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Abstract
Background: Nickel (Ni) and cobalt (Co) are trace elements required for a variety of biological
processes. Ni is directly coordinated by proteins, whereas Co is mainly used as a component of
vitamin B12. Although a number of Ni and Co-dependent enzymes have been characterized,
systematic evolutionary analyses of utilization of these metals are limited.

Results: We carried out comparative genomic analyses to examine occurrence and evolutionary
dynamics of the use of Ni and Co at the level of (i) transport systems, and (ii) metalloproteomes.
Our data show that both metals are widely used in bacteria and archaea. Cbi/NikMNQO is the
most common prokaryotic Ni/Co transporter, while Ni-dependent urease and Ni-Fe hydrogenase,
and B12-dependent methionine synthase (MetH), ribonucleotide reductase and methylmalonyl-CoA
mutase are the most widespread metalloproteins for Ni and Co, respectively. Occurrence of other
metalloenzymes showed a mosaic distribution and a new B12-dependent protein family was
predicted. Deltaproteobacteria and Methanosarcina generally have larger Ni- and Co-dependent
proteomes. On the other hand, utilization of these two metals is limited in eukaryotes, and very
few of these organisms utilize both of them. The Ni-utilizing eukaryotes are mostly fungi (except
saccharomycotina) and plants, whereas most B12-utilizing organisms are animals. The NiCoT
transporter family is the most widespread eukaryotic Ni transporter, and eukaryotic urease and
MetH are the most common Ni- and B12-dependent enzymes, respectively. Finally, investigation of
environmental and other conditions and identity of organisms that show dependence on Ni or Co
revealed that host-associated organisms (particularly obligate intracellular parasites and
endosymbionts) have a tendency for loss of Ni/Co utilization.

Conclusion: Our data provide information on the evolutionary dynamics of Ni and Co utilization
and highlight widespread use of these metals in the three domains of life, yet only a limited number
of user proteins.
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Background
Life is dependent on a number of chemical elements.
Besides common elements, several trace elements are uti-
lized, including certain metals and metalloids. Because
these elements play important roles in cellular metabolism,
efficient mechanisms of uptake, storage and utilization are
required for many of them. Among biometals, nickel (Ni)
and cobalt (Co) are utilized at particularly low levels but
play important roles in several biological systems.

Ni is an essential component of several metalloenzymes
involved in energy and nitrogen metabolism [1,2]. In
prokaryotes, the major Ni-binding enzymes include urease,
Ni-Fe hydrogenase, carbon monoxide dehydrogenase (Ni-
CODH), acetyl-coenzyme A decarbonylase/synthase ([4Fe-
4S]-Ni-Ni CODH/ACS), superoxide dismutase SodN,
methyl-coenzyme M reductase (MCR), glyoxalase I (GlxI,
binds Ni in Escherichia coli, Pseudomonas aeruginosa and
Neisseria meningitidis, but zinc in P. putida, human and
yeast) [3-6], a putative cis-trans isomerase in E. coli [7] and
several other proteins [2]. In eukaryotes, urease is the only
characterized Ni-dependent enzyme [8]. Additional candi-
date Ni-containing proteins or compounds have also been
described in different organisms including humans [9].

Co is mainly found in the corrin ring of vitamin B12 (also
known as cobalamin), a group of closely related polypyr-
role compounds such as cyanocobalamin, methylcobala-
min and deoxyadenosyl cobalamin [10-12]. The
biochemistry of B12 in enzymes is well characterized [10-
12]. Vitamin B12 is a complex organometallic cofactor and
is mainly present in three classes of enzymes in prokaryo-
tes (classified based on different chemical features of the
cofactor): adenosylcobalamin-dependent isomerase,
methylcobalamin-dependent methyltransferase, and B12-
dependent reductive dehalogenase [12]. These classes can
be further divided into subclasses based on sequence sim-
ilarity and reactions they catalyze, including methylmalo-
nyl-CoA mutase (MCM), isobutyryl-CoA mutase (ICM),
B12-dependent mutase MeaA (with sequence similarity to
MCM and ICM), glutamate mutase (GM), methyleneglu-
tarate mutase (MGM), D-lysine 5,6-aminomutase (5,6-
LAM), B12-dependent ribonucleotide reductase (RNR II),
diol dehydratase (DDH), ethanolamine ammonia lyase
(EAL), B12-dependent methionine synthase (MetH), a
variety of B12-dependent methyltransferases (such as Mta,
Mtm, Mtb, Mtt, Mts, Mtv and Mtr) and reductive dehalo-
genases CprA and PceA [12-18]. Whereas many prokaryo-
tes synthesize B12 via aerobic or anaerobic biosynthetic
pathways [11], other organisms, which lack the ability to
synthesize B12, are dependent on vitamin uptake from the
environment. In eukaryotes, only three B12-dependent
enzymes, MetH, MCM and RNR II, have been identified
[19,20], and all are dependent on externally supplied vita-
min B12. Besides, a few proteins containing non-corrin Co
were reported, such as methionine aminopeptidase from

Salmonella typhimurium, prolidase from Pyrococcus furiosus
and nitrile hydratase from Rhodococcus rhodochrous [10].
However, most of these proteins are not strictly Co-spe-
cific and may also use other metals (such as iron, zinc and
manganese) in place of Co [10,21,22]. Among them, only
nitrile hydratase (NHase) was previously suggested to
have different active site motifs for cobalt- and iron-bind-
ing forms [23,24].

Biosynthesis of Ni and Co enzymes is dependent on high-
affinity uptake of metal ions from natural environments. In
microorganisms, Ni and Co uptake is mediated by ATP-
binding cassette (ABC) systems and several secondary
transporters [25,26]. The well-studied ABC-type Ni trans-
porter system, NikABCDE, belongs to a large family of ABC
transporters (peptide/nickel transporter family). It is com-
posed of a periplasmic binding protein (NikA), two integral
membrane proteins (NikB and NikC) and two ABC pro-
teins (NikD and NikE, [27]). The expression of nikABCDE
is negatively regulated by the NikR repressor [28]. Distantly
related Ni ABC transporters were also identified in the Yers-
inia species (YntABCDE, [29]). An additional system, Cbi/
NikMNQO, is often encoded next to the B12 biosynthesis or
urease genes in bacterial genomes [30-33]. It was shown to
mediate Co and Ni uptake, respectively [30,31].

Secondary Ni/Co transporters include: (a) NiCoT (also des-
ignated HoxN, HupN, NicT, NixA or NhlF in different organ-
isms), a family of prokaryotic and fungal membrane
proteins with an eight-transmembrane-segment structure
[34-36], (b) UreH [26] and (c) HupE/UreJ [26,37]. NiCoTs
are widespread among bacteria and found in several ther-
moacidophilic archaea and certain fungi including Schizosac-
charomyces pombe and Neurospora crassa [26,36,38]. Subtypes
of various NiCoTs have different ion preferences ranging
from strict selectivity for Ni to unbiased transport of both
ions to strong preference for Co. In many cases, the prefer-
ence for a particular metal correlated with the genomic loca-
tion of NiCoT genes, which are adjacent to genes for Ni or Co
(or B12 biosynthesis) enzymes [31,34-36]. The other two
families (UreH and HupE/UreJ) are putative secondary
transporters, and certain members of these families have
recently been shown to mediate Ni transport [26,37,39].
Homologs of UreH also occur in plants [26]. Recently, sev-
eral new types of candidate cobalt transporters were pre-
dicted, including CbtAB, CbtC, CbtD, CbtE, CbtF, CbtG and
CbtX [31,40]. The distribution of these candidates is limited.
In eukaryotes, a subfamily of cation-efflux family members
(TgMTP1) was found to account for the enhanced ability of
Ni hyperaccumulation in higher plants [41,42]. Although
no Co-specific transport system was reported in eukaryotes,
some suppressors of Co toxicity, such as COT1 and GRR1 in
Saccharomyces cerevisiae, were characterized, which have a
role in decreasing the cytoplasmic concentration of metal
ions (including cobalt and zinc). They were proposed to play
an important role in metal homeostasis [10].
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Vitamin B12 uptake is essential for B12-utilizing organisms,
which lack the ability to synthesize the coenzyme de novo,
and the only known transport system for B12 in prokaryo-
tes is BtuFCD [43]. Since this ABC transport system
belongs to the same family as the ABC systems involved in
the uptake of iron, siderophores and heme [44], it is diffi-
cult to distinguish the B12-specific transporters from other
homologous transporters, especially in distantly related
species. In mammals, B12 delivery from food to tissues
involves at least three successive transport proteins and
their cell-surface receptors: haptocorrin in saliva, intrinsic
factor in the proximal ileum and the transcobalamin II in
vascular endothelium [45]. Transcobalamin-B12 is then
released to the plasma and enters cells by endocytosis via
certain receptors [46]. However, the mechanism of B12
uptake in other eukaryotes, such as Chlamydomonas rein-
hardtii and nematodes, is unclear.

While a variety of metal transport systems and metallo-
proteomes have been characterized, the full details of uti-
lization of Ni and Co/B12 are not clear. Comprehensive
analyses of both transporters and proteins that bind these
metals are essential for better understanding of their
homeostasis and its changes during evolution. Recently, a
comparative and functional genomic analysis of prokary-
otic Ni and Co transporters in 200 microbial genomes
showed a mosaic utilization of both metals [47]. A sepa-
rate analysis of B12 metabolism and regulation provided
information on B12 utilization in prokaryotes [31].

In this report, we used comparative genomics approaches to
better understand Ni and Co uptake in both prokaryotes and
eukaryotes, and consequently utilization of these trace ele-
ments. Considering that members of most non-corrin Co-
binding proteins may bind other metal cofactors instead of
Co, we only focused on the utilization of the corrin form of
Co (vitamin B12), whose utilization could be predicted on
the basis of B12 biosynthesis pathway and B12-dependent
protein families. Over 740 organisms in all three domains of
life were examined. Our results show a widespread utiliza-
tion of both metals in prokaryotes and their limited use in
eukaryotes, and reveal that utilization of Ni and Co may be
influenced by environmental or other factors. These studies
also provide insights into understanding the evolution of
metal utilization traits and metalloenzymes.

Results
Occurrence of nickel and cobalt utilization in prokaryotes 
and eukaryotes
Analysis of prokaryotic genomes revealed a wide distribu-
tion of genes encoding Ni and Co transporters as well as
Ni- and Co-dependent proteins [see Additional files 1 and
2]. Table 1 shows the general distribution of both utiliza-
tion traits in the three domains of life. This analysis was
carried out by detecting known metalloproteins, metal
transporters and cofactor biosynthesis pathways, and

where possible, calls were based on multiple evidences. It
should be noted, however, that these approaches may
occasionally be insufficient to assign a function with com-
plete confidence. For example, it cannot be excluded that
some genes said to be associated with Ni or Co utilization
may prove to have a different metal specificity or may not
be functional. Therefore, our analysis is consistent with
the current knowledge of Ni and Co pathways.

Among bacteria, 319 Ni-utilizing and 410 Co-utilizing
organisms (59.1% and 75.9% of sequenced bacterial spe-
cies, respectively) were identified, including 287 organ-
isms (53.1%) that utilized both metals. In contrast, 98
organisms (18.1%) had neither Ni/Co transporters nor
corresponding metalloenzymes and appeared to lack the
ability to use either of the two trace elements. Only half of
Co-utilizing organisms (209 out of 410) possessed the
B12 biosynthetic pathway. The other half likely acquires
external B12 via the vitamin uptake systems. Investigation
of the occurrence of homologs of the BtuFCD transport
system in these B12-uptaking organisms showed that
more than 90% of them had BtuFCD homologs, implying
that essentially all of these organisms may use a BtuFCD
system for B12 uptake [see Additional file 1]. The remain-
ing 10% B12-uptaking organisms, such as Nitrosomonas
europaea and Xanthomonas axonopodis, appeared to
lack BtuFCD transporters, suggesting the presence of addi-
tional B12 transport systems in these organisms. A small
number of organisms which had either Ni-dependent pro-
teins (but lacked both Ni transporters and transporters
with unassigned function) or Ni transporters (but lacked
known Ni-dependent proteins) were found among bacte-
ria (62 and 10 organisms, respectively, Table 1). A similar
situation was also observed in 13 B12-synthesizing spe-
cies that lacked both Co transporters and transporters
with unassigned function. Therefore, our data suggest that
dual-function Ni/Co transporters (i.e., some predicted Ni-
specific transporters may also be involved in Co uptake),
additional Ni- and Co-specific transporters, multifunc-
tional metal transporters (e.g., magnesium/nickel/cobalt
transport system) and/or novel metalloproteins may be
present in a small number of analyzed organisms. Alterna-
tively, metal acquisition might occur nonspecifically in
some of these organisms using cation influx systems.

Except for phyla represented by few sequenced organisms
(<3), Ni and Co utilization traits were detected in nearly
all bacterial phyla (Fig. 1). Neither Ni- nor Co-utilizing
organisms were found among the Chlamydiae and Alp-
haproteobacteria/Rickettsiales. Essentially all organisms in
the two phyla are obligate intracellular parasites and have
small genome size (<1.5 Mbp). In addition, most organ-
isms in the Firmicutes/Mollicutes (88.2%) and Spirochaetes
(62.5%), which are extracellular parasites with small
genomes, also lost the ability to use both metals. Thus, it
appears that parasitic lifestyle may result in the loss of uti-
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lization of both metals. Co utilization appeared to be
more widely distributed than that of Ni. It is present in
90% Ni-utilizing organisms and in some phyla, such as
the Spirochaetes and Thermotogae, which lack Ni utiliza-
tion. However, the fact that Ni utilization is found in all
sequenced Epsilonproteobacteria, which rarely use Co, sug-
gests a mostly independent relationship between the two
metal utilization traits. Nevertheless, significant overlap
between the two traits observed in bacteria suggests that
they may be related in some way, for example, common
or similar transporter systems may be involved.

Similar but even wider Ni/Co utilization was observed in
sequenced archaea (Fig. 2 and [Additional file 2]). 45 and
39 archaeal species were found to utilize Co and Ni,
respectively. A total of 38 organisms use both metals,
including all 18 sequenced methanogenic archaea.
Approximately 75% of Co-utilizing archaea possessed the
B12 biosynthetic pathway (Table 1). Overall, it appears
that utilization of both Ni and Co represent ancient traits
which have been and remain common to most prokaryo-
tes.

In contrast to prokaryotes, only 51 Ni-utilizing and 49
B12-utilizing organisms were identified in eukaryotes
(31.9% and 30.6% of sequenced eukaryotic genomes,
respectively). Among them, 9 organisms (belonging to the
Stramenopiles, Viridiplantae/Chlorophyta and Metazoa/Coe-
lomata/Others) use both trace elements (Fig. 3 and [Addi-
tional file 3]). On the other hand, almost half of analyzed

eukaryotic organisms appeared to lack the ability to use
either Ni or B12, including insects (Metazoa/Coelomata/
Arthropoda), saccharomycotina and most unicellular para-
sites. The fact that no organism contained orphan Ni
transporter and that more than 96% of Ni-utilizing
eukaryotes possessed both known Ni transporters and
urease (the only known Ni-dependent enzyme in eukary-
otes) strongly suggested excellent correspondence
between the occurrence of the Ni uptake system and Ni-
dependent proteins in eukaryotes. Although the mecha-
nism of B12 uptake is unclear in eukaryotes excluding
mammals, we could examine B12 utilization by analyzing
the occurrence of B12-dependent enzymes. It is interesting
that most Ni-utilizing eukaryotes were fungi (including
the Ascomycota/Pezizomycotina, Ascomycota/Schizosaccharo-
mycetes and Basidiomycota subdivisions) and plants, and
that most B12-utilizing organisms were animals (except
insects) which lack the ability to use Ni (Fig. 3). The data
suggest that the majority of lower eukaryotes lost the Co
(or more precisely, B12) utilization trait whereas higher
eukaryotes lost the Ni utilization trait. Although less
likely, an alternative hypothesis is that the Co utilization
trait was independently acquired by some ancient eukary-
otes, for example, the ancestor of all animals, and then
lost by certain groups such as arthropoda.

Distribution of Ni and Co transporters in prokaryotes
We analyzed all well-characterized Ni/Co transport sys-
tems in prokaryotes [26,31,40,47]. Members of these
transporter families in sequenced genomes were identi-

Table 1: General distribution of Ni and Co utilization in the three domains of life

Archaea Bacteria Eukarya Total

Ni-utilizing organisms 39 319 51 409
Ni User (+) Ni Transporter* (+) 21 166 49 236

Ni Transporter (-)
& Unassigned transporter (+)

11 81 - 92

Ni Transporter (-)
& Unassigned transporter (-)

7 62 2 71

Ni User (-) Ni Transporter (+) - 10 - 10
Co-utilizing organisms 45 410 49 504
B12 biosynthesis pathway (+) Co Transporter (+) 15 180 - 195

Co Transporter (-)
& Unassigned transporter (+)

10 16 - 26

Co Transporter (-)
& Unassigned transporter (-)

9 13 - 22

B12 biosynthesis pathway (-) Co Transporter (+) - - - -
Other (using external B12) 11 201 49 261

Organisms that use both Ni and Co 38 287 9 335

Organisms that use neither Ni nor Co 1 98 69 168

*: Ni transporter: Ni-specific transporter;
Co transporter: Co-specific transporter;
Unassigned transporter: close homologs of Ni/Co transporter families with unassigned function.
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Occurrence of nickel and cobalt utilization traits in bacteriaFigure 1
Occurrence of nickel and cobalt utilization traits in bacteria. The tree is based on a highly resolved phylogenetic tree 
of life (see Methods). We simplified the complete tree and only show bacterial branches. Phyla in which none of the organisms 
use Ni or Co are shown in blue (if containing at least 3 organisms, shown in bold). Phyla in which all organisms use both Ni and 
Co are shown in red (if containing at least 3 organisms, shown in bold).

Bacterial Phyla         Organisms   Ni     Co    Both     None

    Total        540  319    410     287   98

Firmicutes/Lactobacillales 
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fied by homology searches and the function of each pro-
tein was predicted based on genome context (see
Methods). Orthologs of these transporters showed a
mosaic distribution in bacteria. A summary of the distri-
bution of these Ni/Co transporters in bacteria is shown in
Table 2. Considering that many transporters do not have
clear substrate preference (either Ni or Co or both), our
analyses focused on predicted Ni- or Co-specific trans-
porters. Although some transporters with unassigned
function were clustered with multiple predicted Ni- or Co-
specific transporters in phylogenetic trees, we considered
them as being of unclear function.

Cbi/NikMNQO transporter is the most widespread trans-
port system for Ni and Co uptake in bacteria, which is
consistent with previous observations [47]. These modu-
lar transporters belong to a novel class of ATP-dependent
transporters (named energy-coupling factor or ECF trans-
porters) that use membrane proteins to capture substrate
[48]. Comparison of subunits of Cbi/NikMNQO systems
in different organisms revealed that M, Q and O are uni-
versal components and are present in almost all predicted
transport systems. No significant similarity was detected
between NikN and CbiN, although they have similar
topology (two transmembrane domains, [47]). It is
known that two additional components, NikK and NikL,
are involved in Ni uptake in the absence of NikN, which

form the NikKMLQO system [see Additional file 4]. Phyl-
ogenetic analyses of all these components are shown [see
Additional files 5, 6, 7, 8, 9, 10, 11]. In general, except for
CbiO/NikO, all components showed separate Ni- and/or
Co-related branches although the function of some mem-
bers of these components was unclear. Almost all CbiN
proteins contained the same domain (COG1930, CbiN)
and had similar sequences (e-value < 0.1 based on
BL2SEQ pairwise alignment). In contrast, more sequence
diversity was observed for NikN, NikK and NikL proteins.
Sometimes, multiple distant homologs were present in
the same organism (e.g., Desulfotalea psychrophila and Des-
ulfovibrio vulgaris contained two distantly related
sequences of both NikK and NikL). Here, we divided
NikN, NikK and NikL into different groups based on
sequence similarity and phylogenetic analyses. Three
types of NikN (named N1–N3), two of NikL (L1, L2) and
three of NikK (K1–K3) were identified in bacteria. Distri-
bution of different types of these components is shown
[see Additional file 12]. Approximately 90% NikL1 co-
occurred with NikK1 (the other 10% co-occurred with
NikK2 or NikK3), whereas NikL2 only co-occurred with
NikK2 or NikK3. Interestingly, in five proteobacteria
(most are alpha- and gammaproteobacteria), such as Rhodop-
seudomonas palustris and Shewanella sediminis, operons for
NikK1ML1QO orthologs were found to be adjacent to B12
biosynthesis genes or were preceded by B12-dependent

Occurrence of nickel and cobalt utilization traits in archaeaFigure 2
Occurrence of nickel and cobalt utilization traits in archaea. Phyla in which none of the organisms use Ni or Co are 
shown in blue (if containing at least 3 organisms, shown in bold). Phyla in which all organisms use both Ni and Co are shown in 
red (if containing at least 3 organisms, shown in bold).

Archaeal Phyla       Organisms    Ni      Co      Both  None

Total        47   39      45    38    1
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riboswitch elements [49], implying that they are involved
in Co uptake in these organisms. Phylogenies of all com-
ponents showed a relatively small branch for these evolu-
tionarily distant organisms [see Additional file 5 and
Additional files 8, 9, 10, 11] although each component
belonged to a large Ni-related group. These observations
suggest that the Co uptake function recently evolved for
NikK1ML1QO system in these organisms. However, it is
not clear whether they are still involved in Ni uptake.
Orphan NikK and/or NikL orthologs were also observed
in several organisms which lack NikMQO but contain Ni-
dependent proteins, or even lack Ni utilization (see Addi-
tional files 1, 10 and 11]. We checked their gene neighbor-
hoods and could not find proteins directly implicating
their function. Thus, they may be involved in Ni-inde-
pendent pathways. In several organisms where no NikQ

could be detected, a hypothetical transporter component
(5 transmembrane domains, similar topology as NikQ
but no sequence similarity) was always found encoded
next to nikO. Orthologs of this hypothetical transmem-
brane protein were only detected in six sequenced organ-
isms and most of them were predicted to be involved in
Ni uptake [see Additional file 13], suggesting that novel
Ni-related transporter component evolved in organisms
lacking NikQ. In addition, different NikMs in NikMNQO
or NikKMLQO system clustered in separate branches [see
Additional file 5], indicating that the evolutionary process
of NikM correlates with the usage of N or K+L compo-
nents. However, no correlation was observed for NikM
based on different subtypes of NikN, NikK and NikL com-
ponents. Similarly, phylogeny of the core transporter
components Q and O did not show significant similarity

Occurrence of nickel and cobalt utilization traits in eukaryotesFigure 3
Occurrence of nickel and cobalt utilization traits in eukaryotes. Phyla in which none of the organisms use Ni or Co 
are shown in blue (if containing at least 3 organisms, shown in bold). Phyla in which all organisms use both Ni and Co are 
shown in red (if containing at least 3 organisms, shown in bold).
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Table 2: Distribution of Ni/Co transporters in bacteria

Phylum Total organisms CbiMNQO
/NikMNQO
/NikKMLQO

NikABCDE NiCoT UreH HupE/UreJ Other predicted 
Co transporters**

N* C U N C U N C U N C U N C U

Firmicutes/
Lactobacillales

25 1 2 2 2 - - - - 3 - - - - - - -

Firmicutes/Mollicutes 17 - - - - - - - - - - - - - - - -
Firmicutes/Bacillales 25 - 6 - 6 - - 1 - 2 2 - 2 - - - -
Firmicutes/Clostridia 38 8 20 15 3 2 - - - - - - - - - - -
Chlamydiae 7 - - - - - - - - - - - - - - - -
Bacteroidetes 30 - 1 - - - - - - - 1 - 1 - - - 6
Chlorobi 9 7 2 - - - - - - - - - - - - - -
Actinobacteria 40 - 2 13 - - - 2 1 11 - - 1 - - - 17
Spirochaetes 8 - - 1 - - - - - - - - - - - - 1
Planctomycetes 3 - - - - - - - - - - - - - - - -
Cyanobacteria 16 7 5 5 - - - - 1 - 1 - - - 10 1 -
Chloroflexi 7 - 3 3 - - - - - - - - - - - - -
Deinococcus-Thermus 3 - - - - - - - 2 - - - - 1 - - -
Thermotogae 6 - 1 - - - - - - - - - - - - - -
Aquificae 2 - - - - - - 1 - - - - - 1 - - -
Fusobacteria 1 - - - 1 - - - - - - - - - - - 1
Lentisphaerae 2 - - - - - - - - - - - - - - - 1
Verrucomicrobia 1 - - - - - - - - - - - - - - - -
Candidate division 
TM7

3 - - 1 - - - - - - - - - - - - -

Acidobacteria 2 1 - - - - - - - - - - 2 - - - -
Deltaproteobacteria 23 12 7 5 - - - - - - - - 3 - - - 6
Epsilonproteobacteria 17 4 - 3 3 - - 2 - - 2 - - - - - -
Alphaproteobacteria/
Rickettsiales

20 - - - - - - - - - - - - - - - -

Alphaproteobacteria/
Others

63 7 3 5 5 - - 3 2 2 1 - 1 11 5 11 30

Alphaproteobacteria/
Rhizobiaceae

5 - - - - - - - - - - - - - - 4 4

Betaproteobacteria/
Bordetella

3 - - - - - - - - - - - - 3 - - -

Betaproteobacteria/
Burkholderiaceae

20 - - - - - - 3 9 10 - - - 5 - - 5

Betaproteobacteria/
Neisseriaceae

3 - - - - - - - 1 - - - - 1 - - -

Betaproteobacteria/
Others

19 1 1 1 - - - 1 - - - - 1 10 - - 6

Gammaproteobacteria
/Enterobacteriales

25 - 9 - 17 - - 16 - - - - - - - - -

Gammaproteobacteria
/Pasteurellaceae

8 3 - - 1 - - - - - - - - - - - -

Gammaproteobacteria
/Vibrionaceae

12 - - - 1 - - - - - - - - 5 - - -

Gammaproteobacteria
/Pseudomonadaceae

8 - - - 1 - - - - - - - - 8 - - 6

Gammaproteobacteria
/Xanthomonadaceae

5 - - - - - - - - - - - - - - - -

Gammaproteobacteria
/Others

62 1 3 1 4 - - 1 - - 1 1 1 20 - 7 4

Proteobacteria/Others 2 - 1 - - - - - - - 1 - - - - - -

Total 540 52 66 55 44 2 0 30 16 28 9 1 12 65 15 23 87

*: N, number of organisms containing Ni-specific transporter; C, number of organisms containing Co-specific transporter; U, number of organisms 
containing transporters with unassigned function;
**: Other predicted Co transporters include CbtAB, CbtC, CbtD, CbtE, CbtF, CbtG and CbtX.
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to that of M, N, K or L component. It should be noted that
no organism that contained both NikMNQO and NikKM-
LQO was detected, indicating a complementary or mutu-
ally exclusive relationship between these two systems.

Two other transporter families, HupE/UreJ and NiCoT,
were also found to be frequently used in bacteria (Table
2). The HupE/UreJ transporter family is widely utilized in
the Cyanobacteria and various proteobacterial subdivi-
sions except for the Deltaproteobacteria and Epsilonproteo-
bacteria. Phylogenetic analysis of all collected members of
this transporter family showed two separate branches of
predicted Ni- and Co-specific subgroups although there
were still several members with unassigned function in
each branch [see Additional file 14]. The NiCoT family
was detected in diverse taxonomic groups of bacteria.
Compared to HupE/UreJ, NiCoT showed much more
complex functional diversity and predicted Ni- and Co-
specific transporters were scattered in various branches of
the phylogenetic tree [see Additional file 15].

ABC transporter systems are typically major and the most
active transporters of organic compounds and metals,
such as zinc, manganese, amino acids and peptides. In our
study, only a fraction of organisms were predicted to pos-
sess the NikABCDE system, including distant Ni ABC-type
transporters identified in Yersinia species, YntABCDE
[29]. Besides genomic context, we attempted to utilize res-
idues which may be involved in Ni-binding (see Methods
for details) to distinguish NikABCDE from homologous
peptide import systems. Multiple alignment of NikA
sequences and other homologs showed that most of the
residues proposed to be involved in Ni-NikA interaction
are conserved in predicted NikA proteins but absent in
other homologs [see Additional file 16]. Except for mem-
bers of the NikABCDE family in Clostridium tetani and
Desulfitobacterium hafniense, which were previously pre-
dicted to be preceded by a B12-dependent riboswitch ele-
ment [47], all NikA orthologs appeared to be Ni-specific
[see Additional file 17]. Although YntA (the periplasmic
Ni-binding component in the YntABCDE system) is evo-
lutionarily distant from NikA, and it is still unclear how
YntA binds Ni, gene neighborhoods could be used to
identify this distant Ni ABC-type transporter family.

In addition, only 20 organisms possessed orthologs of the
UreH transporter. This family was previously predicted to
be Ni-specific because these genes were always located
adjacent to the genes for Ni-dependent enzymes, such as
urease, Ni-Fe hydrogenase and SodN [26,47]. There have
been no reports that showed that UreH may also be
involved in Co uptake. Here, we found that a member of
the UreH family is adjacent to several B12 biosynthesis
genes (such as CbiD and CobB), in a gammaproteobacte-
rium, Moritella sp. PE36, suggesting that UreH is involved
in Co uptake in this organism [see Additional file 18].

Besides the above well-characterized Ni/Co transporter
families, several recently predicted Co transporters,
including CbtAB, CbtC-CbtG and CbtX [31,40], were
detected in 87 species, mostly in the Proteobacteria and
Actinobacteria (Table 2). Essentially all of these organisms
possessed the B12 biosynthetic pathway and many lacked
known Co transporters.

In E. coli, the nickel repressor gene nikR is positioned
immediately next to its target, the nikABCDE operon.
NikR-dependent regulation was also predicted for other
Ni transporters, such as NikMNQO and Ni-specific
NiCoT, and Ni-dependent enzymes such as Ni-Fe hydro-
genase [47]. In this study, NikR was found in less than half
of the organisms containing NikABCDE, suggesting the
presence of NikR-independent regulation of the NikAB-
CDE system [see Additional files 1 and 19]). Here, the
occurrence of NikR was used to supplement the searches
for Ni-related transporters.

Only three Ni/Co transporter families were detected in
archaea: Nik/CbiMNQO, NikABCDE, and NiCoT (Table
3). As in bacteria, Nik/CbiMNQO was the most wide-
spread transporter system. Compared to variations in the
bacterial NikMNQO and NikKMLQO systems, only
NikMN1QO and NikMN2QO were detected in archaea.
In contrast, the distribution of the other two transporters
was not very pronounced and most NiCoT transporters
did not show clear function. In the case of other predicted
Co transporters, only CbtX was detected, in 7 archaeal
species.

Occurrence of Ni-dependent enzymes, B12 biosynthetic 
pathway and B12-dependent enzymes in prokaryotes
Among bacterial Ni-dependent enzymes, urease (catalyzes
the hydrolysis of urea to carbon dioxide and ammonia)
and Ni-Fe hydrogenase (catalyzes hydrogen evolution and
uptake; it includes Ni-Fe hydrogenase I (COG0374, HyaB),
Ni-Fe hydrogenase III (COG3261, HycE) and F420-reduc-
ing hydrogenase (COG3259, FrhA)) were the two most
widespread families (Table 4). In the analyzed dataset, 185
organisms (58.0% of Ni-utilizing bacteria) possessed ure-
ase and 168 (52.7%) Ni-Fe hydrogenase. Occurrence of
other Ni-dependent proteins was limited and mosaic
(Table 4). For example, CODH/ACS, a key enzyme in the
Wood-Ljungdahl pathway of anaerobic CO(2) fixation
[50], was identified only in 11 organisms belonging to the
Firmicutes/Clostridia, Chloroflexi and Deltaproteobacteria,
whereas SodN was detected in 21 organisms in the Actino-
bacteria, Bacteroidetes, Cyanobacteria and some Gammapro-
teobacteria. As mentioned above (Table 1), 10 organisms
containing Ni-specific transporters (mostly NikABCDE)
lacked known Ni-dependent proteins. We examined the
genes adjacent to the predicted transporter genes in these
organisms, but did not find good candidates for Ni-
dependent proteins. It is possible that these organisms pos-
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sess additional Ni users which are not strictly Ni-dependent
such as GlxI. We found that all these organisms containing
orphan Ni transporters also contain GlxI proteins, although
it is unclear which of these proteins bind Ni. Although
incorrect functional assignment of some transporters (e.g.,
a predicted Ni-specific transporter may be involved in Co or
peptide import) cannot be excluded, misassignment of
function should be not significant.

In archaea, the occurrence of these enzymes was different
(Table 5). Ni-Fe hydrogenase was the most widespread
protein, whereas urease was the least utilized one. SodN
was not detected in archaea. In addition, the archaea-spe-
cific Ni-binding enzyme, MCR, a protein that contains a
noncovalently bound Ni tetrapyrrolic cofactor (coenzyme
F430) and catalyzes the final step in the biological synthe-
sis of methane in methanogenic archaea [51], was found
in all sequenced methanogens. It has been reported that
MCR homologs (bind a modified F430) in some not yet
cultured methanotrophic archaea (ANME) are involved in
the anaerobic oxidation of methane in marine sediments
[52].

We also analyzed the B12 biosynthetic pathway in prokary-
otes. By identifying key genes involved in B12 biosynthesis
(see Methods), half of B12-utilizing bacteria were pre-
dicted to synthesize B12 and all of them contained at least
one known B12-dependent enzyme [see Additional file

20]. The other half of B12-utilizing bacteria lacked the
complete B12 biosynthetic pathway and, therefore, must
be using external B12 via specific uptake systems, such as
BtuFCD whose homologs were detected in over 90% of
these organisms (see above). It was previously reported
that about one-fourth of B12-utilizing bacteria lack the
ability to synthesize B12 [31]. Our analysis shows that as
the number of sequenced prokaryotic genomes increases,
many additional organisms lacking B12 biosynthesis will
be identified.

In order to study further the Co/B12 utilization in prokary-
otes, we examined the occurrence of all known B12-
dependent enzymes as means of assessing Co utilization
in organisms [see Additional file 20]. Except for MGM,
which was previously found in an unsequenced bacterium
Eubacterium barkeri [53], all known B12-dependent pro-
teins were detected, the most common being MetH (372
organisms), B12-dependent RNR II (227 organisms) and
MCM (including ICM and MeaA, 212 organisms). Other
proteins, including GM, 5,6-LAM, DDH, MtrA and CprA,
were found only in 2 through 26 organisms.

Surprisingly, some B12-utilizing organisms had an
extremely large number of B12-dependent proteins, e.g., 7
MCM members in Nocardioides sp. JS614, 7 CprAs and 15
different B12-dependent methyltransferases in D. hafniense
DCB-2, 19 CprAs in Dehalococcoides ethenogenes and 32

Table 3: Distribution of Ni/Co transporters in archaea

Phylum Total organisms CbiMNQO/NikMNQO NikABCDE NiCoT Other predicted Co 
transporters (CbtX)

N C U N C U N C U

Nanoarchaeota 1 - - - - - - - - - -
Crenarchaeota/
Thermoproteales

6 3 - 1 - - - - - - -

Crenarchaeota/
Desulfurococcales

4 1 - 1 - - - - - - -

Crenarchaeota/Sulfolobales 4 - - - - - - 1 - 3 -
Euryarchaeota/
Thermoplasmales

4 - - - - - - - - 1 -

Euryarchaeota/
Archaeoglobales

1 1 1 - - - - - - - -

Euryarchaeota/Halobacteriales 5 2 1 2 - - - - - - 1
Euryarchaeota/
Methanosarcinales

5 5 5 1 3 - - - - - 5

Euryarchaeota/
Thermococcales

4 1 - 1 - - - - - - -

Euryarchaeota/
Methanococcales

5 1 3 5 - - - - - - -

Euryarchaeota/Methanopyrales 1 1 - - - - - - - - -
Euryarchaeota/
Methanobacteriales

3 1 - 3 - - - - - - -

Euryarchaeota/
Methanomicrobiales

4 4 4 - - - - - - 1 1

Total 47 20 14 14 3 0 0 1 0 5 7
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Table 4: Distribution of Ni-dependent enzymes in bacteria

Phylum Total organisms Ni-utilizing 
organisms

Organisms containing different Ni-dependent proteins

Urease Ni-Fe hydrogenase Ni-CODH CODH/ACS SodN

Firmicutes/Lactobacillales 25 3 1 - - - -
Firmicutes/Mollicutes 17 2 2 - - - -
Firmicutes/Bacillales 25 12 9 - - - -
Firmicutes/Clostridia 38 28 4 14 21 6 -
Chlamydiae 7 - - - - - -
Bacteroidetes 30 6 2 3 - - 2
Chlorobi 9 8 - 8 1 - -
Actinobacteria 40 27 19 12 - - 10
Spirochaetes 8 - - - - - -
Planctomycetes 3 1 - 1 - - -
Cyanobacteria 16 13 11 10 - - 4
Chloroflexi 7 7 1 6 - 2 -
Deinococcus-Thermus 3 1 1 - - - -
Thermotogae 6 - - - - - -
Aquificae 2 2 - 2 - - -
Fusobacteria 1 1 - - - - -
Lentisphaerae 2 - - - - - -
Verrucomicrobia 1 1 1 - - - -
Candidate division TM7 3 - - - - - -
Acidobacteria 2 2 - 2 - - -
Deltaproteobacteria 23 20 2 17 11 3 1
Epsilonproteobacteria 17 17 4 17 2 - -
Alphaproteobacteria/
Rickettsiales

20 - - - - - -

Alphaproteobacteria/
Others

63 41 37 16 2 - -

Alphaproteobacteria/
Rhizobiaceae

5 5 5 - - - -

Betaproteobacteria/
Bordetella

3 3 3 - - - -

Betaproteobacteria/
Burkholderiaceae

20 19 19 4 - - -

Betaproteobacteria/
Neisseriaceae

3 1 - - - - -

Betaproteobacteria/
Others

19 14 12 7 - - -

Gammaproteobacteria/
Enterobacteriales

25 23 14 18 - - -

Gammaproteobacteria/
Pasteurellaceae

8 4 2 3 - - -

Gammaproteobacteria/
Vibrionaceae

12 6 4 3 - - -

Gammaproteobacteria/
Pseudomonadaceae

8 8 8 1 1 - -

Gammaproteobacteria/
Xanthomonadaceae

5 - - - - - -

Gammaproteobacteria/
Others

62 42 23 22 - - 4

Proteobacteria/Others 2 2 1 2 - - -

Total 540 319 185 168 38 11 21

*: Ni-CODH, Carbon monoxide dehydrogenase; CODH/ACS, Acetyl-coenzyme A decarbonylase/synthase; SodN, superoxide dismutase SodN.
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CprAs in Dehalococcoides sp. CBDB1 [see Additional file 1].
Our results are consistent with previous findings which
implicated these homologous enzymes in various B12-
dependent metabolic processes [54].

We also identified 31 bacteria containing Co-binding
NHases [see Additional file 20] based on the presence of
Co-binding motif (CTLCSCY, [23]). All of them are B12-
utilizing organisms and most only have single copies of
NHase [see Additional file 1]. Besides, iron-containing
NHases (containing CSLCSCT sequence motif, [23]) were
predicted in four organisms that belong to the Actinobac-
teria, Betaproteobacteria/Burkholderiaceae and Gammapro-
teobacteria/Others. Phylogenetic analysis showed that these
iron-containing NHases form a separate subbranch, sug-
gesting that they might be newly evolved from Co-bind-
ing NHases [see Additional file 21].

In archaea, three-fourths of the sequenced B12-utilizing
organisms (including all methanogens) synthesize B12
(Table 6). However, more than half of bacterial B12-
dependent protein families were absent in archaea,
including MetH, 5,6-LAM, DDH, EAL and CprA. B12-
dependent RNR II was the most widespread B12-binding

enzyme being present in 33 archaeal species. In addition,
a variety of B12-dependent methyltransferases were found
in archaea, most of which were present in methanogens.
The Methanosarcina species possessed an exceptionally
large number of B12-dependent methyltransferases,
including MtaABC, MtmABC, MtbABC, MttABC, MtsABC
and MtrAB (e.g., totally 15 methyltransferases in M. ace-
tivorans and 12 in M. mazei). The presence of multiple B12-
dependent methyltransferases involved in different path-
ways is clearly important for these organisms. No Co-
binding NHase could be detected in archaea.

Prediction of a novel B12-dependent protein family in 
prokaryotes
Through our analysis, a novel B12-dependent protein fam-
ily was predicted in prokaryotes. Orthologs of this protein
were detected in 11 sequenced bacteria belonging to four
evolutionarily distant phyla (Firmicutes/Clostridia, Firmi-
cutes/Lactobacillales, Chloroflexi and Thermotogae). A distant
homolog of the B12-binding domain (COG5012, found
in MetH and other methyltransferases) was detected in its
N terminus (Fig. 4). Structure prediction using HHpred
[55] suggested that the N-terminus may contain a TIM-
barrel-like structure involved in B12 binding (data not

Table 5: Distribution of Ni-dependent enzymes in archaea

Phylum Total organisms Ni-utilizing 
organisms

Ni-utilizing organisms containing different Ni-dependent proteins

Urease Ni-Fe hydrogenase Ni-CODH CODH/ACS MCR*

Nanoarchaeota 1 - - - - - -
Crenarchaeota/
Thermoproteales

6 4 - 4 - - -

Crenarchaeota/
Desulfurococcales

4 3 - 3 - - -

Crenarchaeota/
Sulfolobales

4 3 2 2 - - -

Euryarchaeota/
Thermoplasmales

4 3 - 3 - - -

Euryarchaeota/
Archaeoglobales

1 1 - 1 1 1 -

Euryarchaeota/
Halobacteriales

5 3 3 - - - -

Euryarchaeota/
Methanosarcinales

5 5 - 3 4 5 5

Euryarchaeota/
Thermococcales

4 4 - 4 - - -

Euryarchaeota/
Methanococcales

5 5 - 5 1 5 5

Euryarchaeota/
Methanopyrales

1 1 - 1 1 1 1

Euryarchaeota/
Methanobacteriales

3 3 - 3 - 1 3

Euryarchaeota/
Methanomicrobiales

4 4 - 4 2 2 4

Total 47 39 5 33 9 15 18

*: MCR, Methyl-coenzyme M reductase.
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shown). Analysis of genome context of this putative B12-
dependent protein showed that it is always adjacent to
NAD/NADP octopine/nopaline dehydrogenase
(pfam02317), which acts on the CH-NH substrate bond
using NAD(+) or NADP(+) as an acceptor. Additional
enzyme candidates included D-alanine:D-alanine ligase
and asparagine synthase (glutamine-hydrolyzing), which
were located in the vicinity of the gene for the novel B12-
dependent protein in several organisms. Further experi-
ments are needed to confirm their dependence on B12.

Occurrence of Ni transporters, urease and B12-dependent 
proteins in eukaryotes
Distribution of Ni transporters, urease and B12-dependent
enzymes in eukaryotes is shown in Table 7. Except for two
marine animals, Aplysia californica (sea slug) and Strongylo-
centrotus purpuratus (sea urchin), which contain an orphan
urease, all Ni-utilizing eukaryotes contained at least one
known Ni transporter and urease. However, analysis of the

distribution of Ni transporters in different eukaryotic phyla
showed high diversity of these proteins. NiCoT was only
present in fungi (except for yeasts), whereas UreH was
detected in plants (Viridiplantae/Chlorophyta and Viridiplan-
tae/Streptophyta) and stramenopiles, and TgMTP1 was only
present in land plants (Viridiplantae/Streptophyta). All B12-
utilizing eukaryotes contained MetH. Except for the Alveo-
lata/Perkinsea and Viridiplantae/Chlorophyta, all organisms
also possessed MCM. RNR II was only found in Dictyostel-
ium discoideum (Dictyosteliida) and three phytophthora spe-
cies (Stramenopiles) and lost in fungi and animals.

Evolutionary model of Ni and Co utilization
Based on the results shown above, it is possible to infer a
general model of Ni and Co utilization in the three
domains of life. Considering that the common property
of various Ni- or Co-dependent proteins is to catalyze
important reactions in the global carbon, hydrogen and
nitrogen cycles, it is not surprising that both trace ele-

Table 6: Occurrence of B12 biosynthetic pathways and B12-dependent enzymes in archaea

Phylum Total 
organisms

B12-utilizing 
organisms

B12 biosynthe-
sis pathway

B12-dependent isomerase B12-dependent methyltrans-
ferase

MCM/MeaA/
ICM*

GM RNR II Other MTs MtrA

Nanoarchaeota 1 - - - - - - -
Crenarchaeota/
Thermoproteales

6 6 2 - - 5 1 -

Crenarchaeota/
Desulfurococcale
s

4 3 - 1 - 2 1 -

Crenarchaeota/
Sulfolobales

4 4 4 4 - 4 - -

Euryarchaeota/
Thermoplasmale
s

4 4 4 4 - 4 - -

Euryarchaeota/
Archaeoglobales

1 1 1 1 - 1 1 -

Euryarchaeota/
Halobacteriales

5 5 5 5 2 5 - -

Euryarchaeota/
Methanosarcinale
s

5 5 5 - - 4 4 5

Euryarchaeota/
Thermococcales

4 4 - 4 - 4 - -

Euryarchaeota/
Methanococcales

5 5 5 - - - 3 5

Euryarchaeota/
Methanopyrales

1 1 1 - - - - 1

Euryarchaeota/
Methanobacterial
es

3 3 3 - - 1 3 3

Euryarchaeota/
Methanomicrobia
les

4 4 4 - - 3 2 4

Total 47 45 34 19 2 33 15 18

*: MCM, methylmalonyl-CoA mutase; ICM, isobutyryl-CoA mutase; MeaA, a B12-dependent mutase with sequence similarity to MCM and ICM. 
There three subfamilies are quite similar and combined as one group in this study. GM, glutamate mutase; RNR II, B12-dependent ribonucleotide 
reductase; Other MTs, various B12-dependent methyltransferases such as Mta, Mtm, Mtb, Mtt, Mts, Mtv and Mtr systems.
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Multiple alignment of a newly predicted B12-dependent protein familyFigure 4
Multiple alignment of a newly predicted B12-dependent protein family. All detected sequences were used to gener-
ate the alignment. Residues shown in white on black or grey are conserved in homologs. Location of the distant homolog of 
B12-binding domain (COG5012) is indicated.

Thermotoga lettingae       1 -----MMKILGASIGSCVHNVGLLNFLEIAKQNNYETIYIGSAIPVDE-----------LVREIKKHDPDMIAMSYRLAAEALHNLLRELEEKLKKEK-L

Petrotoga mobilis        1 -----MKKILGASMGSDVHTAGILNFLELARNEGYEVIYLGGAVPIEK-----------IIKKIDEETPDVVSISYRLGADAFENLIKEFIEKAKKLKNY

Thermosipho melanesiensis      1 -----MRKILGASIGSCVHIAGLLNFLKLGEREGYKTIYLGGAVSIDK-----------LIGAIIETDPDIVAISYRLDPKALKNLLDDLFEKVKRNK-L

Thermoanaerobacter pseudethanolicus  1 ----MKKLIVAAAIGNCVHVAGVYNFLRFAEQQGYETVFLGPAVPIKK-----------LIEAVKEHKPEIVGVSFRLTPSALEKLLEELKREIEVNN-L

Thermoanaerobacter sp. X514      1 ----MKKLVLAAAIGNCVHVAGVYNFLRFAEQQGYETVFLGPAVPIKK-----------LIEAVKEHKPGIVGVSYRLTPSALEKLFEELKKEIEVNN-L

Thermoanaerobacter tengcongensis   1 ----MRKLIVAGSIGNCVHVAGVYNFLRFAEQQGYETVFLGPAVPIDK-----------LIEAVKEYQPEIVGVSYRLTPQALENLLKELKDKIEKNN-L

Halothermothrix orenii       1 ----MERLIIGASIGNCVHVAGVLNFLRLAEEHGYNTKFLGPAVSIDY-----------LLDAVQESNPEMVAVGYRLTPETGYNLFKRLKESVIERG-L

Roseiflexus sp. RS-1       1 -MAEKQKTVVAAALGECVHVAGVMNFLRLAEEAGWRTVFLGPATPVER-----------VLEAARREQADLVGVSYRLTPETGAHLLGRFAEAADDLH-A

Roseiflexus castenholzii      1 -MTEKQKTVVAAALGECVHVAGVMNFLRLAEEAGWRTVFLGPATPIER-----------VLEAARQEQADLVGVSYRLTPETGAHLLGRFAEAADDLH-A

Symbiobacterium thermophilum      1 --------MIGGAIGDDVHVGGVVRFLQMAEQLGYEVRCLGPAVSVER-----------LLEEVAAYDPEIVAVGYRLTPESGRAVLAHLARAAREQG-Q

Alkaliphilus metalliredigens      1 MFALDTDIFAFVKPSLDAHTLGINSAAELLRDCGYEVIIGDEVIAKAMNDFKYEVNQKIVLDWIKCNKISRIGLSYRLDQDEAVNMVGHFMNELQSSNFL

Thermotoga lettingae      084 MDKI-----FVFGGTIETANEARKFS--------------------------FIKKCFDGSEEIDEIVLFLRGKAREKENLSFP-QTLGERIKFKSP---

Petrotoga mobilis       085 EKID-----FIFGGTIETSQVARKYN--------------------------FFKKIFDGSEEEEDVVLFLRGQIKYKEEENFP-STLAERIEFKSP---

Thermosipho melanesiensis    084 DKKI-----YVFGGTVETGAVARKIP--------------------------LFKKIFDGTQEIDEIVMWLRNENLRRENENVPPQFLPDRIAYKKP---

Thermoanaerobacter pseudethanolicus    085 QHIK-----WVFGGTEPTAEVARKSG--------------------------IFAAVFDGKNGDEATINFLRG-GSSNHRQRVFADTLIGRIEDKYP---

Thermoanaerobacter sp. X514    085 QHIK-----WVFGGTEPTAEVARRSG--------------------------IFAAVFDGKNGDEPTINFLRG-GSTNHRQRVFADTLIGRIEDKFP---

Thermoanaerobacter tengcongensis    085 KEIK-----WVFGGTEPNAEVARKSG--------------------------IFSAVFDGTKGDEETINFLRG-KTATSQKRVFADTLIGRIEDKFP---

Halothermothrix orenii      085 TGYK-----FVFGGTLPVAREARKVG--------------------------LFDAIFSGEEELEEIIAFLEG-REFKSEDINFGENLLERIEIKKP---

Roseiflexus sp. RS-1      088 AGVR-----FAFAGTPPLAEKAATLG--------------------------FFEQVFDGSEPADQVLAYLRGQNPATATEADFPQRTVDRIRWKSP---

Roseiflexus castenholzii    088 AGVR-----FAFAGTPPLAEKAATLG--------------------------FFEQVFDGSEPADQVLAYLRGQNPAHATEADFPQRTVDRIRWKAP---

Symbiobacterium thermophilum     081 AGRR-----WVLGATDPVAEHGRALG--------------------------FFEAVFGGSADWQDVVDYLRG-APTRKAGGIPPQTVVERILWKRP---

Alkaliphilus metalliredigens    101 SYQGGPIKAVFFGGLPKASEIIDKEQKGFVKTFKGGESVRQSLAKMDVPEERIPKDIMEGSLYDDLRMEFGKDVINAQAYDGFMPVDKSGYVDYGTKNDS

Thermotoga lettingae     149 -------------YPLIRHHIG--------LQSLDETANEIKKLAESELLDVISLAPDQNCQQFFFEPEKMDHSQDGAGGAPIRTKEDFVKLYEASRRGN

Petrotoga mobilis    150 -------------YPLIRHHIG--------LQTMEETIEEIKKLAESELLDIISLAPDQNCQQYFFDQEKMDPNQDGAGGDPIRNEKDFVTMYEASRRGN

Thermosipho melanesiensis    150 -------------YPLFRHHIG--------LATLEETEKHVKILAESGLLDIISLAPDQNCQQYFFEPEKMDEKQDGAGGVPIRSIGDFKRLYNATRRGN

Thermoanaerobacter pseudethanolicus   150 -------------YPIIRHHFG--------LPSLEDTIEGVKKIAEAEVLDVISIAPDQNAQEHFFD-KKYDKSLDGAGGVPIRKEEDLIRIYEASRRGN

Thermoanaerobacter sp. X514    150 -------------YPIIRHHFG--------LPSLEDTIEGVKKIAEAEILDVISLAPDQNAQEHFFD-KKYDKSLDGAGGVPIRKEEDLIRIYEASRRGN

Thermoanaerobacter tengcongensis   150 -------------YPIIRHHFG--------LPSLEDTIEGVKRIAEAEVLDVISIAPDQNAQEHFFD-KKYDPALDGAGGVPIRKEVDLIRIYEASRRGN

Halothermothrix orenii   150 -------------YPVIRHHFG--------LPSVEKTREGIKKISESKVLDVISLGPDQNAQESFFRPEEMDEDEKGAGGVPVRTEQDLISLYEATRRGN

Roseiflexus sp. RS-1     154 -------------YPLLRHHFG--------LPTMQATIAGIAKIAESRRLDVISLGTDQDAQENFFHPERQDPARTGAGGVPVRSADDYRALYAASRRGN

Roseiflexus castenholzii     154 -------------FPLIRHHFG--------LPTMQATIDGIARIAEARCLDVISLGTDQDAQENFFRPERQDPARTGAGGVPVRSADDYRALYAASRRGN

Symbiobacterium thermophilum    146 -------------FPLLRHHFG--------QPTVEATVEGIRRISEAGVLDVISLGTDQNAQEHFFRPEEMDPREHGAGGVPVRTPDDLRALYAASRTGN

Alkaliphilus metalliredigens    201 VMKRIDNNMKTASTPLMRAHVGPYSSSVDRLDSVKEFISWAKYLADTKYLDILSIGSSQLTQSNFGEDWEDKAN---GGGVPVNSPEEYRMIVEAAKP--

Thermotoga lettingae     228 YPLVRCYAGTTHMVEFSKLLKETINNAWAAIPIMWYSDLDRRSKRSLKEAIKENMDAIKWNGLNNVPVEVTDSHQWALRVCHDAVEVATAYLATFVAKKL

Petrotoga mobilis    229 YPLVRCYSGTNHMVEFSQVLKRTVNNAWAAIPIFWYSELDRRSERNLLDAIKENMEGIKWNARNNIPVEINDAHQWELRYAHDSLAVATTYLAAYVAKKL

Thermosipho melanesiensis    229 YPLVRSYSGTRELVAFSKILKETINNAWAAIPLTWYSELDRRSDRNLLEAIRENQEAIKWNAENNVPVEINEAHQWSLRYAHDAVEVATFYLAAYNAKKL

Thermoanaerobacter pseudethanolicus   228 YPLLRCYSGTNDVFKMAEMLLETIHNAWAAIPLCWYNVLDGRGPRDVNTSIRENQQLMKWHAEKGVPVEVNEAHHWSLRDAHDVIGVTMAYLAAYNAKKM

Thermoanaerobacter sp. X514    228 YPLLRCYSGTNDVFKMAEMLLRTIHNAWAAIPLSWYNVLDGRGPRNVNTSIRENQQLMKWHAKRGVPVEVNEAHHWSLRDAHDIIGVATAYLAAYNAKKM

Thermoanaerobacter tengcongensis   228 YPLLRCYSGTNDVFKMAEMLLRTIKNAWAAIPLSWYNVLDGRGPRDVRTSIRENQQLMKWHAERGVPVEVNEAHHWSLRDAHDVIGVVTAFLAAYNAKKM

Halothermothrix orenii     229 YPLMRCYSGTRDVFKMAEMLLRTIHNAWAAIPLSWYNRLDGRGPRGLLESIRENQQLMKWHGVRDIPVEVNESHHWSLRDAHDTVAVVMAFLAAYNAKQM

Roseiflexus sp. RS-1     233 YPLMRTYSGTDDFVRLAELYVETINIAWCAIPLFWFNRMDGRGPWDLEGSIREHQTIMRWYGERDIPVELNEPHHWGMRDAPDTVFVASAYLSAYNARAF

Roseiflexus castenholzii     233 YPLMRTYSGTDDFVRLAELYVETINIAWCAIPLFWFNRMDGRGPWDLEGSIREHQTIMRWYGERDIPVELNEPHHWGMRDAPDTVFVASAYLSAYNARAF

Symbiobacterium thermophilum    225 YPLMRCYSGTRDQLAWAEMLHETIHNAWAAVPLFWYSQLDGRSQRTLLESIPEVQAVFRWHAERGIPVESNESHHWSLRDAPDVVAVAAAYIAAYNAKQA

Alkaliphilus metalliredigens    296 -LLVRTYAGTKNIPQLAEMHEKNLNICWHALSLWWFNKVDERGPYDLYTNLNQHIETLKYIAKTGKPFEPNVPHHFAFRGADDVTYIVSAYLSAKLAKKM

Thermotoga lettingae     328 GVREYVQQFMLETPSGLSPRGDIAKMIAKKEIVESLQDENFKIYRMVRTGLMSMPADLNAAMGQLSSSMFYGWALEPH------IVHVVAYCESMRRASA

Petrotoga mobilis    329 GVRWYVQQYMMNTPPKLSPKMDIAKSLAKLELVETLKDETFTPYRMVRTGLLSFPADPNSAMGQLVSSMFYSSYLQPH------IIHVVAYCEAMKRATS

Thermosipho melanesiensis   329 GVKHYVAQYMLSTPPGLSPRYDLAKQLAKRRLIKELEDENFRAYTMIRTGLLSFPADEYSAMGQLVGTMFYGMYLEPD------IVHVVSYSEAIRRATS

Thermoanaerobacter pseudethanolicus  328 GVRDYVAQFMFNVPASISPKMDLAKMLAKIELIEELQDENFRVIRQARAGLASFPTDLLEAKGQLASSAYLSMAIRPH------IYHVVGYCEAHHAATP

Thermoanaerobacter sp. X514   328 GVRDYVAQFMFNVPASISPKMDLAKMLAKIELIEELQDENFRVIRQARAGLASFPTDLLEAKGQLASSAYLSMAIRPH------IYHVVGYCEAHHAATP

Thermoanaerobacter tengcongensis   328 GVRDYVAQFMFNVPASISPKMDLAKMLAKIELIEDLEDENFRVIRQARAGLASFPSDLLEAKGQLASSAYLSMAIKPH------IYHVVGYCEAHHAATP

Halothermothrix orenii   329 GVKNYIAQYMFNNPAGTTASMDLAKMLAKKELIESLVDDKFRVLTQVRAGLASFPPNLDRAKGQLAYSTYLGMALKPD------IVHVVGYSEADHAATS

Roseiflexus sp. RS-1     333 GVRDYIAQLMFNSPPGLSDAMDLAKMLAVIEITAPLAGPDFRIWKQTRTGLLSYPVDPAASRAHLSASIYLQMALRPH------IVHVVGHTEAHHAATA

Roseiflexus castenholzii     333 GVRDYIAQLMFNSPPGLSDAMDLAKMLAVIEITAPLAGPDFRIWKQTRTGLLSYPVDPAASRAHLSASIYLQMALRPH------IIHVVGHTEAHHAATA

Symbiobacterium thermophilum    325 GVTDYVQQLMWNNPPLTSPAMDLAKMLAKLELVESLAGPNFRVWRECRTGLTSMPAGFDRAKGHLAASTFLQMAVKPD------IVHIVGHSEYHHAATA

Alkaliphilus metalliredigens  395 GVKTLILQNMLNTPRFTWGIQDLAKSRAMLALVKGLEDQNFRVVLQPRAGLDYFKPDLNEAKMQLAAVAALMDDIDPHNETSPPMIHVVSYSEASHLATP

Thermotoga lettingae     422 KEIIESVKMARRAINLAMRG-----IVDPLGDEWVKKEKERIKEEAFMIIEAIKGLKD-DNEDSLLDVDVLYEAVNTGILDAPALKGFSVAKG---AVKT

Petrotoga mobilis    423 KEIIESVKMVKRANSLASRG-----LPDFASDPEIKARVNLLKEEAMVIIEKIKSLSP-QKEDPLTDPETLYLAVKKGILDAVGLQGNSVAKG---QIKS

Thermosipho melanesiensis    423 KEIIESVKMVKKAVNTTLDG-----LPIISDE----KRVEELIKEAMVIIEAIKELGK-GYKDPLIEPEVIYNAVRLGILDAPGLKGMSVAKG---RFET

Thermoanaerobacter pseudethanolicus   422 EDIIESVKIVKAVIKNSMFG-----MPDLTQDKEVIQRKEQLKKETRILLEAIKNLAP-HSPDPLADPDVLALAIKIGLLDAPHLKGNKYAKG---VLQT

Thermoanaerobacter sp. X514   422 EDIIESVKIVKAVIKNSMFG-----MPDLTQDKEVIQRKEQLKKETRILLEAIKNLAP-HSPDPLADPDVLALAIKIGLLDAPHLKGNKYAKG---VLQT

Thermoanaerobacter tengcongensis   422 EDIIESVKIVKAVIKNTMFG-----MPDLTKDEDVIKRKEQLKKEARILLEAIKEIAP-HSEDPWSDPDVLATAIEIGLLDAPHLKGNKYAKG---ALQT

Halothermothrix orenii   423 SDVIESCQIARQVINNSIYG-----YPGIGYDPDIKKRKDELLKEAEILLNAIKNVANNDVEDPWSDPETLARSIKIGLIDAPHLKGNPEAAG---KLTT

Roseiflexus sp. RS-1     427 DDVIEACDMARRAIENALRG-----QPDMTADPAVRARAAQLVEETHLLLDAIAQLAPPGVTDPLSDPATLTKAVAVGLLDAPQLRNNPFAPG---RVVT

Roseiflexus castenholzii     427 DDVIEACGIARRAIENALRG-----QPDMTADPSVRARAAQLVEETHLLLNAMAQLAPPGVTDPLTDPATLTKAVEIGLLDAPQLRNNPFAPG---RVAT

Symbiobacterium thermophilum    419 EDVIEGCHVVNGAIQLALQG-----LPDMTRDEAVQARKAELVQEAKLLLEAIAGLAPAGVEDPLTHAPTLAAAVRTGLLDAPHLVGNPAARG---EVAV

Alkaliphilus metalliredigens    495 DIINESIKITQYSLQKYRELRRQGKVEDMSKNIDIQGRVLELLDSAKTMISGIEKHIK-----NPYSPEGFYKIFAAGFLPAPYLWGEVEEFKHVRAWKT

Thermotoga lettingae     513 KIIDGLCRCVDEG-GNILSEKERLFTLLGGRSI--------------

Petrotoga mobilis    514 AVINGAYEAINEN-GEVLREAERNRGIK-------------------

Thermosipho melanesiensis    510 KVIDGACYAIDDN-GKILPEEKRINLLRREEML--------------

Thermoanaerobacter pseudethanolicus   513 KVIDGACYAYDYEKQRIIPEEERVEKILREYEKSAIEV---------

Thermoanaerobacter sp. X514   513 KVIDGACYAYDYEKQRIIPEEERVEKILREYEKSAIEV---------

Thermoanaerobacter tengcongensis   513 KVIDGACYAYDYEKHRIIPEEERVEKILREYKKEHFFV---------

Halothermothrix orenii     515 RMVNGACYAYDYNEDRIITEEERIQRLGG------------------

Roseiflexus sp. RS-1     519 RFINGMCVAVDDQ-GRPLDEKQRIRQILDHHTTLVTT----------

Roseiflexus castenholzii     519 RFINGMCLAVDAQ-GRPLDEKERIRLALDHATMSA------------

Symbiobacterium thermophilum    511 RFTDGACRAVDRRSGRVLTEAERIALLLAEEIV--------------

Alkaliphilus metalliredigens    590 KPIKGGVKIVDEANNPVKADKVVDYASKNVKEVEYIVKQKMLAEHKY

Distant homolog of COG5012 
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ments are essential for the majority of organisms. How-
ever, some organisms and even complete phyla/clades
may have evolved alternative mechanisms for such reac-
tions and are characterized by the loss of both transport
systems and metalloenzymes.

Out of the five known Ni/Co transport systems in prokaryo-
tes, only NiCoT family spans all three domains of life. If a
protein family has many representatives in all domains of
life and they cluster within their domains, it is thought that
the family was present in the last universal common ances-
tor, LUCA [56,57]. We speculate that NiCoT evolved in the
common ancestor of bacteria, archaea and eukaryotes. In
addition, in spite of low occurrence, the presence of UreH
transporter in several phyla of both bacteria and eukaryotes
indicates that this family either could have been present in
the last universal common ancestor but then lost in archaea,
or evolved in early bacteria and was then acquired by the
ancestor of eukaryotes through evolution of mitochondria.
Phylogenetic analysis of UreH proteins suggested that the
LUCA origin is more likely because the eukaryotic branch
attaches near the bacterial root [see Additional file 18]. The
B12 biosynthetic pathway may have evolved only in prokary-
otes or has been lost in eukaryotes. In most prokaryotic
phyla, organisms retained Ni and/or Co utilization traits. A
complete loss of both Ni and Co utilization was only
observed in two phyla, Chlamydiae and Alphaproteobacteria/
Rickettsiales. We noticed that their sister phyla (such as the
Rhizobiaceae and other Alphaproteobacteria for the Rickett-
siales) commonly utilize both traits, suggesting that the loss
of Ni and Co utilization happened independently in the two
divisions. Considering that essentially all sequenced organ-
isms in the two phyla were obligate intracellular parasites, it
is possible that both metals are not necessary for these organ-
isms. However, the possibility that they exploit Ni/Co-bind-
ing proteins of the host cannot be excluded.

Further analyses of the Ni- or Co-dependent metallopro-
teomes (i.e., sets of Ni- and Co(B12)-dependent enzymes)
in different phyla provided us with an opportunity to
explore the evolution of these metalloproteomes (Fig. 5, 6,
7). Normalized occurrence of these metalloproteins is
shown [see Additional files 22 and 23]. There is no correla-
tion between the number of Ni- or Co-dependent enzymes
and the genome/proteome size (data not shown). In most
bacteria, the size of the Ni-dependent metalloproteome
was 1–4 (Fig. 5). Most of these proteins were ureases or Ni-
Fe hydrogenases. However, half of sequenced Deltaproteo-
bacteria appeared to have a larger Ni-dependent metallo-
proteome (≥ 5), including deltaproteobacterium MLMS-1,
which possessed the largest Ni-dependent metallopro-
teome (16 Ni-binding proteins, half of which were Ni-Fe
hydrogenases). Similarly, compared to most Co-utilizing
species which had 1–4 Co-dependent metalloenzymes, the
majority of organisms in some phyla, such as the Chloroflexi

(including two Dehalococcoides species which have the larg-
est number of B12-binding proteins in prokaryotes), Spiro-
chaetales, Actinobacteria and Deltaproteobacteria, had larger
Co-dependent metalloproteomes (≥ 5, Fig. 6). Therefore,
the Deltaproteobacteria appear to be the only bacterial phy-
lum which favors the use of both metals. In archaea, large
Ni- or Co-dependent metalloproteomes were observed in
methanogens (Fig. 7). Three Methanosarcina species in the
Methanosarcinales phylum had the largest metallopro-
teomes for both Ni and Co.

A somewhat different trend was observed in eukaryotes.
Few organisms utilized both Ni and Co (in the form of
B12). Ni utilization was limited to plants and lower
eukaryotes, such as fungi and stramenopiles, but was
absent in vertebrates. Except for the bacterial-type NiCoT
and UreH Ni transporters, additional Ni uptake systems
have evolved from certain eukaryotic proteins (such as
TgMTP1 in land plants). It is possible that ancient eukary-
otic phyla inherited the Ni utilization trait and urease
from the universal ancestor of all eukaryotes, whereas cer-
tain organisms (especially vertebrates) appeared to have
lost both of them. Interestingly, urease orthologs were
detected in two marine animals (A. californica and S. pur-
puratus) although we could not find Ni transporters in
these organisms. It is unclear whether these orphan ure-
ases still use Ni as a cofactor. Another interesting case was
observed in fungi. All sequenced saccharomycotina lacked
both Ni transporter and Ni-dependent urease, suggesting
that this trait was lost in this fungal subgroup. Co utiliza-
tion was mainly observed in animals (except for insects)
and we could not detect any known B12-dependent pro-
teins in most unicellular eukaryotes.

Discussion
The importance of transition metals Ni and Co in the
physiology of prokaryotes and eukaryotes is well estab-
lished [1,2,10]. Both metals are essential components of
several enzymes. While much effort has previously been
placed on characterizing individual Ni/Co-binding pro-
teins and the corresponding biosynthetic pathways, com-
position of the Co and Ni metalloproteomes and the
evolutionary dynamics of utilization of these metals are
largely unknown. Recently, a comparative analysis of the
distribution of Ni and Co transport systems in approxi-
mately 200 microbial genomes was reported [47]. In the
present study, we extended this analysis for both Ni/Co
transporters and Ni/Co-dependent proteins to more than
700 bacteria, archaea and eukaryotes. Our data represent
the most comprehensive analysis of genes likely to be
involved in Ni and Co utilization in sequenced species.

The widespread occurrence of Ni and Co utilization traits
in prokaryotes supports the idea that both metals could be
used by essentially all prokaryotic phyla. Several organ-
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Table 7: Distribution of Ni transporters, urease and B12-dependent enzymes in eukaryotes

Phylum Num. of 
organisms

Ni utilization B12 utilization

Ni-utilizing 
organisms

NiCoT
(or Nic1p)

UreH TgMTP1* Urease B12-utilizing 
organisms

MetH MCM RNR II

Cryptophyta 1 - - - - - - - - -
Diplomonadida 1 - - - - - - - - -
Parabasalidea 1 - - - - - - - - -
Kinetoplastida 5 - - - - - 3 3 3 -
Stramenopiles 4 4 - 4 - 4 4 4 4 3
Alveolata/
Perkinsea

1 - - - - - 1 1 - -

Alveolata/
Apicomplexa

13 - - - - - - - - -

Alveolata/
Ciliophora

2 - - - - - - - - -

Rhodophyta 1 - - - - - - - - -
Viridiplantae/
Chlorophyta

3 3 - 3 - 3 3 3 - -

Viridiplantae/
Streptophyta

3 3 - 3 3 3 - - - -

Dictyosteliida 1 - - - - - 1 1 1 1
Entamoebidae 3 - - - - - - - - -
Fungi/
Ascomycota/
Pezizomycotina

29 28 28 - - 28 - - - -

Fungi/
Ascomycota/
Saccharomycotin
a

24 - - - - - - - - -

Fungi/
Ascomycota/
Schizosaccharom
ycetes

2 2 2 - - 2 - - - -

Fungi/
Basidiomycota

8 8 8 - - 8 - - - -

Fungi/
Microsporidia

1 - - - - - - - - -

Fungi/
Zygomycota

1 1 1 - - 1 - - - -

Metazoa/
Pseudocoelomata
/Nematoda

3 - - - - - 3 3 3 -

Metazoa/
Coelomata/
Others

2 2 - - - 2 2 2 2 -

Metazoa/
Coelomata/
Arthropoda 
(Insects)

19 - - - - - - - - -

Metazoa/
Coelomata/
Chordata/Others

10 - - - - - 10 10 10 -

Metazoa/
Coelomata/
Chordata/
Mammals

22 - - - - - 22 22 22 -

Total 160 51 39 10 3 51 49 49 45 4

*: TgMTP1, Ni-related subfamily of cation-efflux family; MetH: B12-dependent methionine synthase.
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isms were identified that encoded Ni-dependent proteins
or B12 biosynthetic enzymes, but did not possess known
Ni or Co transporters, suggesting the presence of novel,
dual-function or unspecific Ni/Co uptake systems. For
example, CorA proteins are generally associated with the
transport of magnesium ions but some members of the
CorA family can also transport other ions such as Co and
Ni [58]. Similarly, new Ni/Co-binding proteins might be
present in organisms containing known transporters but
not the corresponding metalloproteins.

In eukaryotes, only 9 species were identified that appeared
to use both metals and most of them were unicellular
organisms. Most Ni-utilizing organisms were fungi which
did not utilize B12, whereas most B12-utilizing organisms
were animals which lost the ability to use Ni. In addition,
green algae utilized both metals, whereas land plants only
possessed the Ni utilization trait. These data show that the
two utilization traits have different evolutionary histories
in eukaryotes, and that the acquisition or loss of each trait
occurred independently in various eukaryotic phyla.

Our comparative genomic analysis showed a mosaic dis-
tribution of known Ni/Co transporters in prokaryotes.
The ECF transporter Cbi/NikMNQO was the most fre-
quently used Ni/Co uptake system in both archaea and
bacteria. In contrast, the ABC transporter NikABCDE is
not a common transporter in prokaryotes even though it
is well characterized in E. coli. A recent study showed that
NikA could also bind heme in E. coli, indicating an addi-
tional transport function independent of Ni uptake [59].
Among known Ni/Co transporters, NiCoT and UreH were
the only families detected in both prokaryotes and eukary-
otes. Although comparative genomic approaches allow
prediction of the physiological substrate for various mem-
bers of these transporters, many have unassigned func-
tion. Previous prediction of a variety of new Co
transporter candidates in various microbes suggested a
complex evolutionary dynamics of Co transport in
prokaryotes. On the other hand, identification of different
subtypes of components of NikMNQO/NikKMLQO
made here also implied a complex evolutionary dynamics
of Ni uptake in prokaryotes.

Ni-dependent metalloproteomes in bacteriaFigure 5
Ni-dependent metalloproteomes in bacteria. For each phylum, all organisms containing Ni-dependent proteins are indi-
cated. Numbers following the name of each phylum represent the number of organisms containing a Ni-binding protein and 
that of total sequenced organisms, respectively. The largest Ni-dependent metalloproteome was observed in a deltaproteobac-
terium MLMS-1 (16 Ni-binding proteins).
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Analysis of Ni-dependent enzymes, B12 biosynthetic path-
ways and B12-dependent enzymes in prokaryotes pro-
vided a straightforward approach to analyze the
distribution and evolution of Ni and Co utilization in var-
ious organisms. It should be noted that we only analyzed
a set of strictly Ni- or Co-dependent proteins (for which
no Ni- or Co-independent forms have been reported),
which may not fully account for utilization of the two
transition metals in some organisms. Indeed, a protein
may potentially have different activities when binding dif-
ferent metals. For instance, it has been reported that in
certain organisms, an aci-reductone dioxygenase has dif-
ferent activities when binding iron or Ni [60]. In this
study, urease, the most widespread Ni-dependent enzyme
in bacteria, was only detected in certain aerobic archaea.
This observation was not unexpected because urease was
mainly found in aerobic organisms, whereas most
sequenced archaea were anaerobic. Among other Ni-
dependent enzymes, superoxide dismutase SodN was
essentially a bacteria-specific Ni-containing protein and
MCR was specific to methanogens. In the case of Co, we

detected all Co-utilizing organisms by searching for B12-
dependent enzymes and all B12-producing organisms by
analyzing genes involved in B12 biosynthesis. In bacteria,
MetH was not only the most frequently used B12-depend-
ent protein but also the only B12-binding protein in
approximately 90% of organisms containing single B12-
dependent proteins. Moreover, more than 80% of the lat-
ter organisms lacked the ability to synthesize B12. On the
other hand, RNR II was the most abundant B12-dependent
protein in archaea in which no MetH was observed. The
observations that only half of bacterial B12-dependent
enzymes were found in archaea and that a variety of B12-
dependent methyltransferase families evolved in metha-
nogens (especially in Methanosarcina species) implied
somewhat different evolutionary trends in bacteria and
archaea. It appears that B12-dependent methyltransferases
are particularly important for metabolism of methano-
genic archaea.

Previously we found that habitat, environment and other
factors (e.g., oxygen requirement, optimal temperature,

Co-dependent metalloproteomes in bacteriaFigure 6
Co-dependent metalloproteomes in bacteria. Numbers following the name of each phylum represent the number of 
organisms containing at least one B12-binding protein and that of total sequenced organisms, respectively. The largest Co-
dependent metalloproteome was observed in Dehalococcoides sp. CBDB1 (35 B12-dependent proteins, 32 of which were CprAs) 
and Dehalococcoides ethenogenes (22 B12-dependent proteins, 19 of which were CprAs).
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optimal pH and GC content) may influence the acquisi-
tion/loss of utilization traits of certain trace elements, e.g.,
selenium (Se) and molybdenum (Mo), in prokaryotes
[61,62]. To examine the possibility that Ni and Co utiliza-
tion may also be affected by some of these factors, we
adopted a strategy which was previously used to analyze
the evolution of Se and Mo [61,62]. First, similar to Mo
utilization [62], we found that the majority of bacteria
that utilized neither Ni nor Co were host-associated (i.e.,
parasites or symbionts, Fig. 8A), implying that host-asso-
ciated life style may result in the loss of metal utilization,
perhaps due to limited space and resources. Considering
differences in host-associated conditions (intra- or extra-
cellular) and the relationship between these organisms
and their hosts (symbiotic or parasitic), we further
divided them into four groups: obligate intracellular sym-

bionts (6 organisms, 2 phyla), extracellular symbionts (19
organisms, 10 phyla), obligate intracellular parasites (35
organisms, 6 phyla) and extracellular parasites (113
organisms, 20 phyla). Interestingly, we found that the
majority of intracellular parasites and intracellular symbi-
onts lost the ability to utilize Ni or Co, whereas more than
80% of extracellular symbionts utilized both metals (Fig.
8B). Most obligate intracellular parasites or symbionts
had much smaller genomes than extracellular organisms
[see Additional file 24]. Thus, it is possible that both metal
utilization traits are dispensable for intracellular organ-
isms and hence have been lost due to the pressure on
genome size, although these organisms may still depend
on host Ni- or Co-dependent proteins. In contrast, the two
utilization traits mostly remained intact in essentially all

Ni- and Co-dependent metalloproteomes in archaeaFigure 7
Ni- and Co-dependent metalloproteomes in archaea. All organisms containing Ni or Co users are shown. Methano-
genic phyla are shown in red. All methanogens possess larger Ni-dependent metalloproteomes than other archaeal phyla. Only 
Methanosarcina species (Methanosarcinales) have large Co-dependent metalloproteomes.
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extracellular symbionts, presumably because they are
essential to their survival.

We also observed that the genomes of Ni- and Co-utiliz-
ing organisms had a significantly higher GC content [see
Additional file 25]. Organisms with low GC content (i.e.,
GC < 40%) which lack Ni/Co utilization were found in
several phyla, most of which are intra-/extracellular para-
sites. Intracellular pathogens and symbionts tend to be AT
rich and the higher energy cost and limited availability of
G and C over A and T might be the basis for the under-
standing these differences [63,64]. We removed all host-
associated organisms and reanalyzed the correlation with
GC content, and found that the original trend disap-
peared (data not shown). Thus, the correlation between

Ni/Co utilization and GC content indirectly reflected the
loss of Ni/Co utilization in parasites.

Other factors, such as gram strain, optimal temperature
and pH, also appeared to have no significant effect on
evolution of either trait. In addition, no statistically signif-
icant correlation could be observed between different fac-
tors and the size of Ni- or Co-dependent
metalloproteomes. In archaea, insights into dynamics of
Ni and Co utilization were difficult because only a small
number of archaeal genomes were sequenced and nearly
all of these organisms use both metals. However, the
absence of both Ni and Co utilization traits in Nanoar-
chaeum equitans, an obligate symbiont [65] with a small
genome (0.49 Mbp) and low GC content (31.6%), pro-
vides further support for our observations in bacteria. In

Relationship between environmental factors and Ni/Co utilization traits in bacteriaFigure 8
Relationship between environmental factors and Ni/Co utilization traits in bacteria. All organisms were classified 
into four groups: Ni (+), i.e., containing Ni utilization trait; Ni (-), i.e., lacking Ni utilization trait; Co (+), i.e., containing Co uti-
lization trait; Co (-), i.e., lacking Co utilization trait. (A) Habitat; (B) Different host-associated life styles.
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brief, host-associated life style (especially obligate intrac-
ellular) and/or small genome with low GC content may
result in the loss of Ni and/or Co utilization. The require-
ment for both metals in prokaryotes and at the same time
scattered occurrence in different phyla illustrate a
dynamic nature of Ni/Co utilization.

A similar investigation of Ni and Co utilization in eukary-
otes provided a first glimpse on evolutionary dynamics of
Ni- and Co-dependent metabolic pathways in these
organisms. The fact that most parasites used neither Ni
nor Co was consistent with what we found in prokaryotes,
suggesting that both metals may become unnecessary for
parasites because of either reduced availability of the two
trace elements or dependence on the corresponding path-
ways of the host. Ni utilization was mainly limited to
fungi (except yeasts), land plants, green algae and stra-
menopiles, but it was not observed in vertebrates, nema-
todes, insects and yeasts which lacked both Ni
transporters and urease. It is known that S. cerevisiae can
use urea as sole nitrogen source by degrading it in two
steps (catalyzed by urea carboxylase and allophanate
hydrolase) to ammonia and carbon dioxide, which are
independent of urease and Ni [66]. A recent study
reported the identification of Ni in crystal structure of 3-
hydroxyanthranilic acid 3,4-dioxygenase from S. cerevi-
siae, implying a possible presence of novel Ni-binding
proteins in eukaryotes [67]. However, a crystal structure of
this protein in the bacterium Ralstonia metallidurans
showed that it binds iron instead of Ni [68], implying that
this protein is not a strictly Ni-dependent protein. Consid-
ering that most prokaryotic Ni-dependent enzymes except
urease are used in anaerobic metabolism and most
eukaryotes require oxygen, it is possible that the use of
oxygen led to the loss of Ni-dependent pathways in many
eukaryotes, such that only urease was preserved and only
in certain lower eukaryotes and plants. Similarly, only
three bacteria-type B12-dependent proteins were found in
eukaryotes and 90% B12-utilizing organisms possess only
single copies of MetH and MCM. These B12-dependent
enzymes were lost in all land plants and almost all unicel-
lular eukaryotes including fungi, but still remain in green
algae, stramenopiles and all animals with the exception of
insects. However, alternative pathways, such as methio-
nine synthesis from homocysteine by B12-independent
MetE, have evolved in various organisms [69,70]. It
should be noted that although insects and fungi appeared
to have lost all known B12-dependent enzymes, additional
Co-binding proteins have been characterized in some of
these organisms. For example, certain insects (such as Spo-
doptera frugiperda) encode a Co-binding class II alpha-
mannosidase [71] and S. cerevisiae has a Co-binding
methionine aminopeptidase [72] although both proteins
are activated by other metals in other organisms [73,74].
Therefore, a possibility that non-strictly specific or cur-
rently unknown Ni/Co-binding proteins or Ni/Co-con-

taining compounds are present in organisms analyzed in
this study cannot be excluded.

Conclusion
In this study, we report a comprehensive analysis of Ni
and Co utilization in prokaryotes and eukaryotes by ana-
lyzing occurrence of transporters and metal-dependent
enzymes. We found that occurrence of Ni/Co transporters
mostly corresponds to that of known Ni/Co-dependent
proteins. A new B12-dependent protein family was pre-
dicted in bacteria. Most prokaryotes, including extracellu-
lar symbionts, possess the Ni/Co utilization trait, with the
exception of other host-associated organisms (particularly
obligate intracellular parasites and symbionts). In eukary-
otes, the use of the two elements is much more restricted,
with regard to the organisms that use Ni/Co, the number
of Ni transporters and the number of Ni/B12-dependent
protein families. Again, parasitic lifestyle appears to result
in the loss of both utilization traits in eukaryotes.

Methods
Genomic sequence data
We examined fully sequenced genomes from the Entrez
Genome website at NCBI. A list of fully sequenced
prokaryotic and eukaryotic genomes can be found on the
NCBI website [75]. Only one strain was used for each spe-
cies (e.g., E. coli O157:H7 EDL933 was used as a represent-
ative of E. coli). In total, 540 bacterial, 47 archaeal, and
160 eukaryotic genomes were analyzed (as of Jun. 2008).

Identification of Ni/Co transporters, NikR repressor, 
vitamin B12 biosynthetic pathways and Ni-/B12-dependent 
enzymes
To analyze the distribution of Ni/Co transporters, we used
several well-characterized Ni/Co transport proteins (e.g.,
NikABCDE from E. coli, YntABCDE and NiCoT from Y.
pseudotuberculosis, CbiMNQO from S. typhimurium and
HupE from Rhizobium leguminosarum) and previously pre-
dicted Co transporters [31,40] as initial seed sequences to
search for homologous sequences in different organisms
via TBLASTN [76] with an e-value < 0.1. Additional
homologs were further identified using iterative TBLASTN
searches. In parallel, three cycles of PSI-BLAST with
default parameters were used for the identification of dis-
tant homologs. Orthologous proteins were defined using
the conserved domain (COG/Pfam/CDD) database and
bidirectional best hits [77]. Considering that NikABCDE
transporters have significant similarity to the ABC-type
dipeptide and oligopeptide import systems [27], we also
utilized the residues that were proposed to bind Ni in E.
coli NikA as major discriminators. Residues involved in Ni
binding are not well characterized and conflicting results
have been reported in the literature. Cherrier et al. sug-
gested that NikA binds Ni chelated by a small organic
molecule, such as butane-1,2,4-tricarboxylate (BTC), and
that some residues, including Tyr402, Arg137, Arg97 and



BMC Genomics 2009, 10:78 http://www.biomedcentral.com/1471-2164/10/78

Page 22 of 26
(page number not for citation purposes)

His416, form a binding site that is involved in the BTC-
Ni-NikA interaction [78]. On the other hand, Addy and
coworkers showed that Ni may bind E. coli NikA without
chelators and is bound to two histidine residues (His56
and His442, although not conserved in other NikA pro-
teins) at a position distant from the previously character-
ized binding site [79]. Here, the presence of the majority
of these residues was used to help predict NikA proteins.
In each transporter family, subgroups specific for Ni or Co
were identified based on either previous reports or gene
neighborhoods (i.e., if a transporter gene in a certain
organism was located adjacent to genes encoding Ni-
dependent enzymes, NikR or B12 biosynthesis proteins, it
was considered as a predicted Ni- or Co-specific trans-
porter). Other members of detected transporter families
were considered as proteins with unassigned function. It
is difficult to selectively identify B12 transporter BtuFCD
among other highly similar transport systems (such as
iron/heme or siderophore transporters), although previ-
ous approaches, based on B12 element regulation, were
utilized for the identification of BtuFCD in some bacteria
[31]. Therefore, in this study, we only examined the pres-
ence of BtuFCD (or BtuBFCD in gram-negative bacteria)
homologs in sequenced organisms for the possibility that
the potential B12 uptake system is present when we could
not detect B12 biosynthesis pathway. Orthologs of NikR
were identified using a similar approach. Occurrence of
B12 biosynthesis was verified by the presence of most of
the key components involved in B12 biosynthetic path-
way: CobE, CobF, CobG, CobM, CobN, CobS, CobT,
CobW, CbiD, CbiG, CbiK and CbiX [31,80-83].

Members of known Ni-dependent protein families were
also identified. In this study, Ni-dependent proteins refer
to strictly Ni-binding proteins that utilize Ni as a cofactor.
We excluded proteins, which may bind other metals in
different organisms, such as GlxI for which the contribu-
tor to shifts in metal activation is not clear [4]. Conserva-
tion of Ni-binding ligands was also analyzed for each Ni-
dependent protein and those lacking most of the ligands
were discarded. Similarly, in this study, we only consid-
ered B12-dependent enzymes as Co-dependent proteins
because of the unspecificity of metal utilization, and lim-
ited distribution and information on non-corrin Co-bind-
ing enzymes. In addition, many B12-dependent proteins
contain multiple domains, some of which are B12-inde-
pendent. Therefore, only B12-binding domain-containing
proteins (most contain a conserved DXHXXG motif
within the B12-binding region [12]) were viewed as B12-
dependent users. A complete list of query proteins is
shown [see Additional files 1, 2, 3]. The presence of Ni/Co
utilization trait was then verified by the requirement for
occurrence of at least one predicted Ni/Co-specific trans-
porter, or B12 biosynthesis trait, or at least one Ni/Co-

dependent enzyme. Protein sequences for transporters
and users collected in this study are provided [see Addi-
tional files 26 and 27].

Multiple sequence alignment and phylogenetic analysis
A recently reconstructed phylogenetic tree was adopted to
analyze the distribution of organisms that utilize Ni/Co in
different taxonomies [84]. This tree of life was based on
concatenation of 31 orthologs (most are ribosomal pro-
teins) occurring in 191 species with sequenced genomes.
The use of a common protein set across all three domains
of life enables an objective, quantitative analysis of the con-
sistency of traditional taxonomic groupings. Multiple
sequence alignments were performed using CLUSTALW
[85] with default parameters and ambiguous alignments in
highly variable regions were excluded. Phylogenetic trees
were reconstructed by PHYLIP programs [86]. Pairwise dis-
tance matrices were calculated by PROTDIST to estimate
the expected amino acid replacements per position. Neigh-
bor-joining trees were obtained with NEIGHBOR and the
most parsimonious trees were determined with PROT-
PARS. To evaluate robustness of the trees, we performed
maximum likelihood (ML) with PHYML [87] using default
parameters and likelihood test. If inconsistent topologies
were obtained, a third program MrBayes [88], a Bayesian
estimation of phylogeny, was used. The final phylogenetic
tree was then manually refined for visualization purposes.
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