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Abstract

We introduce a novel computational approach, CoReCo, for comparative metabolic reconstruction and provide genome-
scale metabolic network models for 49 important fungal species. Leveraging on the exponential growth in sequenced
genome availability, our method reconstructs genome-scale gapless metabolic networks simultaneously for a large number
of species by integrating sequence data in a probabilistic framework. High reconstruction accuracy is demonstrated by
comparisons to the well-curated Saccharomyces cerevisiae consensus model and large-scale knock-out experiments. Our
comparative approach is particularly useful in scenarios where the quality of available sequence data is lacking, and when
reconstructing evolutionary distant species. Moreover, the reconstructed networks are fully carbon mapped, allowing their
use in 13C flux analysis. We demonstrate the functionality and usability of the reconstructed fungal models with
computational steady-state biomass production experiment, as these fungi include some of the most important production
organisms in industrial biotechnology. In contrast to many existing reconstruction techniques, only minimal manual effort is
required before the reconstructed models are usable in flux balance experiments. CoReCo is available at http://esaskar.
github.io/CoReCo/.
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Introduction

The ability to reconstruct high-quality genome-scale metabolic

models is crucial in metabolic modeling and engineering, drug

discovery and understanding human disease, such as cancer [1–4].

There is a growing gap between the number of sequenced genomes

and high-quality, genome-scale metabolic networks stemming from

the emergence of high-throughput sequencing and the large amount

of manual work needed to curate a metabolic model [5–7].

Automatic metabolic reconstruction efforts have so far been

hindered by poor-quality sequence data, distant homology,

incorrect annotations in biological databases and missing reaction

stoichiometry. To match the rate of genome sequencing and to

remove an important bottleneck of metabolic analyses, computa-

tional methods for metabolic reconstruction must be able to

produce models that need only a minimal amount of curation and

can still accurately predict metabolic phenotypes [8].

Although metabolic networks have been reconstructed for many

microbial species [9–12], several industrially important production

hosts, such as Trichoderma reesei, still lack high-quality genome-scale

metabolic networks. Also for other fungal species including major

plant pathogens Ustilago maydis and Magnaporthe grisea, and major

human pathogens Aspergillus fumigatus and Candida glabrata, no

curated metabolic models exist. It is thus important to produce

metabolic network models for these species that are able to carry

out analyses such as flux balance analysis [13].

In this work, we address these challenges by introducing a novel

computational method (CoReCo — Comparative ReConstruction)

for simultaneous genome-scale metabolic reconstruction of mul-

tiple related species that leverages on the growing availability of

sequenced genomes. Importantly, we assume that all species in the

phylogeny — present and ancestral — must have a gapless

metabolic network, and use this assumption to reconstruct

metabolisms that parsimoniously explain the observed sequence

data [14,15]. The ability to automatically produce gapless

networks removes an important bottleneck of many existing

reconstruction workflows.

We demonstrate the method by reconstructing gapless meta-

bolic models for a large number of fungal species. Although a

number of computational approaches to single-species metabolic

reconstruction including annotation-based and machine learning

strategies have been developed [16–22], comparative techniques

that exploit the exponentially growing availability of sequence data

from multiple related species remain to be developed.

For instance, Model SEED is a software platform for

subsystems-based reconstruction and curation of prokaryotic
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metabolic networks [21]. Similarly to CoReCo, Model SEED

annotates complete genomes to reconstruct genome-scale meta-

bolic networks but is limited to single-species reconstruction of

prokaryotes. Comparative analyses have been found useful in

study of evolutionary histories of fungal transcriptional networks

[23] and identification of potential antibiotic targets in metabolic

networks [24]. The availability of genomes for many related

species enables comparative reconstruction, where sequence data

of one species may alleviate issues caused for instance by poor

sequencing quality in another. As more genomes are completed

and new species are sequenced, comparative reconstruction

methods can be rerun to refine existing metabolic models.

Comparative approach to reconstruction offers potential

particularly in reconstruction of species that are distant from

extensively studied model species, only have an incomplete

genome reference sequence available, or when the genome is

sequenced at a very low coverage. The latter case is common in for

example metagenomics, where a metapopulation of hundreds or

thousands of species is sequenced [25].

Results

CoReCo: Comparative gapless metabolic reconstruction
framework
We developed a comparative metabolic reconstruction frame-

work (CoReCo) for simultaneous reconstruction of multiple,

related species with a known phylogeny. In addition to a

phylogenetic tree, the method requires as input a set of protein

coding sequences for each species. The method consists of two

phases, illustrated in Figure 1.

In the first phase, sequence data is used to quantify evidence

towards existence of known enzymes in each species. To achieve

this, the method identifies sequences homologous to input

sequences by two distinct techniques, protein BLAST and Global

Trace Graph (GTG; [26]). The latter complements BLAST by

being able to find more distant homologs. Quantitative results of

homolog discovery are integrated in a Bayesian network model,

separately instantiated for each enzyme. This results in a posterior

probability of each enzyme in each present and hypothetical

ancestral species given sequence data. For the second phase, each

reaction is assigned the probability of the catalyzing enzyme with

highest probability.

Bayesian network topology is derived from the phylogenetic

tree. Conditional probability distributions specify the probability

of appearance and disappearance of an enzyme at each ancestral

species. These species-specific probabilities are estimated from

InterProScan enzyme predictions for present species assuming

parsimonious phylogeny. Furthermore, conditional probability

distributions are estimated for enzyme existence given BLAST and

GTG data. Due to the resulting tree topology of the Bayesian

network, exact probabilistic inference can be performed efficiently

[27].

In CoReCo second phase, a gapless metabolic network is

assembled for each present and ancestral species. Utilizing the

posterior probabilities computed in the previous phase, our

algorithm reconstructs a highly probable network using reactions

with low probability only when an addition of a reaction with a

high probability would leave the network gapped. The algorithm

iterates through reactions meeting with specified probability

threshold, and adds the reaction if a gapless biosynthesis pathway

producing the reaction substrates can be found. Here, the method

takes advantage of precomputed reaction atom mappings to

accurately find biosynthetic pathways [28]. An additional prob-

ability threshold can be used to avoid addition of gapfilling

biosynthesis pathways that are not supported well enough by

sequence data.

The framework allows efficient parallelization of both phases,

thus scaling up to massive datasets. Input protein sequences can be

split into arbitrary small sets of sequences to be processed

separately by BLAST and GTG. Furthermore, the posterior

probability of each enzyme in all species is computed indepen-

dently of other enzymes. Since the metabolic network for each

species is reconstructed separately, also this phase can be

parallelized efficiently. In practice, homolog detection with

BLAST and GTG is the most time-consuming and also the part

of the method where parallelization can be done to an arbitrary

degree.

The method produces networks that are gapless in the network

connectivity sense: substrates of each reaction in a reconstructed

network can be traced to a predefined set of nutrients along

reactions in the reconstructed network. Thus networks produced

by CoReCo can be utilized with minimal effort in computational

analyses requiring structural connectivity such as flux balance

analysis. Furthermore, the reactions in the reconstructed models

are carbon-mapped, enabling 13C flux analysis [29]. CoReCo

produces an Systems Biology Markup Language (SBML) repre-

sentation for each reconstructed model, annotated with enzyme

probabilistic probabilities from phase I as well as carbon mapping

for each reaction.

CoReCo accurately reconstructs poorly sequenced and
evolutionary distant species
In order to evaluate the usefulness of our method, we

comparatively reconstructed 49 fungal species including medically

and industrially important species such as S. cerevisiae, T. reesei, and

P. pastoris (Figure 2) in two experiments. First, we modified fungal

genome data to emulate data from poorly sequenced species and

studied the ability of the method to utilize sequence data from

Author Summary

Advances in next-generation sequencing technologies are
revolutionizing molecular biology. Sequencing-enabled
cost-effective characterization of microbial genomes is a
particularly exciting development in metabolic engineer-
ing. There, considerable effort has been put to recon-
structing genome-scale metabolic networks that describe
the collection of hundreds to thousands of biochemical
reactions available for a microbial cell. These network
models are instrumental in understanding microbial
metabolism and guiding metabolic engineering efforts to
improve biochemical yields. We have developed a novel
computational method, CoReCo, which bridges the grow-
ing gap between the availability of sequenced genomes
and respective reconstructed metabolic networks. The
method reconstructs genome-scale metabolic networks
simultaneously for related microbial species. It utilizes the
available sequencing data from these species to correct for
incomplete and missing data. We used the method to
reconstruct metabolic networks for a set of 49 fungal
species providing the method protein sequence data and
a phylogenetic tree describing the evolutionary relation-
ships between the species. We demonstrate the applica-
bility of the method by comparing a metabolic recon-
struction of Saccharomyces cerevisiae to the manually
curated, high-quality consensus network. We also provide
an easy-to-use implementation of the method, usable
both in single computer and distributed computing
environments.

Comparative Reconstruction of Metabolic Networks
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related species to recover reconstruction accuracy lost to missing

data. Second, we created a scenario which emulated reconstruc-

tion of evolutionary distant species. In both settings, sequence data

of four Saccharomycotina subphylum species S. cerevisiae, K. lactis, A.

gossypii and C. glabrata were modified and reconstruction perfor-

mance was evaluated by comparing the reconstructed model for S.

cerevisiae against a yeast consensus model [30]. The consensus

network is a result of extensive collaborative curation efforts, and

thus served as the gold standard for our efforts.

Reconstruction accuracy was evaluated in terms of enzyme (EC

number) prediction performance. To understand the contribution

of individual CoReCo components, we predicted enzyme content

also by using BLAST and GTG data separately, as well as a naive

Bayesian classifier combining the two. In these classifiers,

phylogeny was not used at all. Finally, we performed prediction

by CoReCo phase I only, that is, integrating sequence data in the

Bayesian network but not doing gapless reconstruction. To

compute true and false positive rates for CoReCo phase II, we

varied the acceptance threshold parameter. For CoReCo phase I

and the naive classifier, different posterior probability thresholds

(see Appendix S1) were considered. For BLAST and GTG

classification, thresholds for BLAST and GTG scores were used,

respectively.

The enzyme content of the resulting S. cerevisiae models was

compared to the yeast consensus network by counting the number

of shared complete EC numbers. A complete EC number specifies

all four digits (e.g., 1.1.1.1), whereas an incomplete or partial EC

number leaves one or more unspecified (e.g., 1.1.-.-). Our

comparison disregarded reactions that had no EC number, such

as non-enzymatic or spontaneous reactions. Enzyme-level com-

parison is invariably inaccurate due to the well-known ambiguity

of EC classification. However, we preferred this approach to

reaction-level comparison, where the stoichiometries of the two

models must be first curated before identical reactions can be

accurately identified. A summary of prediction performance in the

these settings is given in Table 1.

Poor sequencing quality was emulated by randomly removing

50% of protein sequences from the four Saccharomycotina subphy-

lum species. From this perturbed input data, our reconstruction

method was able to reconstruct the S. cerevisiae network accurately,

displaying clearly increased performance over individual sequence

data sources (BLAST, GTG). Accuracy after CoReCo phase I and

II was similar. In phase II, reactions that have not been reliably

associated with sequences can be added to the network to ensure

gaplessness. While producing connected metabolic networks,

addition of gapfilling reactions also slightly increases false positive

rate of phase II over the phase I result, where gapfilling is yet to be

performed. The result demonstrates the benefit of our comparative

analysis, where sequence evidence is propagated from neighboring

species that are better sequenced and annotated.

We next considered the second setting where the phylogeny

includes a small group of species that are closely related to each

other but are poorly annotated and have large evolutionary

distances from all the other species. In such a scenario, we would

expect a large fraction of enzymes in our data to have a low degree

of sequence similarity to known enzymes, thus complicating the

discovery of correct homologs and functions. To estimate the effect

of missing correct annotations would have on reconstruction

accuracy, we produced a modified dataset from our fungal dataset

by artificially lowering the scores of high scoring sequence matches

and comparing the quality of the resulting S. cerevisiae reconstruc-

tion against the yeast consensus network. Specifically, we modified

the BLAST and GTG scores of enzymes in S. cerevisiae, K. lactis, A.

gossypii and C. glabrata by replacing all BLAST scores over 600 and

all GTG scores over 0.99 with scores below these thresholds

randomly chosen from E. cuniculi data. This process resulted in

enzyme scores in the above species closely resembling a typical

poorly characterized organism.

Figure 1. Overview of the reconstruction method. Genomes of target species are subjected to BLAST, GTG and InterProScan analyses to
evaluate enzyme probabilities. Plausible gapless metabolic networks are assembled based on integrated enzyme evidence. Finally reconstructed
models are converted into SBML and generic stoichiometric matrix formats.
doi:10.1371/journal.pcbi.1003465.g001

Comparative Reconstruction of Metabolic Networks
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We then computed the true and false positive rates as previously

for CoReCo phases I and II, and naive, BLAST and GTG

classifiers. Here we observed that our phase II algorithm was able

to reconstruct a network much more accurately than the

underlying probabilistic model (phase I) alone (Figure 3). This is

due to reactions added in gapfilling, which are not predicted by the

probablistic model or individual sequence evidence sources.

Further, phase I prediction is already markedly better than

reconstructing each species independently with the naive Bayesian

classifier. These results show that in this setting we clearly benefit

from both using a comparative approach (phase I) as well as

performing gapfilling (phase II).

Genome-scale metabolic networks for 49 fungal species
We next proceeded to reconstruct genome-scale metabolic

models for the 49 fungal species using unmodified protein

sequence data. Reconstruction parameters were chosen values

that produced best S. cerevisiae CoReCo phase II reconstruction

performance in terms of F1 score (F1~0:63,a~0:02,b~2) in the

above scenario where we reconstructed simulated poorly se-

quenced species. This process yielded networks also for the 48

hypothetical ancestral species. A minimal amount of manual

curation, described in subsequent sections, was applied to the

models. Models were converted into SBML format and have been

submitted to the BioModels database (BioModels identifiers

MODEL1302010000 to MODEL1302010048).

We used whole proteomes of the 49 fungi, a total of 501619

protein sequences, as input to CoReCo phase I. Homologous

sequences were retrieved from UniProt and Global Trace Graph

databases and scored for each input sequence by BLAST and

GTG, respectively. Each enzyme in the KEGG database [31] was

assigned BLAST and GTG scores according to best sequence

Figure 2. Phylogeny of the 49 fungal species according to [42]. Fungal taxonomic class indicated by colors.
doi:10.1371/journal.pcbi.1003465.g002

Comparative Reconstruction of Metabolic Networks
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homologs. A posterior probability was computed in the probabi-

listic model for each enzyme in each species given observed

BLAST and GTG scores quantifying our confidence in whether

the enzyme is encoded by a particular species.

In CoReCo phase II, metabolic network models were recon-

structed based on KEGG stoichiometry data for each present and

hypothetical ancestral species. Prior to reconstruction, we

balanced 7076 KEGG reactions by allowing addition of protons

and water, and a single C1 group. We then computed atom

mappings for balanced reactions using a recent algorithm [32].

Atom mapping describes the correspondence of substrate and

product atoms in a reaction, and allows removal of biologically

spurious pathways [28]. Reconstructed models contained a

median of 2215 reactions, including both enzyme-catalyzed and

spontaneous reactions, and were associated with a median of

unique 1124 enzyme EC numbers. Compared to the enzyme

content of the yeast consensus model [30], our reconstructed S.

cerevisiae model before any manual curation achieved true positive

rate of 99.0% and false positive rate of 12.1%. Saccharomycotina

reconstructions were overall smaller (median of 2032 reactions and

1040 enzymes) than those of other species (Figure 4). As expected,

the number of reactions used to fill gaps in reconstructions

correlated with model size (r~0:903,pv2:2e{16). The ratio of

gapfilling reactions to all reactions showed negative correlation

(r~{0:851,pv2:2e{16), implying that in larger networks a

gapped reaction can be fixed with fewer reactions than in smaller

networks on the average. Reconstructed E. cuniculi model differed

from the other models with a total of 737 reactions (341 gapfilling

reactions, 46.2% gapfilling ratio). Interestingly, Eurotiomycetes

models had fewer gapfilling reactions than many species with

similar sized models, which probably reflects the fact that many

Aspergillus species have extensive manual annotation in public

databases [33].

Production of biomass in fungal species
We next investigated the metabolic capabilities of reconstructed

fungal models after minimal manual curation (see Materials and

Methods). For each modified model, the maximum yield of

biomass components was computed from a minimal media with

added bicarbonate under metabolic steady-state. A large fraction

of biomass components was producible in most of the fungi

(Figure 5). All components and thus biomass could be produced

without extensive manual curation in the following 17 species: A.

fumigatus, A. gossypii, A. nidulans, B. cinerea, C. albicans, C. immitis, D.

hansenii, F. graminearum, K. lactis, M. graminicola, N. fischeri, P.

blakesleeanus, P. graminis, P. stipitis, S. cerevisiae, U. reesii and Y.

lipolytica.

For instance, max growth rate in our S. cerevisiae model was

0.7388 whereas the growth rate of yeast consensus model on the

same media and biomass was 0.7418 [30]. Constraining the

reaction directionality proved to be critical, as all biomass

components could be produced in 41 of the 49 extant species

when no reaction constraints were enforced. Tetrahydrofolate was

the least successfully produced component, with zero yield in 25

species. Not surprisingly, only 4 components could be produced in

the obligate intracellular parasite E. cuniculi. Reconstruction of five

Saccharomycotina including P. pastoris proved difficult and resulted in

up to 32 unproducible components. However, in other Sacchar-

omycotina such as K. lactis and C. tropicalis all or nearly all biomass

components could be produced.

Reconstructed fungal models predict growth accurately
in knock-out experiments
Lastly we studied the ability of our S. cerevisiae model to predict

the effects of gene knock-outs on growth. In a recent work, [34]

measured growth phenotypes of 465 S. cerevisiae gene deletion

mutants and compared observations to steady-state model

predictions. Here, we compared their results against growth

predictions of our final reconstructed S. cereivisae model.

We modified the set of 16 growth media used by [34] to take

into account KEGG stoichiometry by adding bicarbonate and

methyl-THF to each media. Similarly, biomass composition was

defined by adjusting the iMM904 biomass composition to reflect

metabolite definitions in KEGG. For instance, we replaced

glycogen with starch because the former was not involved with

any reaction in KEGG. Reaction directionality was constrained as

in the biomass production experiment above.

Gene knockouts in our reconstructed model were simulated

according to [34]. For each of the 16 growth media, we performed

465 in silico gene knockouts, resulting in 7440 growth prediction

cases, and compared our prediction against growth observed in the

previous study. To determine the KEGG reactions to remove for

each knockout, we mapped S. cerevisiae genes to reactions via EC

numbers using Saccharomyces cerevisiae Genome Database (SGD) and

KEGG annotations. A total of 1071 S. cerevisiae genes were mapped

Figure 3. True and false positive rates for S. cerevisae consensus
model enzyme prediction in the evolutionary distant species
setting with the CoReCo phase II reconstructed model (cyan),
CoReCo phase I model (black), naive Bayesian classifier (red),
and BLAST (blue) and GTG (green) classifiers.
doi:10.1371/journal.pcbi.1003465.g003

Table 1. Prediction performance of CoReCo phases I and II,
naive Bayesian classifier and individual BLAST and GTG
classifiers expressed in terms of area under the ROC curve
(AUC).

Experiment BLAST GTG Naive CoReCo I CoReCo II

Complete data 0.9414 0.8982 0.9652 0.9668 0.9455

Poor sequencing 0.8306 0.8209 0.8532 0.9302 0.9110

Distant species 0.7289 0.7420 0.7983 0.8600 0.8825

doi:10.1371/journal.pcbi.1003465.t001

Comparative Reconstruction of Metabolic Networks
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to 370 EC numbers. We considered the gene associations in

protein complexes specified in the yeast consensus model (v4.02)

[30] and deleted a reaction only if no functional paralogs

annotated with any EC number associated with the reaction

remained after the gene knockout (Figure 6). However, in only

116 out of 465 cases (24.9%) at least one reaction was deleted. To

remove the effect of trivial positive growth predictions due gene

knockout leading to no reaction deletions and thus original

yield, we considered only cases where at least one reaction was

deleted.

Identically to [34], growth was considered to be successfully

predicted if the absolute difference between the normalized model

growth rate and the mean experimental growth rate, both ranging

from 0 to 1, was less or equal than 0.5. Our model was able to

meet the performance of the reference model surprisingly well,

achieving 91.6% sensitivity compared to 91.9% sensitivity of the

curated reference model (Table 2). In the dataset used, positive

cases far outnumber negatives with 1826 positive and 46 negative

cases, complicating the estimation of specificity. In conclusion, our

computationally generated model was found to be useful in

Figure 4. Reconstructed models summarized in terms of number of reactions (NumReactions), number of gapfilling reactions
(Gapfills) and fraction of gapfilling reactions to all reactions in the reconstructed model (GapfillRatio). Density plots shown in
diagonals. Species colored according to taxonomic class (see Fig. 2). In top left, pink and blue ellipses denote Saccharomycotina and Eurotiomycetes,
respectively. In bottom right, purple and cyan ellipses denote Sordariomycetes and Agaricomycetes, respectively. Data for E. cuniculi not shown.
doi:10.1371/journal.pcbi.1003465.g004

Comparative Reconstruction of Metabolic Networks
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predicting effects of gene knockouts in steady-state conditions

despite undergoing only a minimal amount of manual curation.

Discussion

We described a computational method for reconstructing meta-

bolic networks from sequence data for related multiple species and

their hypothetical ancestor species. The method is able to exploit

shared evolutionary history and alleviate problems caused by lacking

sequence data by propagating enzyme evidence from related species.

Our reconstruction method allows comparative reconstruction of an

arbitrary number of species from sequence and phylogenetic data,

and thus can be used to shed light into the evolution of metabolism

and predict metabolic phenotypes, for example.

The increasing availability of microbial genomes sequenced

individually from cell cultures, or identified in metagenomics

experiments has made the rapid and accurate analysis and

interpretation of the data the rate-limiting step of biological

discovery instead of data acquisition. In metabolic modeling,

scaling up metabolic network reconstruction to cope with

emerging big sequence data has so far been hindered by the large

amount of manual work that goes into curating metabolic models.

This problem can be alleviated by enforcing gaplessness in

reconstruction [8,21]. Here we considered metabolic reconstruc-

tion as an optimization problem with the goal of producing as

plausible gapless model as possible. In our experiments using

incomplete sequence data, we observed that such integrated

gapfixing resulted in improved reconstruction performance over

individual enzyme predictions.

Comparative analysis offers a promising direction for develop-

ment of metabolic network reconstruction techniques. In this

study, we observed significant reconstruction accuracy gains from

Figure 5. Yields of biomass components in fungal models. Reaction directionality constrained. CO2 assimilation reaction unconstrained.
Column-wise normalized yields reported: 0 (white), 0 . . . 0:1 (light green), 0:1 . . . 0:9 (green), 0:9 . . . 1 (dark green). Fungal taxonomic class indicated by
row colors in left margin.
doi:10.1371/journal.pcbi.1003465.g005

Comparative Reconstruction of Metabolic Networks
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integration of sequence data from multiple species. Although we

used only two distinct sources of sequence information, the

Bayesian network framework introduced here can be easily

extended to integrate other sequence features as well, or condition-

or cell-type specific data [35]. While metabolic models for multiple

related species have been reconstructed in previous efforts [24],

our framework is to our knowledge the first to exploit sequence

data across a known phylogeny to support reconstruction of poorly

sequenced and evolutionary distant species. In principle, our

method can easily be parallelized to run on a commodity cluster

for simultaneous reconstruction of thousands of species.

We discussed here 49 genome-scale metabolic networks of

fungal species constructed with our method from protein sequence

data. As a proof of concept, we demonstrated high reconstruction

accuracy of S. cerevisiae network by comparing our results against

the high-quality yeast consensus network. Further, our S. cerevisiae

model was able to accurately predict effects of gene knockouts

observed in a previous study [34]. Biological validation of

predictions for other fungal species will provide additional insight

into the accuracy of the method.

We developed an algorithm for finding plausible gap-filling

metabolic pathways extending our previous work [28]. The algorithm

exploits atom mapping information [32] to identify metabolic

pathways where atom transfer takes place, eliminating many

biologically irrelevant metabolic pathways. Despite the computation-

al complexity of the underlying pathway search problem [28], our

heuristic algorithm is both fast and achieves good reconstruction

accuracy. Approximation techniques may be useful in future work to

further improve reconstruction performance.

Evolution of fungal transcriptional networks has been previously

studied [23]. Similarly, our approach allows the study of metabolic

network evolution from metabolic reconstructions of hypothetical

ancestral species. Although we here assume strict vertical

evolution, also horizontal gene transfer should be considered in

comparative metabolic reconstruction [36]. Another interesting

future research direction is automatically determining model

compartmentalization [22,37] to improve accuracy of phenotypic

predictions, for example.

Materials and Methods

Sequence analysis
CoReCo takes as input the full complement of protein

sequences for each reconstructed species. We computed reciprocal

alignments of the 501619 protein sequences from the 49

fungi against UniProt Swiss-Prot Release 15.15 sequences with

BLAST (blastp 2.2.24+; E-value cutoff 10, default parameters)

yielding for each alignment of sequences s and t two E-values

E s,tð Þ and E’ s,tð Þ for the forward and reverse BLASTs,

respectively. We denote by p s,tð Þ and p’ s,tð Þ the respective p-

values of these E-values. A score describing the joint quality of the

two BLAST results for each sequence pair s and t was computed

by

B s,tð Þ~{log p s,tð Þzp’ s,tð Þ{p s,tð Þp’ s,tð Þð Þ:

In particular, the score B s,tð Þ of s and t is high only if both p-

values are low, capturing the advantages of a reciprocal search to

find orthologous sequence candidates [38]. To detect remote

homologs, Global Trace Graph (GTG) analysis was performed by

first finding the set of conserved amino acid positions F sð Þ in the

GTG alignment for each fungal sequence s. Then, the most

similar sequence t in terms of shared positions, or GTG features,

was found for each sequence [26]. Each such sequence pair was

given a GTG score by

G s,tð Þ~
F sð Þ\F tð Þj j

F sð Þj j
,

the fraction of shared features.

To evaluate the sequence data support for an enzyme in a single

species, we computed a score B e,xð Þ for each enzyme e and

species x by taking the best BLAST hit annotated with the

enzyme,

B e,xð Þ~ max
s[S xð Þ,t[Q eð Þ

B s,tð Þ,

where S xð Þ are all protein sequences of the species x and Q eð Þ
denotes the protein sequences in UniProt annotated with EC

number e. Likewise, we computed GTG scores G e,xð Þ by

Figure 6. For each S. cerevisiae gene knockout, all genes
involved in complexes with the deleted gene that do not
participate in other complexes are also deleted. For the four
complexes shown, YEL039C knockout will result also in the deletion of
YDL178W and reactions associated with it because no other YDL178W
containing complex remains. In contrast, YEL071W is not deleted,
because it participates in a still functional complex with YJR048W.
doi:10.1371/journal.pcbi.1003465.g006

Table 2. Growth prediction accuracy in knockout models
with constrained reaction directionality.

Outcome Observed Refined Reference

TP 1673 (89.37%) 1580 (90.60%) 1678 (89.64%)

FP 28 (1.50%) 25 (1.43%) 9 (0.48%)

TN 18 (0.96%) 14 (0.80%) 37 (1.98%)

FN 153 (8.17%) 125 (7.17%) 148 (7.91%)

Total 1872 1744 1872

Sens 0.916 0.927 0.919

Spec 0.391 0.359 0.804

Prec 0.984 0.984 0.995

F1 0.949 0.955 0.955

Reaction deleted only if no functional enzyme complex associated with the
reaction remains after knockout. Reconstructed model performance in
predicting [34] ‘‘raw’’ observations (Observed) and ‘‘refined’’ observations
(Refined) of [34]. Performance of the model of [34] (Reference) in predicting
‘‘raw’’ observations is also shown. Rows: Correct and incorrect growth
predictions (TP, FP), correct and incorrect no-growth predictions (TN, FN), total
number of cases, sensitivity, specificity, precision and F1 score.
doi:10.1371/journal.pcbi.1003465.t002
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G e,xð Þ~ max
s[S xð Þ,t[P eð Þ

G s,tð Þ:

Reaction stoichiometry and atom mappings
Reactions contained in the KEGGmetabolic database (February

2012 version) were filtered by removing all 191 reactions designated

as ‘‘general reactions’’. In KEGG, general reactions do not specify

the reactants fully, instead referring to general categories of

molecules, such as KEGG reaction R00056 ‘‘Dinucleotide+

H2Ou2 Mononucleotide’’. We then balanced the remaining

reactions by considering the elementwise balances in each reaction

formula by integer programming. For each reaction, a balanced

formula was found where the coefficient of each existing reactant

was at least the original coefficient and at most 15 and the sum of

coefficients was minimized. Addition of water and protons, and

addition of a single carbonic acid were allowed even if they did not

appear in the original formula. Finally, atom mappings were

computed for the balanced reactions with a recent algorithm based

on A* search and heuristics to prune the search space [32]. Two

passes of the algorithm were performed for each reaction. First, an

optimal atom mapping was searched for. Whenever the atom

mapper was unable to find one within a specified search space limit,

a greedy search algorithm was used to find a non-optimal mapping.

CoReCo phase I: Probabilistic model
We computed species-wise posterior probablities whether an

enzyme is encoded by the genome given observed sequence data

and phylogeny of the related species. To this end we constructed a

Bayesian network model with three groups of nodes (Figure 7). In

the model, ancestral and species nodes denote the enzyme in a

hypothetical ancestral and present species, respectively. The third

group consists of BLAST and GTG evidence nodes for each

present species. A separately parametrized instance of the model

was constructed for all unique 3006 EC numbers in the data. A

conditional probability distribution was specified for each non-root

ancestral and present species node by

P X e,xð Þ X e,pa xð Þð Þjð

where X e,xð Þ[ 0,1f g denotes the presence of enzyme e in ancestral

or present species x and pa xð Þ is the parent species of species x.

For BLAST and GTG evidence nodes, the conditional probability

distribution was given by

P B e,xð Þ X e,xð Þjð Þ,P G e,xð Þ X e,xð Þjð Þ,

respectively, where B e,xð Þ and G e,xð Þ are the BLAST and GTG

scores computed for the enzyme e in present species x. A uniform

distribution with P x e,xð Þ~1ð Þ~0:5 was given to root node to

fully specify the model.

To estimate the conditional probability distributions from data,

we performed InterProScan (version 1.6) analysis of fungal protein

sequences [39]. In contrast to BLAST, InterProScan identifies

specific protein family signatures and thus allows us to accurately

identify a subset of enzymes present in each species. We included

the following 14 InterProScan methods in the analysis: BlastPro-

Dom, Coil, FPrintScan, Gene3D, HAMAP, HMMPanther,

HMMPfam, HMMPIR, HMMSmart, HMMTigr, PatternScan,

ProfileScan, Seg and superfamily. Analysis resulted in 2689551

hits to protein family signatures and a total of 577 unique EC

numbers. For instance, 385 unique EC numbers were identified in

S. cerevisiae.

The EC numbers identified with InterProScan in each species

served as reference models when estimating the conditional

probability distributions. For evidence nodes, a total of four

distributions identical to all species and enzymes were estimated.

Probability distribution P B Xj ~1ð Þ was estimated with a kernel

density estimator

P B X~1jð Þ~
1

n

X

x

X

e[R xð Þ

K B{B e,xð Þð Þ,

where n is the total number of summed scores, R xð Þ are the

enzymes in reference model of species x, and K is a kernel

function integrating to one. In this study, we used the R function

‘‘density’’ with a Gaussian kernel and estimated the bandwidth

parameter with Silverman’s method (nrd0). Distributions

P B X~0jð Þ, P G X~1jð Þ and P G Xj ~0ð Þ were estimated analo-

gously. To avoid problems with near-zero densities and overfitting,

we added 0:2n points placed uniformly in range 0,M½ � where M is

the maximum score in data for that particular distribution.

Figure 8 shows the four estimated conditional distributions.

Conditional probability distributions for species and non-root

ancestral nodes were estimated from the InterProScan reference

Figure 7. Bayesian network model for computing enzyme probabilities containing three node groups: hypothetical ancestral
species (yellow), present species (green), and BLAST and GTG evidence nodes (blue).
doi:10.1371/journal.pcbi.1003465.g007
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models by first estimating ancestral reference models by parsimo-

ny. To do this, we used Fitch’s algorithm and estimated ancestral

models explaining the reference models such that the number of

enzyme additions and deletions were minimized. We then

obtained distributions P E xð Þ E pa xð Þð Þjð Þ by counting and nor-

malizing the numbers of additions, deletions and no-changes along

the edges of the phylogenetic tree.

Finally, we computed the posterior probabilities P X B,Gjð Þ in

our model for each enzyme and species with the polytree

algorithm [27]. These probabilities served as input to the next

phase of our method, where we reconstructed gapless networks for

each fungal species.

CoReCo phase II: Gapless atom-level reconstruction
algorithm
To assemble a connected metabolic network from posterior

probablities, we developed a novel iterative algorithm, extending

our previous work [15,28,40]. Our greedy algorithm identifies

probable biosynthesis pathways and sequentially adds such

pathways into the network being reconstructed. Biosynthesis

pathways are constructed by finding a subgraph of an atom graph

connecting nutrients to pathway end-products. Here we outline

the central operation of the algorithm; details can be found in

Appendix S1.

The algorithm assembles each a metabolic network for each

individual species x in the dataset independently considering the

posterior probabilities P e,xð Þ computed previously. Given a

database of reactions R, we assign each reaction r[R a logarithmic

cost

C rð Þ~
{log P e,xð Þð Þze if P e,xð Þvc

{log cð Þze otherwise

�

where e is the enzyme annotated with reaction r such that

posterior probability P e,xð Þ is minimum, x is the reconstructed

species and ew0 specifies a base cost. In other words, enzyme e is

the enzyme giving maximal support for reaction r. We set

c~1|10{6 and e~1 in our experiments. Furthermore, we define

the cost of a pathway consisting of reactions N(R to be simply

C Nð Þ~
X

r[N

C rð Þ:

The crucial input parameters to the CoReCo reconstruction

algorithm are acceptance threshold a§0 and rejection threshold

bw0. The algorithm attempts to add each reaction whose cost is

below threshold a (or equivalently, whose probability is above the

corresponding probability threshold) to reconstructed network by

finding an inexpensive (in comparison to b) and thus probable

biosynthesis pathway leading to the reaction from nutrients. We

consider each reaction to transfer each atom from its substrates to

products. The correspondence of substrate and product atoms is

described by atom mapping of the reaction [32]. In particular, a

complete atom mapping is a bijection from substrate atoms to

product atoms. We require that a valid biosynthesis pathway is

able to transfer atoms from nutrients to all metabolites involved on

the pathway [28]. The algorithm attempts to satisfy this condition

by flagging each atom on the pathway being constructed that is

not yet connected to nutrients and considering k linear reaction

paths that connect nutrients to the flagged atoms. In each

iteration, a single reaction path is chosen and added to the

constructed pathway. This process is repeated until no more

flagged atoms remain and the pathway is deemed complete, or the

constructed pathway exceeds the maximum cost, i.e., C Nð Þwb. If

a complete pathway with cost at most b is found, it is added to the

reconstructed network.

Heuristics are employed to decrease running time. First,

reactions are enumerated in an increasing order of estimated cost

of adding the reaction to the network. Addition cost is estimated

by finding the shortest reaction path from nutrients and products

of already added reactions to each substrate atom of the reaction,

Figure 8. A. Conditional probability distributions for BLAST (left) and B. GTG (right) sequence evidence. Blue solid line: P :,X~1ð Þ, red
dashed line: P :,X~0ð Þ.
doi:10.1371/journal.pcbi.1003465.g008
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and summing the costs of all such paths. Thus reactions that are

potentially inexpensive to add to the network are considered first.

Addition costs are re-estimated after each iteration, because

reaction additions change the cost estimates. Second, the partial

pathways are maintained in a priority queue and visited in

increasing order of cost estimate for completing the pathway

similarly to the first heuristic.

When no complete gapfixing pathways are found for a reaction

r or the best pathway is more expensive than the specified rejection

threshold b, the algorithm can be configured to either reject the

reaction r or add it nonetheless. In the first option, we maintain

connectivity but cannot predict the reaction even if sequence data

solidly supports it. In the second option, we predict the reaction

but fail to guarantee connectivity, accepting gaps that rise from

addition of sequence-supported reactions. The algorithm flags

these reactions in both cases and thus they can serve as focal points

for subsequent manual curation.

Model curation
Following the automatic reconstruction of fungal metabolic

models with CoReCo, we manually inspected the central pathways

in the reconstructed S. cerevisiae model and added reactions that

were required for growth and were not included in the

reconstruction. These omissions, described in Appendix S1, were

due to missing or partial EC numbers in KEGG, and thus were

not triggered for gapfilling because sequence evidence could not be

connected to these reactions.

Derivation of reaction direction constraints
Reaction direction constraints for the reconstructed genome-

scale metabolic model were derived from Gibbs reaction energy

change estimates obtained by the group contribution method [41].

However, formation energy estimates of metabolites required for

the calculation of Gibbs reaction energy estimates could not be

obtained for compounds lacking a structure formula. Therefore

the direction constraints of reactions including reactants lacking a

structure formula were manually curated. Additional manual

curation was performed to avoid formation of transhydrogenase

cycles and to enable the activity of the known central metabolic

pathways and biosynthetic pathways of S. cerevisiae. Furthermore,

we constrained ATP/O ratio to equal to one. The reaction

direction constraints are included in the Table S1.

Biomass and media definitions
Biomass definition was derived from the iMM904 S. cerevisiae

model and modified to account for stoichiometry differences

between KEGG database and iMM904 model. The minimal

media used contained glucose as carbon source Bicarbonate was

added to the media, with the restriction that CO2 production

would not exceed the intake of bicarbonate. Biomass and media

compositions are described in detail in Appendix S1.
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1. Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of

biochemical networks in microorganisms. Nat Rev Microbiol 7: 129–143.

2. Oberhardt MA, Palsson BØ, Papin JA (2009) Applications of genome-scale

metabolic reconstructions. Molecular Systems Biology 5: 320.

3. Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, et al. (2011) Predicting

selective drug targets in cancer through metabolic networks. Molecular Systems

Biology 7: 501.

4. Shlomi T, Benyamini T, Gottlieb E, Sharan R, Ruppin E (2011) Genome-Scale

Metabolic Modeling Elucidates the Role of Proliferative Adaptation in Causing

the Warburg Effect. PLoS Computational Biology 7: e1002018.

5. Suthers PF, Dasika M, Kumar VS, Denisov G, Glass J, et al. (2009) A Genome-

Scale Metabolic Reconstruction of Mycoplasma genitalium, iPS189. PLoS

Computational Biology 5: e1000285.

6. Thiele I, Palsson BØ (2010) Reconstruction annotation jamborees: a community

approach to systems biology. Molecular Systems Biology 6: 361.

7. Thiele I, Palsson BØ (2010) A protocol for generating a high-quality genome-

scale metabolic reconstruction. Nature Protocol 5: 93–121.

8. Kumar VS, Dasika MS, Maranas CD (2007) Optimization based automated

curation of metabolic reconstructions. BMC Bioinformatics 8: 212.

9. Caspeta L, Shoaie S, Agren R, Nookaew I, Nielsen J (2012) Genome-scale

metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico

evaluation of their potentials. BMC Systems Biol 6: 24.

10. Förster J, Famili I, Fu P, Palsson B, Nielsen J (2003) Genome-scale

reconstruction of the Saccha romyces cerevisiae metabolic network. Genome

Research 13: 244–253.

11. Plata G, Hsiao TL, Olszewski KL, Llinás M, Vitkup D (2010) Reconstruction

and flux-balance analysis of the Plasmodium falciparum metabolic network.

Molecular Systems Biology 6: 408.

12. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, et al. (2007) A

genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that

accounts for 1260 ORFs and thermodynamic information. Molecular Systems

Biology 3: 121.

13. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nature

Biotechnology 28: 245–248.

14. Pitkänen E, Rantanen A, Rousu J, Ukkonen E (2008) A computational method

for reconstructing gapless metabolic networks. In: Proceedings of the 2nd

International Conference on Bioinformatics Research and Development; 7–9

July 2008; Vienna, Austria. BIRD’08. Springer, volume 13 of Communications

in Computer and Information Science, pp. 288–302.

15. Pitkänen E, Arvas M, Rousu J (2011) Minimum mutation algorithm for gapless

metabolic network evolution. In: Proceedings of the International Conference on

Bioinformatics Models, Methods and Algorithms. SciTePress, pp. 28–38.

16. Punta M, Ofran Y (2008) The Rough Guide to In Silico Function Prediction, or

How To Use Sequence and Structure Information To Predict Protein Function.

PLoS Computational Biology 4: e1000160.

17. Pitkänen E, Rousu J, Ukkonen E (2010) Computational methods for metabolic

reconstruction. Current Opinion in Biotechnology 21: 70–77.

18. Karp PD, Paley SM, Krummenacker M, Latendresse M, Dale JM, et al. (2010)

Pathway tools version 13.0: integrated software for pathway/genome informatics

and systems biology. Briefings in Bioinformatics 11: 40–79.

19. Shlomi T, Cabili MN, Herrgard MJ, Palsson BØ, Ruppin E (2008) Network-

based prediction of human tissue-specific metabolism. Nature Biotechnology 26:

1003–1010.

20. Aziz R, Bartels D, Best A, DeJongh M, Disz T, et al. (2008) The RAST Server:

Rapid Annotations using Subsystems Technology. BMC Genomics 9: 75.

21. DeJongh M, Formsma K, Boillot P, Gould J, Rycenga M, et al. (2007) Toward

the automated generation of genome-scale metabolic networks in the SEED.

BMC Bioinformatics 8: 139.

22. Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I, et al. (2013) The

RAVEN toolbox and its use for generating a genome-scale metabolic model for

Penicillium chrysogenum. PLoS Comput Biol 9: e1002980.

23. Habib N, Wapinski I, Margalit H, Regev A, Friedman N (2012) A functional

selection model explains evolutionary robustness despite plasticity in regulatory

networks. Molecular Systems Biology 8: 619.

Comparative Reconstruction of Metabolic Networks

PLOS Computational Biology | www.ploscompbiol.org 11 February 2014 | Volume 10 | Issue 2 | e1003465



24. Lee DS, BurdH, Liu J, Almaas E,Wiest O, et al. (2009) Comparative genome-scale
metabolic reconstruction and ux balance analysis of multiple staphylococcus aureus
genomes identify novel antimicrobial drug targets. J Bacteriol 191: 4015–4024.

25. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, et al. (2012) Metabolic
reconstruction for metagenomic data and its application to the human
microbiome. PLoS Comput Biol 8: e1002358.

26. Heger A, Mallick S, Wilton CA, Holm L (2007) The global trace graph, a novel
paradigm for searching protein sequence databases. Bioinformatics 23: 2361–
2367.

27. Kim JH, Pearl J (1983) A computational model for combined causal and
diagnostic reasoning in inference systems. In: Proceedings of the Eighth
International Joint Conference on Artificial Intelligence 1; 8–12 August 1983;
Karlsruhe, West Germany. pp. 190–193.

28. Pitkänen E, Jouhten P, Rousu J (2009) Inferring branching pathways in genome-
scale metabolic networks. BMC Systems Biology 3: 103.

29. Rantanen A, Rousu J, Jouhten P, Zamboni N, Maaheimo H, et al. (2008) An
analytic and systematic framework for estimating metabolic flux ratios from 13C
tracer experiments. BMC Bioinformatics 9: 266.

30. Herrgard MJ, et al. (2008) A consensus yeast metabolic network reconstruction
obtained from a community approach to systems biology. Nature Biotechnology
26: 1155–1160.

31. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, et al. (2008) KEGG for
linking genomes to life and the environment. Nucleic Acids Res 36: D480–D484.

32. Heinonen M, Lappalainen S, Mielikäinen T, Rousu J (2011) Computing atom
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