are all completely evaluated at 

two time scales - the feedback terms at 1 kHz and the model- 

based terms at 400 Hz. Sampling issues in the discrete time 
distributed control of robots are explored in [24] and 1351. 

C. Reference Trajectories, Feedback Gains, and Magic 
Parameters 

It is always possible to demonstrate the “superiority” of 

a favorite control algorithm by contriving an appropriately 
clever example. The practicing control engineer, however, is 

justifiably skeptical of anecdotal special-case examples that 
may not accurately represent typical overall performance. We 
have endeavored to demonstrate typical overall performance, 

rather than special case examples, by adopting the following 

rules of procedure. 

The various reference trajectories were selected to exhibit 

both “slow” friction-dominated behavior and “fast” rigid- 

body dynamics dominated behavior, and still lie within the 

actuators’ torque saturation limits. To this end we employed 

sinusoidal joint-space reference trajectories of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ,  ( t )  = 
offset + magnitude x SIN(phase + omega x t ) .  A great many 

(offset, magnitude, phase, omega) combinations were used in 
the experiments to explore the different regions of behavior. 

The feedback gain matrices used in all controllers were 

identical: they were selected empirically to give an approxi- 
mately critically damped response to the individual joints when 

in independent motion. Note that the feedback gain matrices 

employed (identical between controllers) were considerably 

lower than the limit dictated by the usual experimental tech- 
nique of increasing gains as high as possible (to the verge 

of instability). Unfortunately, since robot manipulators consti- 
tute highly nonlinear plants, gain settings optimized for one 

reference trajectory may well result in unstable performance 

for another. We were interested in comparing the relative 
performance of the different controllers in an unbiased fashion 

over a wide range of performance regimes, and accordingly 

did not push gains to the verge of instability to obtain the 

’ Available from the authors. 

We use, without loss of correctness, the commonly accepted technique of 
employing a smaller dimensional set of base parameters, e.g., [21]. 
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smallest tracking error magnitude for each reference trajectory. 

Higher feedback gains were observed (of course) to provide 
uniformly smaller steady-state tracking errors but identical 

relative performance between the various controllers. In short, 

the gain margin is very much a function of the reference 

trajectory in such nonlinear systems, and we chose low enough 

values to permit experimentation with identical gains over the 
entire performance regime examined. 

The adaptive gain matrix Kg can, according to theory, 
be any symmetric positive definite matrix. In practice, the 

numerical integration of the adaptive law destabilizes the 
entire system for sufficiently high adaptation gains. In these 

experiments, we set the adaptation gains to be as large a 

multiple of I as possible while preserving stability. It would 
be useful to have a more complete theoretical understanding 

and an automatic procedure to accomplish the manual fine- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

=; 8.4 f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8 8.2 

W 4 
8.1 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t! 

JSCALE: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP D = ~  .0 1 

m 

Fig. 2. Biihgler normalized joints 0, 1,  and 2 L2 position error n o m  
ensemble mean and standard deviation over (a sample size of) ten different 
reference trajectories, repeated for each of seven controllers. 

tuning of adaptation gains reported in previous implementa- 
tions [13]. A. Data Presentation 

The designer also must choose initial values for the adaptive 

controller model parameters for each run. Except where noted, 

we have in all cases initialized the adaptive model parameters 

to those values used in the fixed (nonadaptive) controllers. It 
is worth noting in passing that fixed parameter values were, 

in turn, obtained by running an adaptive algorithm for a short 

period of time from wildly inaccurate (zero) initial parameter 

estimates as discussed below. 

Included (except where noted) in the model-based controller 

implementations, though omitted for clarity from the equations 
of Section 11, is a Coulomb and viscous friction compensation 

term [32] for each joint. 

IV. EXPERIMENTAL RESULTS 

The overall conclusion to be derived from these experiments 

is best summarized by Fig. 2. This plot depicts the mean 

and variance of root-mean-square position error norms (for all 

joints) achieved by each of the seven controllers described in 
Section 11. The ensemble of runs over which these descriptive 

statistics are gathered comprise ten very different reference 

trajectories-differing not only in frequency content but in 

the region and volume of joint space they encompass. The 

results are normalized for convenience with respect to the 

simple PD controller since all physical significance of the joint 
angle errors is compromised by the diversity of trajectories 

being compared. Thus, the plot displays in succinct form the 

experimental data that justify the broadly stated conclusions 

in the introduction to this paper. 
It is clear from Fig. 2 as well as the other plots given 

below that the model-based controllers offer far better tracking 

performance than the PD in almost every case and that the 

adaptive model-based controllers (as a group) outperform 

the nonadaptive controllers. In general, the performance of 

each model-based controller is improved roughly 50% by its 
adaptive counterpart as shown in Fig. 2. Furthermore, there 

is a nearly identical performance ranking within both the 
nonadaptive and adaptive controller groups. We will examine 
those conclusions in greater detail and with reference to more 
selective experiments in this section. 

Since there is, at present, no general nonlinear counterpart 

to classical linear systems performance summaries (such as 

Bode plots), it has become accepted practice in the robotics 
community to compare controller performance by the visual 

examination of tracking error curves as a function of time 

for a "representative" or "standard" reference trajectory. Fig. 

5 (given later), for example, shows the position tracking 
error of three controllers, as a function of time for joints 0 

and 1 of the A-500 robot when both joints were tracking a 

sinusoidal reference trajectory. We wish to compare controller 

performance for no less than seven controllers over a variety 

of reference trajectories. While the curves in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 provide 

a palpable representation of tracking performance, the visual 
comparison of a succession of such graphs quickly becomes 

an act of aesthetic judgment rather than empirical analysis. 

As an alternative, we have employed the scalar-valued 

L2 norm as an objective numerical measure of tracking 
performance for an entire error curve. The L2 norm is given 

by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL2[e( t ) ]  = ( ( l / t )  st', lle(t)112dt)'/2 where e( t )  is a selected 

scalar (or vector) valued tracking error. The norm measures the 

root-mean-square "average" of the tracking error. A smaller 

L2 norm represents smaller tracking error-and thus better 
performance. 

Assertions based on experimental results are meaningful 

only to the extent that the results may be reproduced reliably. 

To test this, we ran and computed the error norm average 
and standard-deviation over ten runs with identical ControIlers, 

plants, and reference trajectories for each of the listed con- 

trollers. The standard-deviation of the error norm over the ten 

runs was observed to be typically less than 1% of their mean 

[361. 

B. Performance Benejts Due to the Adaptive Algorithms 

Fig. 3 shows PD position tracking error norm ( L2[e( t ) ] ;  
e ( t )  = [e1(t),e2(t),e3(t) lT) of between 13" and 25", IDR 
errors of 3" to 6", and IDRA errors of roughly 2" over a 

range of reference trajectories. The figure shows the L2 norm 
of the Buhgler joint position tracking err09 vector at steady 

310 = 0.0174 rad. 
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Fig. 3. Buhgler joints 0, I ,  and 2 C’ position error norm (radianr) versus 
reference trajectory nominal frequency. 

state for each controller. The reference trajectory for each joint 

was a sinusoid differing slightly from a nominal frequency. 
The error norms are plotted at three different nominal ref- 

erence trajectory nominal frequencies. The frequency range 

was chosen to include slow friction-dominated operation at 

one end to dynamics-dominated operation at the other. In 

this plot the slowest frequency corresponds to peak gripper 
velocity of 0.5 d s ,  and the highest frequency corresponds 

to peak gripper speeds of 3.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd s .  These data represent a 

typical instance of the statistical trends reflected in Fig. 2. 

The model-based controllers provide tracking performance 

superior (smaller error norm) to conventional PD control at 
equal feedback gains; their adaptive counterparts perform still 

better. 

Among the model-based controllers (both fixed and adap- 

tive), the IDR and IDRA (see Section 11-E) controllers that 
utilize reference trajectory values in their plant model are 

uniformly outperforming the controllers that use sensor values 

in their plant model. In Section IV-D-2 we will demonstrate 

that the advantages thus gained are not without peril. 

The IDC and IDCA controllers were observed to marginally 

outperform the ID and IDA controllers, respectively. This 
consistent difference is discussed in Section IV-D- 1. Finally, 

adaptive controllers were observed to be less robust than the 

nonadaptive controllers in the presence of certain unmodeled 

effects such as link vibration modes, actuator saturation, 
numerical integration, and the like, which may occur when the 

reference trajectories exceed the system’s design capability. 

C. The Effect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Parameter Values 

It is commonly agreed that effective nonadaptive model- 
based control relies on the availability of “correct” model 

parameter values. A common misconception, however, is that 
“any model is better than none” - that an “approximately 

correct” parameter set will result in better tracking than that 

obtained by PD control alone. 

I )  Incorrect Parameters: Fig. 4 shows the C2 error norm 
for all joints of the Biihgler obtained with the same reference 

trajectories, controllers, and initial parameters as Fig. 3. How- 

ever, in this run the absence of the former “gripper payload,” 

an L-shaped steel bar now removed from the distal link, 

significantly degraded the performance of both the PD and (via 
parameter mismatch) nonadaptive model-based controllers. 

c u  a a  
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Fig. 4. Incorrect parameters: Buhgler joints 0, I ,  and 2 C2 position error 
norm (radians) versus reference trajectory nominal frequency. 

The adaptive controllers, in contrast, compensate automatically 

for the change. Not surprisingly, instances were also observed 

where incorrect parameter values resulted in poorer fixed 
model-based controller performance than that of PD. 

The sensitivity of nonadaptive model-based algorithms to 

incorrect parameter values is doubly problematic because these 

parameters, representing the link inertia tensors, are difficult 
to measure by hand. Off-diagonal inertia tensor elements 

(products of inertia) are sufficiently difficult to measure that 
even the most capable investigators typically do not attempt 

i t  [3]. In contrast, the adaptive controllers estimate all terms 
of the parameterization - including those arising from the 

off-diagonal inertia tensor elements -with indifference4. 

2) Zero Initial Parameter Values: An important special 

case of “incorrect parameter values“ arises when the designer 
has no knowledge of the plant parameters and must rely 

on adaptation for a “cold start.” Fig. 5 shows the tracking 
performance of the PD, IDR (using “correct” fixed parameters 

from a previously converged adaptive run), and IDRA using 

zero initial parameter values. While the IDRA is seen to have 

a large initial transient, i t  recovers almost immediately to 
outperform PD. Within 10 s it is already performing nearly 

as well as the “correct parameter” fixed IDR controller. 

3) Obtaining “Correct” Fixed Parameters: A fair com- 
parison between the fixed and adaptive model-based al- 
gorithms is complicated by the issue of where to obtain 

the necessary parameter estimates for the former class. 

We observed that parameter sets produced by the adaptive 

controllers, when used in the fixed controllers, provided 
performance superior to the dismal performance obtained 

using hand-measured physical parameters. 
On the other hand, when the fixed model controllers are 

given parameters resulting from their adaptive counterparts’ 
convergence over a long run, and their performance is com- 

pared with respect to exactly the same reference trajectory, 
then i t  is not surprising that the adaptive controllers perform 

little better if at all. Yet, since parameters “optimally tuned” 
for one reference trajectory are in general “suboptimal” with 

respect to any other, the fixed controllers always perform less 

‘These direct adaptive controllers provide for asymptotically exact ref- 
erence tracking and stability of parameters but do not promise (without 
additional conditions) convergence of controller parameters to the “true” plant 
values. 

I 



64 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 9, NO. 1, FEBRUARY 1993 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RADIANS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 10-3 of these algorithms display the same pattern. The apparent 

distinction between ID and IDC performance turns out to 

be an unintended consequence of exactly the phenomenon 

we had hoped to avoid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- higher zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeflective feedback gains 

resulting from the variant structure of the IDC and IDCA 

controllers-by retaining the same set of uniform PD gain 
matrices zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( K z ,  K1 = K2A) over each comparative run. 
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-0.00 To see this, recall that the ID controller (3) is written 
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effective effective 

gain gain 
proportional derivative 

When, as in all the Buhgler experiments reported above, 
A is a multiple of the identity matrix, then MA is positive 

definite and the effective derivative gain for the IDC and 

IDCA algorithms [K2 + MA] exceeds that of ID and IDA 

[Kz] .  Moreover, while C and, hence, CA, have an indefinite 
symmetric part, the values attained by C in the course of 
these NnS are Often Small; hence, the effective proportional 

gain for the IDC and IDCA algorithms [(Kz + C)A] is 

-200.00 

-250.00 

- 1 5 ° . 0 0 / 9 7  

-300.00 ECONDS 
10.00 0.00 5.00 

(b) 

Fig. 5. A-500 tracking error versus time: (a) joint 0 and (b) joint 1 .  

only insignificantly less than that of the ID and IDA ( [Kl ]  

K1 = diag{ -25, -51, K2 = diag{- -5, - 1), and 
A = diag{5, 5, 51. 

For example, consider the point in state space q1 = [0, 0 ,  0IT 
and 42 = [l, 1, 1IT. Here, the IDC effective derivative gain 
matrix [K2 + MA] has eigenvalues 150% greater than ID’s 
derivative gain K2. me IDc effective gain matrix 

[(Kz + C)A] is essentially identical to ID’s K1 = K2A. 
Increasing the ID derivative gain by 150% to make it 

equivalent to IDC’s “effective” gain was observed to close 

the performance gap [36]. Conversely, “detuned” values of 

than their adaptive in Other ‘Ontext’ 
where K1 = KzA). In all the data discussed above, we set 

This is reflected not merely in the lower means of Fig. 2 but in 

the comparatively smaller variance of the adaptive algorithms’ 

performance relative to their fixed parameter counterparts. 

The (theoretically illicit) sensitivity of parameters to ref- 
erence trajectory type as well as the capacity of the adaptive 

algorithms to adjust from ~ Y P  to type with little transient error 

will be examined in Section IV-E. In general, we have tried 

to show fixed algorithms at their best (smallest tracking error) 
by choosing parameters resulting from previous adaptive runs 

on similar (but not identical) trajectories. 

D. Ranking the Model-Based Controllers 

The marginal ranking between the three fixed model-based 

controllers (ID, IDC, and IDR) and the nearly identical ranking 
between their adaptive counterparts (IDA, IDCA, and IDRA) 

was observed to hold under a variety of reference trajectories 

(Fig. 2) and for both plants (Section IV-F). Section IV- 

D-1 shows the tracking performance of ID and IDC and 
their adaptive versions to be nearly identical - the apparent 

performance distinction between them a consequence of their 

differing feedback structure. Section IV-D-2 suggests reasons 

for the reference controllers’ (IDR, IDRA) superior perfor- 
mance and examines a context in which their performance is 
compromised. 

In the statisti- 
cal plot, Fig. 2, it is clear that the IDC has a slightly lower 

mean error than the ID algorithm and that the adaptive versions 

I )  Pe$ormance Differences: ID and IDC: 

A (e.g., unequal elements on the diagonal) that can result in 
the symmetric part of MA being indefinite (and thus lowering 

the effective derivative gain of IDC) result in poorer relative 

performance of IDC in comparison to ID [36]. Unfortunately, 

because ID’s feedback structure is fixed and IDC’s is (in part) 
time varying, there is no constant set of feedback gain matrices 

that will allow them to be compared exactly “evenly” out of 

context. 

2) Reference Trajectory Feedforward Algorithm Performance: 
It has been noted that the model-based controllers IDR (1 1) 
and IDRA (12), using reference trajectory signals in place 

of actual (“exact”) sensed signals in model computation [27], 
[33], provided generally superior tracking performance relative 

to their exact counterparts. In addition to enabling (in some 
applications) a reduction of on-line computation, the trajectory 

algorithms substitute a “clean” reference velocity for the 

inherently noisy sensor-derived velocity in the feedforward 
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and adaptation laws. The latter property might account for 
their superior tracking performance. 

TO test the second assertion, we smoothed the (numerically 
differentiated) velocity signal with a first-order linear filter. 

We observed a slight performance improvement for filter time- 

constants up to 3 ms and performance degradation for higher 

values. On the whole, however, our data were inconclusive 
on this point. This suggests that elucidating the reference 

algorithms’ advantage requires a more careful and system- 
atic investigation. Ongoing work on an observer theory for 

Lagrangian mechanical systems [8] may yield insight to this 

important point. 

All model-based controllers may fail in varying degrees due 
to mismatch between the dynamic model and plant caused 

by unmodeled dynamics, torque saturation, actuator dynam- 

ics, friction, and the like. A classic example where such a 

mismatch is likely to occur is the potentially unbounded joint 
torque commands resulting from a (seemingly reasonable) 

workspace trajectory near a kinematic singularity. It is there- 
fore essential to investigate the behavior of the various control 

algorithms under the pervasive condition of torque saturation. 

Fig. 6 shows the position tracking error norms for the IDCA 

and IDRA controllers as a function of the nominal frequency 
of the sinusoidal reference trajectory. The actuator torque 

limits were reduced to 20% of their previous values. At lower 

frequencies (with correspondingly low velocities and torques), 

where saturation is absent, the IDRA outperforms the IDCA 

controller. At the highest frequencies, where saturation is 

almost continual, we see the following remarkable differences: 
1) The absolute magnitude of the tracking error is greater for 

both controllers, as is expected in the presence of actuator satu- 
ration. 2) The IDRA (12) controller does not perform as well as 

the exact model-based controller. This may be attributed to the 

significant modeling error introduced in the IDRA algorithms 

by the large tracking error. 3) At slightly higher reference 
trajectory frequencies than those plotted, the IDRA algorithm 

becomes unstable while the IDCA algorithm remains stable. 

Indeed, the stability proofs for all of the adaptive controllers 
depend intimately on instantaneous and unbounded torque 
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E. “Long-Term Memory ’’ Efsects 

Recently, a fundamentally different set of “learning” tech- 

niques - neural networks [ 131, memory-based learning [4], 
and repetitive learning [2], [22] methods - have challenged 

the hegemony of Lagrangian model-based methods in robust 

controller design. The principal advantage of the “learning” 

control algorithms would be the promise of accurately control- 
ling enormously complicated plants without explicitly mod- 

eling the plant’s underlying dynamics. Their disadvantage is 

the need to repetitively learn each unique task-they are 
unable to apply the knowledge of “learned” parameters to any 

but the original task. While much of the early work in this 

area was heuristic, recent results directly address stability and 
robustness [2], [22], thus establishing some of these techniques 
as theoretically sound alternatives to model-based adaptive 

robot control. 
In contrast, the adaptive robot controllers’ “learning” pro- 

cesses (parameter convergence) occur simultaneously with 

task execution, obviating the need for a separate “learning” 

phase. Moreover, after achieving parameter convergence, they 

can (in theory) apply this knowledge to track any smooth 

reference trajectory. In practice, however, these advantages 

are compromised by the following effects. First, adaptive 

parameter convergence relies on richness properties of signals 

within the system [23] that commonplace workplace tasks may 
fail to produce. Second, we observe in practice that adaptive 
parameters converge to slightly different “optimal” values for 

differing reference trajectories rather than converging to a sin- 
gle value for all rich trajectories, and they exhibit (theoretically 

disallowed) transients when transitioning from one reference 

to another. 

We tried a variety of reference trajectory combinations to 
find examples evoking a transient response in which the IDR 

controller outperformed its adaptive counterpart. The response 
to one such trajectory, Fig. 7, shows the instantaneous position 

error norm for the smooth transition from extremely slow 

reference sinusoids (friction dominates), on the left, to fast 

sinusoids, on the right (dynamics dominates). The IDRA 
adaptive parameter drift was sufficient to produce a larger 

transient excursion than the IDR controller. Within a few 
seconds after the transition, the IDRA controller recovers to 

equal the performance of the IDR controller, and it is superior 

at steady state. 

Do model-based controllers offer “generically” superior 
performance in practice? Fig. 8 shows the tracking error norms 

and standard deviations for the Buhgler arm, computed on 10- 
s intervals, for 10 different reference trajectory combinations. 

In each run a reference trajectory “switch” occurred at t = 
60 s, as may be observed from the rise in the mean and 
variance spread in the plot. These data confirm the validity of 

the anecdotal observations above. The model-based controllers 

outperform PD, and the adaptive controllers outperform the 
fixed controllers. The standard-deviation separation demon- 

strates that, over a variety of reference trajectories, the ordering 

0.00 , 
kREQ-MULT 
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Fig. 7. Long-term memory effects: Biihgler joints 0, 1, and 2 L? instanta- 
neous position error norm (radians) versus time (seconds). Smooth reference 
“switch” at t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 300. 
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Fig. 8. Buhgler joints 0, 1, and 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALc2 position error norm ensemble mean and 
(+/-) one standard deviation of ten different reference trajectories computed 
on 10-s intervals versus time for three controllers. Smooth reference “switch 
at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt = 60. 

of their tracking error means is both average as well as (in a 

statistical sense) typical. 
We conclude that the performance of model-based, and in 

particular adaptive model-based, controllers is not seriously 

compromised by the imperfect parameter convergence men- 

tioned above. The adaptive controller usually outperforms both 

its nonadaptive counterpart as well as PD control; the worst 
case “defects” of the adaptive algorithms (brief transients) 

are relatively innocuous in comparison to its demonstrated 

advantages over all of the fixed controllers. 

F. Contrast between Direct-Drive and Geared Joint 
Performance 

Fig. 9 shows 
the L2 norm of the (gear-driven) joint 1 position tracking error 

at steady state for the A-500 robot under seven controllers at 

each of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree different reference trajectory frequencies both 
with (Fig. 9(a)) and without (Fig. 9(b)) friction compensa- 

tion. The dramatically superior performance of the friction- 
compensated controllers over both the PD and (nonfriction- 
compensated) model-based controllers corroborates previously 

1)  Geared Joints Require Friction Models: 
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Fig. 9. Geared joint: A-500 joint 1 Lz position tracking error (radians) 
versus reference trajectory nominal frequency: (a) with and (b) without friction 
compensation. 

reported results, e.g., [9]. [32]. Thus, the dynamics of the 

geared joint (joint 1) appears dominated by frictional forces 
instead of link inertial forces. Indeed, this agrees with the well 

known fact that a link‘s contribution to the total inertia seen 
by a joint motor of gear ratio n is scaled by a ratio of l/n2. 

The spiroidal gear box used in joint 1 of the A-500 is, in fact, 

a dynamically simple mechanism with only two moving parts 

and providing high stiffness. Given the significant performance 

degradation that arises from even this relatively simple (in 
comparison to, for example, a harmonic drive) geared actuator, 

it is not surprising that other researchers have observed more 
curious performance defects in robots with more complicated 

actuator systems, e.g., [17]. 
In contrast, Fig. 10 shows the corresponding error norms 

for the (direct-drive) joint 0. This plot demonstrates only 

a marginal performance improvement between the friction- 
compensated and nonfriction-compensated controllers at higher 

velocities and (not surprisingly) shows significant improve- 

ment only at low velocities. Supported by similar results for 

the direct-drive Biihgler Arm, we conclude that the rigid-body 

dynamics appears to govern the direct-drive joint (joint 0). 
Friction compensation appears to offer improved performance 
for these types of direct-drive joints only at low velocities. 

2) Geared Joints Do Not Always Require Lagrangian 
Models: The ubiquity of industrial gear-driven manipulators 

suggests the possible utility of adding only friction- 
compensation terms to PD controllers and ignoring the 

Lagrangian dynamical model. Indeed, several motor and robot 
manufacturers claim to have implemented similar friction- 
compensation features, which we shall term PDF. Such a 
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Fig. 10. Direct-drive joint: A-500 joint 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL’ position tracking error (radians) 
versus reference trajectory nominal frequency: (a) with and (b) without friction 
compensation. 

controller might provide superior tracking performance for 
geared actuators at relatively modest computational cost. 

Fig. 11 shows the tracking error norms of the A-500 for the 

PDF controller in addition to the original seven controllers. 

Fig. 1 l(a) shows that tracking error norms for (direct-drive) 
joint 0 for each of the eight controllers. Here, the PDF con- 

troller provides improved performance (over PD) only at low 
velocities and no significant improvement at high reference 

velocities. Fig. 1 l(b) shows the PDF tracking error for (gear- 
drive) joint 1 to be essentially on par with the full model-based 

controllers (which incorporate both friction and rigid-body 
models). This and the lackluster geared-joint performance of 

model-based controllers without friction compensation (Fig. 

9(b)) confirm that friction dynamics dominates the rigid-body 

dynamics of this geared joint. 

V. CONCLUSION 

This paper has reviewed the stability literature for a class 

of model reference parameter adaptive controllers for robot- 
arm manipulators based upon the ID (3) variant of the popular 
computed torque algorithm (2 ) .  It provides for the first time 

a rigorous and global stability proof for IDA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6), a member 
of this class that has heretofore eluded a complete analysis. 

Comparative experiments of all these variants have been 

performed on a standard industrial SCARA manipulator and 
a fast direct-drive robot arm developed at the Yale Robotics 

Laboratory. The highlights of the observations of Section IV 

having been previewed in the introduction of the paper, we 

will only briefly summarize and amplify here. 
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Fig. 
reference trajectory nominal frequency: (a) direct-drive joint 0 and (b) geared 
joint 1 .  

A. Summary of Results to Date 

Fixed model-based controllers dramatically outperform the 

PD controller and their gdaptive counterparts perform still 

better. Thus, if a designer is committed to a computed torque- 

like controller, since the computationally intensive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW (4) 
terms must be computed anyway (the parameter adaptation in- 
tegrals represent very minor additional computational burden), 

the adaptive variant should be preferred. Most importantly, 

adaptation is the easiest, fastest, and most accurate method 

for obtaining parameter values for use in fixed-parameter 
controllers. 

The degree of performance improvement afforded by model- 

based algorithms is strictly limited by the accuracy of the 

plant model employed. We conclude that an appropriate dy- 

namical model is a more important antecedent to superior 

tracking than the particular model-based control law employed. 
Unfortunately, given the huge variety of available actuators 

and torque-amplifiers, there is no single “right” model for 

model-based control. The practicing engineer must carefully 

match controller and actuator capabilities in the context of 
a desired application -when better models are incorporated, 

performance benefits are immediate. 

We (cautiously) conclude that the worries of learning theo- 
rists [4], [25]  about the “long-term memory” effects of model- 

based adaptive methods appear to be unjustified. Namely, after 

parameters have adapted to yield good tracking in the face 

of a particular class of reference trajectories, new trajectories 
may incur substantial transient error - but the transients are 

typically no worse than those incurred by fixed controllers, and 
the steady-state performance is superior. The matter deserves 

continued careful examination. 

11. A-500 ioint L’ Dosition tracking error nom (radians) versus 
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B. Future Experiments 

As usual, these preliminary experiments have quickly led 

to further questions that suggest some interesting near-term 

extensions to the empirical work presented here. The extent 
to which we can improve the performance of conventional 

industrial robot manipulators seems limited by the validity 
of the controller’s actuator models. Thus, the development of 

such models (e.g., [29]) is of considerable practical impor- 

tance. The ubiquity of digital joint position encoders in actual 

machines suggests the utility of the recent work on observer 

theory for Lagrangian dynamical systems [8]. We presume the 

(theoretically arbitrary) adaptive gain matrix (see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7), (lo), 
and (13)) to be of untapped practical usefulness. Finally, to 

the best of our knowledge, a systematic experimental inves- 

tigation of the various provably correct “learning” algorithms 

in comparison to model-based adaptive algorithms has never 
been undertaken. 

APPENDIX 
A NEW ADAPTIVE CONTROLLER 

guarantees that this is a positive definite function with respect 

to the error coordinates e l ,  e2 for any time varying trajectory 

Taking the derivative of 6 along a motion of the error system 
q ( 4 -  

(3, we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8 = 7j + EeTMez  - Ee;f[Cez + K 2 e z  + K l e l ]  

+ceTlL!le2 + i e T M e 2 .  

Defining, for any vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv, h;rq(v)e (vT @ I)D,M”(q), we 
have 
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Two years ago, Koditschek [16] presented a new strict 

includes in its general purview the ID error dynamics (5). The 
specialization of the general idea to the present case amounts 

to nothing more than a modification of the bilinear cross term 

as will be seen below. Using this new Lyapunov function, 

IDA controller (6) that yields global asymptotic stability in 

where p1 is defined in Section 11. Moreover, we have 

. .Tea. e T M e z  
global Lyapunov function for general mechanical systems that €0 i e T M e z  = - 

lle111(1+ lle111)2 

IIe1lK1 + lle111>2 
/ i e T M e z I  5 d M f l l 1 e 1 i i 2 .  lie2tI2 EnMn l lez l12 .  

of the strict (but local) Lyapunov function 1151, [311, [331, 

we derive in this appendix an adaptive law to accompany the 

the state and parameter errors. A more leisurely derivation of 

these results is given in [36], to which the reader is referred 

for further details. + EeTKze;? 

A. Notation and Terminology 

We will require a notation for induced operator norms of 

constant-, linear-, and bilinear-operator-valued functions on a 

It now follows that 

1 

1 

1 
5 -2eT(Kz - EM)ez + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 (€1 + 360nh;rn) lle2112 

- Z e T ~ z e z  - + (3pl~/z)nh;rniie1ii . i iezti 

1 3 
L - z [ u ~ z u  - Eo(2nMn + ~ n ~ n ) i ~ i ~ ~ i t ~  

+(nw + ;plnkn) e 1 EUKlU 

- e T [ t E ( n K Z n  + ;plnM> W Z U  
vector space. For example, let C be a map from some space 3 
into the set of bilinear operators on the vector space product is negative definite as long as - -  
X x Y .  Then the upper norm of C is defined to be 

ncn e SUP SUP SUP IIC(W)YII 
q E 9  11=11=1 I ly I I= l  

X E X  YEY In this case we have 

9 I: -cUQU lle1I2 and the lower norm 1 Cu is defined analogously. A slight abuse 

of notation permits the same notation regardless of whether the 
UKlU 3(nKzn + ;plnhn) 

U Kz U /2EO 
domain of C is Y ,  X x Y ,  or J’ x X x Y.  

Q [;(nKzn + ;Plnhn) 

B. A New Lyapunov Function (All 

C. Stability of the New Algorithm Now consider the modified Lyapunov candidate 

6 = A q + E(el )eTM(ql )ez = The IDA controller (6) results in the error system 

e l  = e2 
where 

e 2  = - M - l ( q l ) [ C e z  + K e  + We] (-42) 

-A  A 

€(e l )  &(1+ 11e111)-’. 
where 8=8* - 0 denotes the parameter error vector whose 
adjustment over time must now be established in such a 

Note that a sufficiently small choice of E O ,  for example, 

eo L (uK1uuMu)VnMn fashion that e -, 0 as if e* were known. Define the adpative 
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a 

law to be as in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7). The scalar valued function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu=d + cl71 M. B. Leahy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJr., D. E. Bossert, and P. V. Whalen, “Robust model-based _ _  ; j T q  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA18 has a derivative along the motion of the full 
adaptive system 

control: An experimental case study,” in Proc. IEEE Int. con$ Roborics 
Automat. (Cincinnati, OH), May 1990, pp. 1982-1987. 

1181 M. B. Leahv. Jr.. L. M. Nueent. K. P. Valavanis. and G. N. Saridis. .~ 
“Efficient dinamics for a Pur&600,” in Proc. IEEE Int. Con$ Robotics 
Automat. (San Francisco), 1986, pp. 519-524. 

1191 F. Levin, M. Buhler, L. Whitcomb, and D. E. Koditschek, “Transputer 
computer juggles real-time robotics,” Electron. Syst. Design, vol. 19, 
no. 2, pp. 77-82, Feb. 1989. 

[201 J .  Y. S. Luh, M. W. Walker, and R. P. Paul, “Resolved acceleration 
control of mechanical manioulators.” IEEE Trans. Auromat. Contr.. vol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i, = -e: (K2e2 + We) + te:Me2 - €e: [Ce2 + Ke + We] 

+ c e y ~ i e 2  + i e ~ ~ e 2  + BTK; ’~  

5 - t [ Q U  l l e 1 1 2  - [e2 + tel]We + e T ~ , - l e  5 - t u Q u  lle.12 

that is nonpositive. It follows that u is bounded, hence, &IIell 

is an C2 function [23]. But an C2 function whose derivative 

is bounded must tend to zero [23]; hence, --+ 0 as desired. 
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