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We have determined the complete genome sequences of a host-promiscuous Salmonella enterica serovar Enteritidis PT4

isolate P125109 and a chicken-restricted Salmonella enterica serovar Gallinarum isolate 287/91. Genome comparisons

between these and other Salmonella isolates indicate that S. Gallinarum 287/91 is a recently evolved descendent of S.

Enteritidis. Significantly, the genome of S. Gallinarum has undergone extensive degradation through deletion and

pseudogene formation. Comparison of the pseudogenes in S. Gallinarum with those identified previously in other

host-adapted bacteria reveals the loss of many common functional traits and provides insights into possible

mechanisms of host and tissue adaptation. We propose that experimental analysis in chickens and mice of S.

Enteritidis–harboring mutations in functional homologs of the pseudogenes present in S. Gallinarum could provide

an experimentally tractable route toward unraveling the genetic basis of host adaptation in S. enterica.

[Supplemental material is available online at www.genome.org. The genome sequence data from this study have been

submitted to EMBL under accession nos. AM933172 and AM933173.]

Zoonotic pathogens, particularly those associated with veteri-

nary animals in the human food chain, are some of the most

important causes of infectious diseases in humans. Pathogens

associated with zoonotic infections exhibit a promiscuous phe-

notype in that they maintain the ability to colonize and poten-

tially cause infections in more than one host species. In contrast,

some pathogenic agents are significantly host restricted, or

adapted, and are normally only able to cause disease in one host.

Salmonella enterica is a single bacterial species that includes ex-

amples of both promiscuous and host-adapted pathotypes. Iso-

lates from serovars such as S. enterica serovar Typhimurium and S.

Enteritidis predominantly retain the ability to infect more than

one mammalian host, including humans, whereas serovars such

as S. enterica serovars Typhi and S. Gallinarum are restricted to

humans and chickens, respectively. The ability to transmit be-

tween and within particular host populations is centrally impor-

tant in dictating the epidemiology of infections and the emer-

gence of new diseases.

Before the mid-1980s, S. Enteritidis was regarded as an S.

enterica serovar of minor public health significance, but subse-

quently this serovar became dominant in terms of human food

poisoning in many parts of the world (Rodrigue et al. 1990).

National and international legislation regarding the reporting of

disease incidence, improved hygiene and biosecurity (Barrow
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2000), and vaccination have contributed to controlling S. Enter-

itidis levels in poultry and consequently in man in Europe, but

levels of infection remain significant. Most recent isolates of S.

Enteritidis are regarded as promiscuous in the sense that they can

cause infections in mice, retain the ability to colonize the tissues

of chickens, and cause gastroenteritis in man.

S. Gallinarum, the causative agent of fowl typhoid, is a pre-

dominantly avian-restricted serovar (Shivaprasad 2000). Interest-

ingly, in common with the human-restricted serovar S. Typhi,

the chicken-adapted S. Gallinarum causes an invasive typhoid-

like disease. Thus, here host adaptation appears to have co-

evolved with loss of the intestinal lifestyle and the acquisition of

the ability to cause systemic infection. S. Gallinarum still causes

a disease of worldwide economic significance, and although it

has been largely controlled in countries with strong health con-

trol policies, largely through serology-based test and slaughter

schemes, it remains a problem elsewhere. Multi locus enzyme

electrophoresis analyses of isolates of S. Enteritidis and S. Galli-

narum indicate that, together with isolates of S. Dublin and S.

Pullorum, they form a related strain cluster that share the same

lipopolysaccharide-based O structure (O-1, 9, 12 characteristic of

serogroup D). The nonmotile S. Gallinarum and S. Pullorum were

previously suggested to have split independently from a motile

ancestor related to S. Enteritidis (Li et al. 1993; McMeechan et al.

2005). Nonmotility in S. Gallinarum has been partially attributed

to mutations in the flagellin subunit gene fliC gene (Kilger and

Grimont 1993), which would normally express the phase 1 g, m

antigens characteristic of S. Enteritidis. Nonmotility may en-

hance the ability to invade systemically from the gut by avoiding

the TLR-5-induced pro-inflammatory responses of the host (Kai-

ser et al. 2000; Iqbal et al. 2005).

Here we report the full genome sequences of representative

isolates of S. Enteritidis and S. Gallinarum and provide a detailed

comparative genomic analysis of the two serovars. These data

have been used to provide insight into the biology, mechanisms

of host/tissue adaptation, and evolutionary relationships of these

important pathogens.

Results and Discussion

General features of the S. Enteritidis PT4 strain P125109

and S. Gallinarum strain 287/91 genomes

The complete genome sequences of the promiscuous S. Enteriti-

dis PT4 strain P125109 (hereafter S. Enteritidis PT4; EMBL acces-

sion no. AM933172) and the highly host-adapted chicken patho-

gen S. Gallinarum strain 287/91 (hereafter S. Gallinarum 287/91;

EMBL accession no. AM933173) were determined and annotated.

The main features are summarized in Table 1 and Figure 1, where

they are compared with S. Typhimurium strain LT2 (hereafter S.

Typhimurium LT2) (McClelland et al. 2001). The most striking

feature of the analysis is the predominant similarity and synteny

of core regions of the genomes, including many of the Salmonella

pathogenicity islands (SPI). Indeed, this comparative analysis

highlights an extremely close relationship between the genomes

of S. Enteritidis and S. Gallinarum, suggesting the latter is a direct

evolutionary descendent of the former. However, in comparison

to S. Enteritidis PT4, S. Gallinarum 287/91 harbors a significantly

higher number of predicted pseudogenes. Although the number

of pseudogenes in S. Enteritidis PT4 is slightly higher than re-

ported for S. Typhimurium LT2, it is in line with levels described

in other broad host range enteric pathogens such as Yersinia en-

terocolitica (Thomson et al. 2006). In contrast, the number of

pseudogenes in S. Gallinarum 287/91 is closer to that of the

human-restricted S. Typhi CT18 (204 pseudogenes) (Parkhill et

al. 2001) and S. enterica serovar Paratyphi A (173 pseudogenes)

(McClelland et al. 2004).

Whole-genome comparisons of S. Enteritidis PT4

and S. Typhimurium LT2

Initially, the genome of S. Enteritidis PT4 was compared with

that of S. Typhimurium LT2, a well-characterized and fully se-

quenced S. enterica isolate. S. Enteritidis PT4 and S. Typhimurium

LT2 are both representatives of serovars able to cause enteritis in

a broad range of hosts and produce murine typhoid, but they also

show significant phenotypic differences, including serovar type.

An alignment of the genome of S. Enteritidis PT4 with that of S.

Typhimurium LT2 revealed colinearity except for an inversion

about the terminus in S. Typhimurium LT2 (Fig. 1) (McClelland

et al. 2001), with >90% of coding sequences (CDS) forming an

extensive core gene-set (Figs. 2, 3). The average nucleotide iden-

tity between the shared orthologs is 98.98% compared with

99.7% between those of LT2 and a second fully sequenced S.

Typhimurium strain SL1344 (data not shown). The genes that are

only present either in S. Enteritidis PT4 or S. Typhimurium LT2

form 6.4% and 9.6% of their respective genomes (Fig. 3). The

majority of S. Enteritidis PT4 unique CDS are in clusters from >3

kb up to >40 kb, but there are very few indels of <3 kb (Fig. 2;

Table 2). We refer to these nonshared gene clusters as regions of

difference (ROD). CDS present in S. Enteritidis PT4 but absent

from S. Typhimurium LT2 are dominated by prophage-related func-

tions, although other functional classes are represented (Fig. 3).

Table 1. General properties of S. enterica serovar genomes

S. enterica serovars

Serovar Enteritidis Typhimurium Gallinarum Typhi

Strain P125109 (PT4) LT2 287/91 CT18
Size 4,685,848 4,857,432 4,658,697 4,809,037
Percent G + C content (%) 52.17 52.22 52.20 52.09
No. of CDS 4318 4451 4274 4599
Coding density 85.5% 86.8% 79.9% 87.6%
Average gene size 953 947 939 958
rRNA operons 7 7 7 7
tRNA 84 85 75 78
Pseudogenesa 113 25 309 204

aTaken from original publications (see text).
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Gene sets common to both S. Enteritidis PT4

and S. Typhimurium LT2

Within the core genes, there are many of the functions associated

with virulence and host interactions and include SPIs and fim-

brial operons. With the exception of SPI-6, SPI-9, and SPI-10, the

other SPIs in S. Enteritidis PT4 are closely related to their equiva-

lents in S. Typhimurium LT2 (Fig. 2) (McClelland et al. 2001). Of

the three SPIs that vary, S. Enteritidis PT4 SPI-10 only encodes the

sef fimbrial operon, consistent with this region being mosaic in

isolates of different serovars (Edwards et al. 2000; Collighan and

Woodward 2001; Bishop et al. 2005). The SPI-9 CDS SE2609,

encoding a large repetitive exported protein, appears intact in S.

Enteritidis PT4 unlike the ortholog, STM2689, in S. Typhimurium

LT2. The SPI-6 region of S. Enteritidis PT4 is 22 kb in size com-

pared with 47 kb in S. Typhimurium LT2. SPI-6 varies markedly

in size in all the other sequenced Salmonella, including S. Typhi

(McClelland et al. 2001, 2004; Parkhill et al. 2001; Chiu et al.

2005). Of the other known SPIs, SPI-8, SPI-7, and SPI-15 are ab-

sent from S. Enteritidis PT4 (Parkhill et al. 2001; Vernikos and

Parkhill 2006). Conversely, SPI-17 is present in S. Enteritidis PT4

but absent from S. Typhimurium LT2. The S. Enteritidis PT4

SPI-17 is a degenerate prophage encoding CDS known to be

involved in O-antigen conversion in other systems (Vernikos and

Parkhill 2006).

S. Enteritidis PT4 harbors 13 fimbrial clusters, 10 of which

are highly conserved in S. Typhimurium LT2 with orthologous

genes sharing >97% nucleotide identity and inserted at the same

sites in both genomes (Fig. 1; Table 2). The only exceptions to

this are safA, safB, and stdA, where the S. Enteritidis PT4 and S.

Typhimurium LT2 orthologs show 81%, 87%, and 89% nucleo-

tide identity, respectively. The S. Enteritidis PT4 fimbrial clusters

not found in S. Typhimurium LT2 include a novel cluster we

have termed peg, which is inserted at the same location as the S.

Typhimurium LT2 stc operon and is so far restricted to S. Enter-

itidis, S. Gallinarum 287/91, and S. Paratyphi A. The peg fimbrial

proteins show 58%–64% identity with their predicted functional

equivalents in the S. Typhimurium LT2 stc cluster (Table 2). Of

the remaining fimbrial clusters, ste is absent from S. Typhimu-

rium LT2, but there is a deletion remnant of the ste major pilin

subunit remaining at the analogous site (S. Typhimurium LT2;

positions 3,102,016–3,102,150 bps). Fimbrial operon stj is pres-

ent in S. Typhimurium LT2 and replaces a gene of unknown func-

tion still present in S. Enteritidis PT4 (SEN4331A). Thus, in common

Figure 1. Global comparison between S. Typhimurium, S. Enteritidis, and S. Gallinarum. ACT comparison (http://www.sanger.ac.uk/Software/ACT)
of amino acid matches between the complete six-frame translations (computed using TBLASTX) of the whole-genome sequences of S. Typhimurium LT2
(LT2), S. Enteritidis PT4 (PT4), and S. Gallinarum 287/91 (GAL). Forward and reverse strands of DNA are shown for each genome (light gray horizontal
bars). The red bars between the DNA lines represent individual TBLASTX matches, with inverted matches colored blue. The position of all the fimbrial
operons in these three genomes are marked as colored boxes positioned on the forward and reverse strands of DNA. Analogous fimbrial operons are
colored the same. The boxes of fimbrial operons that include pseudogenes are crossed with a white line. Other genomic features are only shown if they
constitute breaks in synteny between genomes. The position of the origin and terminus are marked (solid black arrows).

Thomson et al.
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with other promiscuous salmonellae, S. Enteritidis PT4 harbors

multiple functional fimbrial operons (Townsend et al. 2001).

In addition to the gene remnants found for the ste fimbrial

operon S. Enteritidis PT4, RODs ROD17, ROD25, ROD34,

ROD35, and ROD37 (Table 2) that fall outside of the core

gene-set also have discernable remnants in S. Typhimurium LT2

or are conserved in other S. enterica and so are likely to have been

present in a precursor of S. Enteritidis PT4, shared with S. Typhi-

murium LT2, and subsequently deleted from S. Typhimurium

LT2.

Figure 2. Circular representation of the S. Enteritidis PT4 chromosome. From the outside in, the outer circle 1 marks the position of regions of
difference (mentioned in the text) and is detailed in Table 2. Circle 2 shows the size in base pairs. Circles 3 and 4 show the position of CDS transcribed
in a clockwise and anti-clockwise direction, respectively (for color codes see below); circle 5 shows the position of S. Enteritidis PT4 pseudogenes. Circles
6 and 8 show the position of S. Enteritidis PT4 genes that have orthologs (by reciprocal FASTA analysis) in S. Typhimurium strain LT2 (all CDS colored
green) and S. Gallinarum strain 287/91 (all CDS colored blue), respectively. Circles 7 and 9 show the position of S. Enteritidis PT4 genes that lack
orthologs in (by reciprocal FASTA analysis) in S. Typhimurium strain LT2 (all CDS colored pink) and S. Gallinarum strain 287/91 (all CDS colored gray),
respectively. Circle 10 shows the position of S. Enteritidis PT4 rRNA operons (red). Circle 11 shows a plot of G + C content (in a 10-kb window). Circle
12 shows a plot of GC skew ([G � C]/[G + C]; in a 10-kb window). Genes in circles 3 and 4 are color-coded according to the function of their gene
products: dark green, membrane or surface structures; yellow, central or intermediary metabolism; cyan, degradation of macromolecules; red, infor-
mation transfer/cell division; cerise, degradation of small molecules; pale blue, regulators; salmon pink, pathogenicity or adaptation; black, energy
metabolism; orange, conserved hypothetical; pale green, unknown; and brown, pseudogenes.
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Gene sets only present in S. Enteritidis PT4 but not S.

Typhimurium LT2

By analyzing the genetic context of the S. Enteritidis PT4 specific

RODs, we distinguish between those likely to have been acquired

independently from those that may have been deleted from S.

Typhimurium LT2 (discussed above). Examples of likely acquisi-

tions include SPI-17, ROD4, ROD9, ROD13, ROD21, ROD22,

ROD28, ROD40, �SE14, and �SE20 (Table 2). RODs unique to S.

Enteritidis PT4 include potentially mobile genomic islands, clus-

ters of genes encoding metabolic functions and prophage-like

elements, as well as a variable assortment of fimbrial operons

already described (summarized in Table 2).

Genomic islands

ROD21 is the only S. Enteritidis PT4 genomic island not found in

S. Typhimurium LT2 and has features characteristic of mobile

genetic elements (Table 2). ROD21 shares significant structural

conservation with conserved genomic loci present in a range of

bacteria. These islands all display an unusual G + C profile,

whereby regions conserved between islands show a higher G + C

content compared with the variable island-specific regions (Fig.

4) (Williamson and Free 2005; this study). Surprisingly, most of

the ROD21-related islands encode paralogs of H-NS (hnsB) and/or

an H-NS antagonist, hnsT (Williamson and Free 2005; Navarre et

al. 2006; Doyle et al. 2007). These paralogs may play a role in

relieving any potential fitness burden associated with sequester-

ing H-NS to these low G + C DNA elements (Doyle et al. 2007).

Of the other S. Enteritidis PT4-specific RODs, ROD13 en-

codes five CDS displaying sequence similarities and synteny with

genes associated with the uptake and catabolism of the hexonate

sugar acid L-idonate encoded by the gntII locus of Escherichia coli

(Table 2) (Bausch et al. 1998). Although the substrate for this

system is unclear, it is known that colonic mucus contains sev-

eral sugar acids that represent an important source of nutrients

and that E. coli mutants unable to utilize them are unable to

colonize the mouse large intestine (Sweeney et al. 1996). More-

over, genes involved in the transport of gluconate and related

hexonates are up-regulated in S. Typhimurium in macrophage,

suggesting that they may also be an important source of carbon

for intracellular bacteria (Eriksson et al. 2003).

The S. Enteritidis PT4 RODs also include loci that are highly

variable in the salmonellae and, for ROD40, between the wider

Enterobacteriaceae. ROD40 locus encodes a Type I restriction/

modification system and is analogous to the variable E. coli immi-

gration control region (ICR) (Raleigh 1992; Titheradge et al. 1996).

Prophage

Prophage are known to drive diversity in S. enterica, and thus, it

is not surprising that many S. Enteritidis PT4–specific RODs are

prophage-like elements, including �SE10, �SE12, �SE12A,

�SE14, and �SE20 (Fig. 2; Table 2) (Thomson et al. 2004; Cooke

et al. 2007). All these prophage regions

are related and carry the same cargo

genes as prophage found previously in

other S. enterica (see Table 2), including

genes encoding type three secretion sys-

tem (TTSS) effector proteins—sseK3,

sspH2, gogA, sseI, and sopE; the PhoPQ-

activated genes pagK and pagM; as well as

sodCI encoding a Cu/Zn superoxide dis-

mutase known to be an important colo-

nization factor for S. Typhimurium

(Stanley et al. 2000; Figueroa-Bossi et al.

2001; Mmolawa et al. 2003; Thomson et

al. 2004). Of the six prophage-related re-

gions, only �SE20 appears intact and

probably represents a recent insertion

event, whereas remnants of �SE12A are

also present at the same location in S.

Typhimurium LT2 and probably repre-

sent the most ancient phage insertion

that has been maintained in these two

Salmonella lineages. However, the num-

ber of remnants and intact cargo genes

found on the S. Enteritidis PT4 prophage

highlights the importance of these ele-

ments for gene sampling and increasing

the overall diversity and even patho-

genic potential of salmonellae.

Whole-genome sequence of S.

Gallinarum 287/91 and comparisons

with S. Enteritidis PT4 and S.

Typhimurium LT2

One of the striking features of the S. Gal-

linarum 287/91 genome is the high simi

Figure 3. Distribution of orthologous CDS in S. Enteritidis PT4, S. Typhimurium LT2, and S. Galli-
narum 287/91. The Venn diagram shows the number of genes unique or shared between two other
S. enterica serovars (see Methods). The associated pie charts show the breakdown of the functional
groups assigned for CDS in relevant sections of the Venn diagram. Color code for the pie charts is as
follows: (1) hypothetical proteins, (2) conserved hypothetical proteins, (3) chemotaxis and motility, (4)
chromosomal replication, (5) chaperones, (6) protective responses, (7) transport and binding proteins,
(8) adaptations to atypical conditions, (9) cell division, (10) macromolecule degradation, (11) synthesis
and modification of macromolecules, (12) amino acid biosynthesis, (13) biosynthesis of cofactors,
prosthetic groups and carriers, (14) central intermediary metabolism, (15) small-molecule degrada-
tion, (16) energy metabolism, (17) fatty acid biosynthesis, (18) nucleosides and nucleotide biosynthe-
sis and metabolism, (19) periplasmic/exported/lipoproteins, (20) ribosomal proteins, (21) laterally
acquired (including prophage CDS), (22) pathogenicity and virulence, (23) general regulation, and
(24) miscellaneous function. PT4 indicates S. Enteritidis PT4; LT2, S. Typhimurium LT2; and GAL, S.

Gallinarum 287/91
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larity with S. Enteritidis PT4 compared with S. Typhimurium LT2

(Figs. 3, 5). The average nucleotide identities of orthologs shared

between S. Gallinarum 287/91 and S. Enteritidis PT4 were higher

(99.7%) than those found in LT2 (98.93%). Another obvious fea-

ture is the massive accumulation of pseudogenes in S. Gallina-

rum 287/91 compared with S. Enteritidis PT4 and S. Typhimu-

rium LT2. The genome of S. Gallinarum 287/91 is slightly smaller

than S. Enteritidis PT4, carries significantly fewer tRNA genes

(Table 1), and is colinear except for a single inversion (817 kb;

about the rRNA operons) and translocation of a region (49 kb)

located between two different rRNA operons (Figs. 1, 5).

The number of CDS unique to S. Gallinarum 287/91 (76) or

shared exclusively between S. Gallinarum 287/91 and S. Typhi-

murium LT2 (16) was small and predominantly phage-associated

(Figs. 3, 5). Moreover, genes from both of these categories all fell

within regions (SPI-6, ROD9, ROD42, and �SG12) that are present

in S. Enteritidis PT4 but appear to be in the process of being lost.

Consequently, these genes are unlikely to be recent acquisitions

by S. Gallinarum 287/91.

Of the 130 CDS specific to S. Enteritidis PT4, compared

with S. Gallinarum 287/91, those associated with ROD4 and

prophages �SE10, �SE14, and �SE20 (82 CDS) appear to be re-

cent acquisitions with no evidence of them ever being present in

S. Gallinarum 287/91(Fig. 3; Table 2). Of the remaining 48 CDS

in this category, 21 were located on loci (ROD15, ROD18, and

ROD30) (Table 2) almost entirely deleted from S. Gallinarum 287/

91. The others were located on shared loci such as ROD14 and

SPI-6 that are degenerate in both serotypes, compared with S.

Typhimurium LT2. The functions that these RODs encode in S.

Enteritidis PT4 are summarized in Table 2.

Thus, we provide compelling genetic evidence that S. Enter-

itidis and S. Gallinarum are recently diverged clones. On this

conclusion, we have plotted the most parsimonious explanation

for the observed gene flux following the divergence of S. Typhi-

murium LT2, S. Enteritidis PT4, and S. Gallinarum 287/91

(Fig. 6).

Functional gene loss and pseudogene formation

In addition to the large scale deletion, there is further evidence of

reductive evolution in S. Gallinarum 287/91 in the form of 309

putative pseudogenes that carry frameshifts or premature stop

codons or that are remnants of genes present in other bacteria.

Remarkably, this represents ∼7% of the total coding capacity of

the genome and includes genes from many functional categories,

including metabolism and virulence (for a full list, see Supple-

mental Table 1).

Figure 4. Comparison of the ROD21 locus of S. Enteritidis with related genomic islands. ACT comparison (http://www.sanger.ac.uk/Software/ACT)
of amino acid matches between the complete six-frame translations (computed using TBLASTX) of ROD21 compared with related loci uropathogenic
E. coli strain CFT073 (UPEC), Erwinia carotovora sbsp. atroseptica strain SCRI1043 (two loci: ECA1 and ECA2), and Photorhabidus luminescens,sbsp.
laumondii TT01 (PHL; see Methods). The red bars spanning between the genomes represent individual TBLASTX matches. CDS are marked as colored
boxes positioned on the horizontal gray DNA bars: (orange) genes conserved in two or more of the genomic islands; (light green) variable genes of
unknown function; (dark pink) hnsB; (dark blue) hnsT; (light pink) integrase; (dark green) type IV pilin-associated genes; (red) plasmid-related mobility
functions; (salmon pink) transposase-related genes; (yellow) tRNA genes; (light blue)repeats. The G + C profile for the UPEC loci is shown above. The
scale is marked in base pairs.
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S. Gallinarum 287/91 has lost several pathways, which are

likely to narrow the spectrum of substrates available for use as

sources of carbon and energy. These include malS encoding a

periplasmic alpha-amylase required for growth on long chain

maltodextrins (Schneider et al. 1992), those affecting the catabo-

lism of (D)-glucarate (gudD) and the mutation in the hyaF gene

(within the hydrogenase 1 [hya] gene cluster).

S. Gallinarum 287/91 also possesses multiple mutations in

genes within all three operons required for the breakdown 1,2-

propanediol: ttr, cbi, and pdu operons directing tetrathionate res-

piration; coenzyme B12 biosynthesis (B12; cobalamine); and 1,2-

propanediol degradation, respectively (Supplemental Table 1)

(Roth et al. 1996). 1,2-Propanediol is an important source of en-

ergy for S. Typhimurium, and cbi mutants are significantly at-

tenuated in their ability to grow in macrophages (Klumpp and

Fuchs 2007). Consequently, for most of the salmonellae, the abil-

ity to degrade propanediol is the likely selective pressure main-

taining the cbi and ttr genes, and the loss of function of any of

Figure 5. Circular representation of the S. Gallinarum 287/91 chromosome. For a full description of this figure, see legend to Figure 2. The exception
is that circle 5 shows the position of S. Gallinarum 287/91 pseudogenes. Circles 6 and 8 show the position of S. Gallinarum 287/91 genes which have
orthologs (by reciprocal FASTA analysis) in S. Typhimurium LT2 (all CDS colored green) or S. Enteritidis PT4 (all CDS colored blue), respectively. Circles
7 and 9 show the position of S. Gallinarum 287/91 genes that lack orthologs in (by reciprocal FASTA analysis) in S. Typhimurium strain LT2 (all CDS
colored pink) and S. Enteritidis PT4 (all CDS colored gray), respectively. Circle 10 shows the position of the S. Gallinarum 287/91 rRNA operons (red).
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these three pathways was probably the precursor to the degen-

eration of the others in S. Gallinarum 287/91. Mutations within

the cbi, pdu, and ttr genes was also a feature of the S. Typhi CT18

genome (Table 3), suggesting that these mutations may be char-

acteristic of more invasive Salmonella serotypes.

Uniquely among the Salmonella, S. Gallinarum 287/91 and

S. Pullorum are unable to make glycogen (Supplemental Table 2)

(McMeechan et al. 2005). The genome sequence data revealed

that mutations in the glycogen biosynthetic pathway are exten-

sive in S. Gallinarum 287/91, including glgA, glgB, and glgC,

which are responsible for all steps in biosynthesis. Although the

significance of these mutations are not clear, they may explain in

part the poor survival of this bacterium outside of the host (Mc-

Meechan et al. 2005).

Several of the identified S. Gallinarum 287/91 pseudogenes

lie in amino acid catabolic or biosynthetic pathways. Salmonella

encodes three pathways for arginine degradation (Reitzer 2003),

and S. Gallinarum 287/91 carries mutations in two of these:

There are deletions or frameshifts in the genes of the arginine

N-succinyltransferase (AST) (astA) and arginine deiminase (ADI)

(arcA) pathways, respectively. S. Gallinarum 287/91 also carries a

mutation in speC encoding the ornithine decarboxylase, making

the one remaining intact arginine catabolic pathway, arginine

decarboxylase pathway (ADC), an essential biosynthetic route for

putrescine. The mutation in speC is also likely to explain the

inability of S. Gallinarum to decarboxylate ornithine, a defining

feature of this Salmonella serovar (Supplemental Table 2) (Crich-

ton and Old 1990).

Pseudogenes potentially involved in virulence

and host adaptation

S. Gallinarum 287/91 is defined as being nonmotile. S. Gallina-

rum 287/91 carries 50 genes associated with motility and che-

motaxis, distributed over three loci. Of these, five genes, present

in two loci, carry mutations that explain

the nonmotile phenotype, including

cheM, flhA, flhB, flgK, and flgI (Supple-

mental Table 1).

Of the 13 fimbrial operons detected

in S. Enteritidis PT4, the std fimbrial op-

eron is not present in S. Gallinarum 287/

91 (see ROD30 above). The remaining 12

S. Gallinarum 287/91 fimbrial operons

are identical to those in S. Enteritidis PT4

except for the mutations in genes within

operons sti, stf, saf, stb, peg, lpf, sef, and

sth (see Supplemental Table 1). The level

of pseudogene formation within these

12 fimbrial gene clusters (16%) is over

twice that of the genome average (7%).

Only operons fim, bcf, csg, and ste re-

main undisrupted on the S. Gallinarum

287/91 chromosome (summarized in

Fig. 1). However, both S. Enteritidis and

S. Gallinarum carry fimbrial operons on

their virulence plasmids. The S. Enteriti-

dis virulence plasmid carries five genes—

pefA, pefB, pefC, pefD, and pefR—highly

conserved with those of S. Typhimurium

LT2 (Woodward and Kirwan 1996). The

pef operon is not present on the S. Gal-

linarum 287/91 plasmid; in its place are

three intact fimbrial genes displaying sequence similarity with

those of the E. coli K88 fimbrial gene cluster (Rychlik et al. 1998).

This fimbrial operon represents the only evidence of S. Gallina-

rum 287/91 having acquired new functions since the split from S.

Enteritidis. It would be interesting to know if any isolates of S.

Enteritidis carry such a fimbrial operon and whether this is a

common characteristic of all S. Gallinarum strains. Significantly,

the host-adapted S. Typhi harbors novel fimbrial genes, includ-

ing Type IV pili associated with the acquisition of mobile ele-

ments (Pickard et al. 2003), and like S. Gallinarum 287/91, there

is an elevated level of mutation in fimbrial genes (14% compared

with the genome average of 4.4%), again suggesting parallel

paths toward host adaptation (Table 3).

Salmonella can express several paralogous TTSS effector pro-

teins, which show a degree of functional redundancy, for ex-

ample, sopE and sopE2 (Friebel et al. 2001). Other effectors related

by sequence include pipB and pipB2, and sifA and sifB. S. Galli-

narum 287/91 has lost one of each of these parlogous pairs.

Other S. Gallinarum 287/91 TTSS effector genes that carry muta-

tions include sopA, which has been implicated in S. Typhimuri-

um–induced intestinal inflammation (Zhang et al. 2006). Using

an antibody against the C-terminal portion of SopA, we detected

a secreted protein of the expected size in S. Enteritidis PT4 but

not S. Gallinarum 287/91 (data not shown), consistent with the

location of a stop codon prior to the mAb-binding region in S.

Gallinarum SopA predicted by the genome sequence (Supple-

mental Table 2). SopA influences Salmonella-induced enteritis,

and taken together with the attrition of other Type III secreted

effectors, this may partially dictate the differential virulence of

the serovars in mammalian hosts.

As well as additional pseudogenes associated with cell inter-

actions, again like S. Typhi, S. Gallinarum 287/91 carries muta-

tions in genes also associated with shedding (shdA and ratB), drug

resistance, DNA restriction/modification, and protective re-

Figure 6. Line diagram to represent the whole-genome differences of S. Enteritidis PT4, S. Typhi-
murium strain LT2, and S. Gallinarum strain 287/91. A summary of the observed loss and gain of RODs
described in Table 2. The diagram is based on the assumption that following the divergence of PT4 and
LT2 from a common ancestor PT4 and GAL have subsequently diverged. Branches are not intended to
infer phylogenetic distance. Evidence that a locus was once present in LT2, PT4, or GAL (see legend to
Figure 1) but has subsequently been deleted from that genome is marked by the suffix *, $, or £,
respectively. Brackets indicate the name for locus in GAL. Parentheses indicate the name for locus in
PT4. Dotted arrows mark the position in the pseudo-tree at which that ROD(s) appears
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sponses (Supplemental Table 1). The majority of S. Enteritidis

isolates can produce a biofilm, of which cellulose is a key com-

ponent. While mutations in biofilm production may not mea-

surably affect virulence, they are significantly less resistant to

chemical and mechanical stress. Consequently, this is likely to be

an adaptation by Salmonella to survival in the environment but

has also been suggested to prolong retention in the gut (Solano et

al. 2002). We have shown experimentally that S. Gallinarum

287/91 is unable to make cellulose, and this is likely to be ex-

plained by a mutation in bcsG (Supplemental Table 2). This is

consistent with the reduced ability of S. Gallinarum to colonize

the gut compared with S. Enteritidis.

Conclusions

The data presented in this report provide several clear messages,

some of which may be experimentally tractable. Comparative

analysis of the genomes of S. Enteritidis PT4 and S. Gallinarum

287/91 shows that representative strains of these two S. enterica

serovars are highly related and that S. Gallinarum may be a direct

descendant of S. Enteritidis. Importantly, S. Enteritidis is promis-

cuous, being able to colonize and infect multiple hosts, including

chickens, cattle, mice, and humans, in addition to producing

murine typhoid. Whereas S. Gallinarum is highly restricted to

causing a typhoid-like disease in avian species, it is relatively

noninfectious in other hosts, including mice, and does not colo-

nize the gut of animals. Thus, we suggest that there is an experi-

mental opportunity to use genetic approaches to define the ge-

netic basis of host restriction by directly comparing the patho-

genicity of strains of S. Enteritidis and S. Gallinarum in murine

and chicken models.

Previous genome analyses on host-restricted salmonellae

has involved human-restricted serovars, including S. Typhi and S.

Paratyphi, limiting experimental tractability. Nevertheless ge-

nome comparisons of host-restricted/adapted S. enterica serovars,

and indeed of other pathogens, indicate that loss of gene func-

tion may be a common evolutionary mechanism through which

host adaptation occurs. Gene loss not only may limit the inter-

host promiscuity of the pathogen but also is likely to restrict the

potential pathogenicity in the host to a more limited set of in-

teractions. We hypothesize that gene loss may be a mechanism of

targeting the invading pathogen preferentially to particular tis-

sues or host cells and avoiding the potential stimulation of non-

specific inflammation. An example here would be the loss of

flagella or fimbriae, which can mediate attachment and invasion

of cell surfaces and may activate pattern recognition molecules.

Table 3. Summary of the common traits identified among the functions of genes lost independently by S. Typhi CT18 and S. Gallinarum
287/91

Process/pathway S. Gallinarum 278/91a
S. Typhi CT18b

Cell interactions slrP, sopA, sifB, sspH2, sinH, pipB2, pagK, bigA sopD2 (STY0971), sopA (STY2275),
sopE2 (STY1987), sseJ (STY1439a),
cigR (STY4024), misL (STY4030),
marT (STY4027), sivH (STY2767),
slrP (STY0833), bigA (STY4318)

Fecal shedding shdA, ratB shdA (STY2755), ratB (STY2758), sivH (STY2767)
Fimbriae std�, stiC, stfF, safC, stbC, pegC, lpfC, sefD, sefC,

sthB, sthA, sthE
bcfC (STY0026), fimI (STY0590), steA (STY3084),

safE (STY0333), stgC (STY3920),
ushA (STY0539), sefA (STY4836a)
sefD (STY4839), sefR (STY4841),
sthC (STY4938), sthE (STY4938)

Flagella/motility cheM, flhB, flhA, flgK, flgI fliB (STY2166)
Type I restriction modification hsdR, hsdM hsdM (STY4833)
Type III restriction modification

Restriction enzyme StyLT1 mod res (STY0389)
Cobalamine biosynthesis pocR, cobD, cbiD, cbiC, cbiO cbiM (STY2226), cbiK (STY2229), cbiJ (STY2231)
Propanediol utilization pduG, pduO pduN (STY2254)
Metal/drug resistance and transport

Copper cusA, cusS cusA (STY0610), cusS (STY0609a)
Nickel/cobalt rcnAcusA, cusS rcnA (STY3169)
Nickel nxiArcnA nxiA (STY2901)
Acriflavin acrFnxiA acrE (STY3569), acrF (STY3570)

Tetrathionate respiration ttrB, ttrC ttrS (STY1735)
Trehalose degradation/synthesis treC treA (STY1924)
Hydrogenase I hyaF hyaB2 (STY1525), hyaA (STY1319)
Ornithine catabolism speC speC (STY3270), speF (STY0739)
Amino acid catabolism

L-serine/L-threonine tdcG tdcC (STY3426)
Cellulose biosynthesis bcsG bcsC (STY4184)
Surface polysaccharide

LPS O-chain gtrB gtrB (STY2627b)
LPS core rfaZ (waaZ) wcaK(STY2311), wcaD (STY2324), wcaA (STY2328)

Alternative terminal electron acceptors
Dimethyl sulfoxide reductase dmsA2, dmsA1 dmsA2 (STY4503), dmsB2 (STY4506)
Trimethylamine N-oxide (TMAO) torS torR (STY3954), torC (STY3955)

Carbon source
D-Glucarate uptake and degradation gudD gudP (STY4097)
Maltodextrin and Maltose associated malS, malY, malX malY (STY1657a), malX (STY1657)

aFor systematic gene identifiers and a description of function, see Supplemental Table 1.
bParkhill et al. 2001.
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In addition, gene loss can influence the ability of the pathogen to

survive in the external environment or even in stressful situa-

tions within the host. Table 3 provides a list of some of the

common traits identified among the functions of genes lost in-

dependently by S. Typhi and S. Gallinarum. Some of the overlaps

are striking, including the loss of common TTSS effectors and

genes involved in common metabolic processes such as cobala-

mine and propanediol utilization, tetrathionate respiration,

sugar uptake and utilization, hydrogenase activity, cellulose pro-

duction, ornithine decarboxylase activity, and electron transport

acceptor function. Some of these common traits have also been

noted to have changed in representatives of gut adapted (Y. en-

terocolitica) versus systemic (Y. pestis) yersiniae, and again in this

system, gene loss may be involved in the adaptation from a gut

to a systemic lifestyle. We believe that further studies analyzing

the contribution of pseudogenes and their functional alleles to

host adaptation and tissue specificity and, in particular, the par-

allel but overlapping degradative evolutionary pathways fol-

lowed by different organisms adapting to different hosts will lead

to significant understanding of the mechanisms of host adapta-

tion and host restriction and could be applicable to the less trac-

table human-adapted organisms, such as S. Typhi.

Methods

Bacterial strains

S. Gallinarum strain 287/91 was isolated from an outbreak of

fowl typhoid in brown egg–laying hens by A. Berchieri, Univer-

sity of Sao Paulo, Jaboticabal, Brazil. It is highly virulent (>90%

mortality) in susceptible breeds of chickens (P. Barrow and A.

Berchier, unpubl.). It was chosen in preference to the well-

characterized strain 9 (Smith 1955) because of the length of labo-

ratory passage of the latter strain. S. Enteritidis phage type 4 (PT4)

strain P125109 was isolated from an outbreak of human food-

poisoning in the United Kingdom that was traced back to a poul-

try farm. The strain is highly virulent in newly hatched chickens

and is also invasive in laying hens, resulting in egg contamina-

tion (Barrow 1991; Barrow and Lovell 1991). Biochemical tests

for carbohydrate catabolism were performed using api 50 CH

according to manufacturer’s instructions (BioMerieux).

Growth and sequencing of S. Enteritidis PT4

and S. Gallinarum 287/91

Methods for sequencing S. Enteritidis PT4 and S. Gallinarum 287/

91 were identical unless stated. A single bacterial colony was

picked from Congo Red agar and grown overnight in BAB broth

with shaking at 37°C. Cells were collected, and total DNA (10 mg)

was isolated using proteinase K treatment followed by phenol

extraction. The DNA was fragmented by sonication, and several

libraries were generated in pUC18 using size fractions ranging

from 1.0–2.5 kb.

The whole genome sequenced to a depth of 9� coverage

from M13mp18 (insert size 1.4–2 kb) and pUC18 (insert size 2.2–

4.2 kb) small insert libraries using dye terminator chemistry on

ABI3700 automated sequencers. End sequences from larger insert

plasmid (pBACe3.6, 12–30 kb insert size) libraries were used as a

scaffold.

The sequence was assembled, finished, and annotated as

described previously (Parkhill et al. 2000), using the program

Artemis (Berriman and Rutherford 2003) to collate data and fa-

cilitate annotation.

The genomes have been submitted to EMBL under the fol-

lowing accession numbers: S. Enteritidis PT4 genome,

AM933172; S. Gallinarum 287/91 genome, AM933173.

In silico genome analysis

The genome sequences of S. Typhimurium strain LT2 (McClel-

land et al. 2001), S. Enteritidis PT4, and S. Gallinarum 287/91

were compared pairwise using the Artemis Comparison Tool

(ACT) (Carver et al. 2005). Subsequences taken from the genomes

of uropathogenic E. coli strain CFT073 (Welch et al. 2002), Er-

winia carotovora sbsp. atroseptica strain SCRI1043 (Bell et al.

2004), and Photorhabidus luminescens,sbsp. laumondii TT01

(Duchaud et al. 2003) were compared with ACT as above and

used to construct Figure 4.

Pseudogenes had one or more mutations that would ablate

expression; each of the inactivating mutations was confirmed by

subsequently rechecking the original sequencing data and where

necessary were resequenced.

Orthologous gene sets were identified by reciprocal FASTA

searches. Only those pairs of homologous CDS were retained for

further analysis where the predicted amino acid identity was

�40% over 80% of the protein length. These genes were then

subject to manual curation using gene synteny to increase the

accuracy of this analysis. This strategy was applied to pairwise

comparisons of the genomes of S. Typhimurium strain LT2, S.

Enteritidis PT4, and S. Gallinarum 287/91.

Cellulose production assay

For preparation and use of Calcofluor plates, Calcofluor white

stain was obtained from Sigma as a 0.1% w/v solution. This was

added to L-agar at a final concentration of 200 µg/mL as recom-

mended by Solano et al. (2002). Bacterial cultures were inocu-

lated and then left at room temperature for 48 h.

Colony fluorescence was examined by holding the plate

over a 366-nm UV transilluminator. Controls used included E.

coli C600 (negative control) and S. typhimurium SL1344 (positive

control). Colony fluorescence was scored quantitatively using

the controls as standards.
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