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Abstract

Chitinase is an important enzyme responsible for chitin metabolism in a wide range of organisms including bacteria, yeasts
and other fungi, nematodes and arthropods. However, current knowledge on chitinolytic enzymes, especially their
structures, functions and regulation is very limited. In this study we have identified 20 chitinase and chitinase-like genes in
the African malaria mosquito, Anopheles gambiae, through genome-wide searching and transcript profiling. We assigned
these genes into eight different chitinase groupings (groups I–VIII). Domain analysis of their predicted proteins showed that
all contained at least one catalytic domain. However, only seven (AgCht4, AgCht5-1, AgCht6, AgCht7, AgCht8, AgCht10 and
AgCht23) displayed one or more chitin-binding domains. Analyses of stage- and tissue-specific gene expression revealed
that most of these genes were expressed in larval stages. However, AgCht8 was mainly expressed in the pupal and adult
stages. AgCht2 and AgCht12 were specifically expressed in the foregut, whereas AgCht13 was only expressed in the midgut.
The high diversity and complexity of An. gambiae chitinase and chitinase-like genes suggest their diverse functions during
different developmental stages and in different tissues of the insect. A comparative genomic analysis of these genes along
with those present in Drosophila melanogaster, Tribolium castaneum and several other insect species led to a uniform
classification and nomenclature of these genes. Our investigation also provided important information for conducting
future studies on the functions of chitinase and chitinase-like genes in this important malaria vector and other species of
arthropods.
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Introduction

Chitin, a linear polysaccharide of N-acetyl-b-D-glucosamine

residues joined by b-1,4 glycosidic linkages, is the second most

abundant biological polymer after cellulose [1,2]. It is widely

distributed in fungi, nematodes and arthropods. In arthropods,

chitin is a vital component of the cuticular exoskeleton and thus is

crucial for growth and development [3]. Chitin is also found in

internal structures of many insect species and other arthropods,

including the cuticular lining of trachea and in the peritrophic

matrix (PM) that lines the gut epithelium [4]. During insect growth

and development, both the cuticle and PM must be degraded

periodically and replaced to allow for growth, maturation and

repair. Chitinolytic enzymes play important roles in shedding of

the old cuticle and turnover of both the PM and tracheal lining.

Chitinase (EC 3.2.1.14, endochitinase) is an enzyme catalyzing

the random hydrolysis of N-acetyl-b-D-glucosamine b-1,4 glyco-

sidic linkages in chitin and chitodextrins in a variety of organisms.

Chitinases are members of the superfamily of O-glycoside

hydrolases, which hydrolyze the glycosidic bonds in polysaccha-

rides or between a sugar and a noncarbohydrate moiety.

Chitinases have been found in a wide variety of organisms

including bacteria, yeasts and other fungi, nematodes, arthropods

and even vertebrates such as mice, chicken and human. The

vertebrate chitinases probably function as defensive proteins

against chitin-containing pathogens. Mammals are not known to

synthesize chitin or metabolize chitin as a nutrient; yet the human

genome encodes eight GH18 family members that play an

important role in T-cell mediated inflammation and asthma [5–7].

All insect chitinases belong to family 18 of glycosylhydrolases

and many of them may be involved in cuticle turnover, digestion

and PM degradation during molting. The first insect chitinase

gene cloned was from Manduca sexta [8]. In the past, results from

cDNA cloning have been interpreted to suggest the presence of a

single chitinase gene in each of several insect species including

Chelonas sp. [9], Anopheles gambiae [10], Bombyx mori [11], Spodoptera

litura [12], Choristoneura fumiferana [13], Lutzomyia longipalpis [14],

Helicoverpa armigera [15], Lacanobia oleracea [16], Spodoptera frugiperda

[17], Tenebrio molitor [18,19] and Ostrinia nubilalis [20]. However,

later studies with B. mori indicated the presence of multiple
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chitinase genes [21]. With the completion of several insect genome

sequences, rather large and diverse groups of chitinase genes have

been identified in many insect species. For example, 16, 16 and 13

chitinase and chitinase-like genes were identified in the genomic

databases of the fruit fly, Drosophila melanogaster, the red flour beetle,

Tribolium castaneum and the African malaria mosquito, An. gambiae,

respectively [22]. Even though the genomes of Apis mellifera, B. mori

and Aedes aegypti have not been completely analyzed, available data

indicate that chitinases-like proteins are also encoded by multiple

genes in these insect species [22,23].

Based on amino acid sequence similarity and phylogenetic

analysis, insect chitinase family proteins have been classified into

five groups [22,24]. Recently, the gene characterization and

functional analysis of individual members of the large family of

chitinase-like proteins by using gene-specific RNA interference

(RNAi) was performed in T. castaneum. This research has revealed

functional specialization among insect chitinase family genes,

primarily during the molting process, and has provided a biological

rationale for the presence of a large assortment of chitinase-like

proteins [25]. For example, the group I and group II enzymes are

involved in molting by digesting cuticular chitin, whereas the group

III chitinases have a morphogenetic role in insect development such

as regulating abdominal contraction and wing expansion.

An. gambiae is an important malaria vector in Africa. To date,

only very few chemicals are available for controlling mosquitoes

and other human health-related arthropods. Because insect

growth and development depend on the precisely tuned chitin

synthesis and degradation, chitinolytic enzymes may potentially

serve as a selective target for combating insect pests because chitin

is not present in vertebrates. In this study we performed a

comprehensive genomic analysis of An. gambiae chitinase and

chitinase-like genes and compared them with those from D.

melanogaster and T. castaneum and several other insect species. Our

study is expected to provide a uniform classification of chitinase

and chitinase-like genes in insects and to facilitate further research

to elucidate the biological functions and physiological significance

of the highly diverse chitinase and chitinase-like gene family in

insects. A better understanding of biological functions of the

individual chitinase and chitinase-like genes may potentially help

researchers develop novel strategies for control of arthropod pests

by targeting their chitin metabolic pathways.

Materials and Methods

Mosquito Rearing
A colony of An. gambiae obtained from the Malaria Research and

Reference Reagent Resource Center (MR4) (Manassas, VA) was

maintained in the Department of Entomology at Kansas State

University (Manhattan, KS) since 2007 by using a similar rearing

method as described by Zhang and Zhu [26]. Briefly, the larvae were

fed with a slurry of brewer’s yeast and TetraMin Baby-E fish food,

whereas adults were fed with a 10% sucrose solution soaked into cotton

balls. Two-day-old females were fed with pre-warmed, defibrinated

horse blood (Colorado SerumCompany, Denver, CO) in a membrane

feeder made of a lubricated Naturalamb brand condom (Church and

Dwight Co., Inc., Princeton, NJ) and allowed to lay eggs.

Genome Search and Sequence Analysis
Five known chitinase and chitinase-like genes from An. gambiae

were first used as query sequences including a gut-specific chitinase

gene (GenBank accession number AAB87764) [10], two partial

sequences (GenBank accession numbers AAB81851 and AAB81852)

[27] and two bacteria responsive proteins (GenBank accession

numbers AAB80137 and AAB80138) [28]. TBLASTN was

performed for searching of the An. gambiae genome database. Each

protein sequence obtained was subsequently used for searching by

BLASTp in NCBI. The protein sequences containing the signature

sequence FDGXDLDWEYP (highly conserved in all known insect

chitinases) and/or one of the other three signature sequences

including KXXXXXGGW, MXYDXXG and GXXXWXXDXD

were considered as candidate chitinase and chitinase-like proteins

[8,27]. The online program SMART (http://smart.embl-heidelberg.

de/) was used to obtain the domain architecture and genomic

organization of each gene was conducted by UCSC Genome

Bioinformatics program (http://genome.ucsc.edu/). Sequence anal-

ysis was performed using the computer software suite Lasergene

(DNAstar, WI). The phylogenetic tree was constructed based on

domain amino acid sequences using the Neighbor-joining algorithm

(Mega 4.0 software). Other software programs utilized from online

servers are described in the Results section.

Reverse Transcription PCR (RT-PCR) Analysis
Total RNA was isolated from mosquito samples representing

each of seven developmental stages, including egg, first-, second-,

third- and fourth-instar larvae, pupa and adult by using the

TRIzol Total RNA Isolation kit (Invitrogen, Carlsbad, CA) for

studying stage-specific expressions of AgCht genes, 100 eggs, 30

first- or second-instar larvae, 15 third-, fourth-instar larvae, pupae

or adults were used for each independent RNA preparation. To

study the stage-specific expression in the egg and pupal stages,

total RNA was isolated from mosquito samples representing five

egg developmental periods collected at 12, 24, 36, 48 and 60 h

after oviposition by blood-fed females, and five pupal develop-

mental periods collected at 0, 10, 20, 30 and 34 h after pupation,

respectively. Similarly, total RNA was also isolated from tissue

samples including the foregut, midgut, hindgut and carcass (whole

larva after the gut was removed) for studying tissue-specific

expression. In brief, fourth-instar larvae were chilled on ice and

dissected in cold 16PBS to obtain different tissues. The larva was

longitudinally opened by carefully cutting the cuticle from one side

of the larva without damaging the gut. Then the whole gut was

gently removed and detached from adhering tissues including

Malpighian tubules, trachea and fatbodies. The midgut, foregut

and hindgut were carefully separated and immediately placed in

the TRIzol agent. The foregut and midgut were separated at the

junction of the gastric caecum and the gastric caecum was

included with the midgut. The remaining body tissue excluding

the gut was collected as the carcass.

After total RNA was isolated and the concentration determined

using the NanoDrop ND-1000 instrument (NanoDrop Technologies,

Inc., Wilmington, DE), 2.5 mg of total RNA was then treated with

DNase using the DNase I kit (Fermentas, Glen Burnie, MD). First-

strand cDNA was synthesized with the First Strand cDNA Synthesis

kit (Fermentas, Glen Burnie, MD) using an oligo(dT)12–18 primer in a

20-ml reaction volume following the manufacturer’s protocol. Beacon

Designer software from Primer Biosoft (http://www.premierbiosoft.

com) was used to design the gene-specific primers for the genes. The

sequences of these primers are shown in supporting information (Table

S1). PCR was performed using the PCRMasterMix (Fermentas, Glen

Burnie, MD) with a thermal cycle program consisting of an initial

denaturation at 94uC for 2 min followed by 29 cycles at 94uC for 30 s,

55uC for 30 s, 72uC for 45 s and a final extension at 72uC for 10 min.

The PCR products were resolved on a 1.8% agarose gel and visualized

by staining with ethidium bromide. The mosquito ribosomal protein

S3 gene (AgRPS3) was used as a loading reference for RT-PCR

analysis. RT-PCR was repeated at least three times for each gene at

each developmental stage and for each tissue. The RNA sample was

independently prepared for each of the three replications.

Mosquito Chitinase and Chitinase-Like Genes
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Real-Time Quantitative PCR Analysis
To confirm the stage- and tissue-specific pression patterns of AgCht

genes, four of the genes, AgCht5-1, AgCht10, AgCht7 and AgCht8, were

chosen from four different groups (I–IV) for real-time quantitative

PCR (qPCR) analysis. cDNA prepared from the above mentioned

samples representing each of four developmental stages, including

egg, third-instar larva, pupa and adult, and each of four tissues,

including foregut, midgut, hindgut and carcass, was used for qPCR

analysis. qPCRwas performed in a 25-ml reaction volume containing

10.5 ml of 1/10 diluted cDNAs, 0.4 mM of each primer and 16

Maxima SYBR Green qPCRMaster Mix (Fermentas, Glen Burnie,

MD) using the iCycler iQ real-time PCR detection system (Bio-Rad,

Hercules, CA). The optimized qPCR program used for quantifica-

tion of transcripts for both the AgRPS3 and targeted AqCht genes

consisted of an initial denaturation step at 95uC for 5 min followed

by 40 cycles at 95uC for 15 sec, 55uC for 30 sec and 70uC for 30 sec.

At the end of the PCR, amplification specificity was verified by

obtaining the dissociation curve, in which the samples were cooled to

55uC after denaturing and then the melting curves were obtained by

increasing 0.5uC/10 s for each cycle with a total of 80 cycles until

reaching 95uC to denature the double-stranded DNA. The

specificity of each reaction was evaluated based on the melting

temperatures of the PCR products. The amplification efficiency of

primer pairs was determined from the slope of the curve generated

by amplification from serially diluted cDNA. Efficiency had to be at

least 0.9 for a primer pair to be accepted. Relative expression values

(REVs) for tissue-specific gene expression were then determined by

dividing the quantities of the target sequence of interest with the

quantity obtained for AgRPS3 as an internal reference gene.

We found that expression of AgRPS3 fluctuated across the

developmental stages that were tested. Other genes including

AgRPS7, ribosomal protein L32, elongation factor 2 and the

ubiquitin-ribosomal protein L40 fusion protein were also tested.

However, none of these was a suitable reference gene to normalize

our data across the developmental stages in An. gambiae as has been

found for other insect species [29]. Therefore, we did not

normalize the stage-specific gene expression using AgRPS3.

Instead, we adopted a similar method [29] by carefully quantifying

RNA by NanoDrop measurements to standardize our samples.

qPCR was repeated three times for each gene. Each replication

was performed based on an independent RNA sample preparation

and consisted of two technical replications.

Immunohistochemical Analysis
Antibody against M. sexta chitinase 5 (anti-MsCht5, specific for

group I chitinases) and anti-sand fly Cht8 sera, the latter kindly

provided by Dr. Ramalho-Ortigao (Department of Entomology,

Kansas State University), were used for immunostaining of

AgCht5 and AgCht8, respectively, in mosquito pupae. Paraffin-

embedded thin sections were used for immunohistochemical

analysis. Because the stage-expression pattern showed high

expression of both Agcht5 and Agcht8 in the pupal stage, pupae

were chosen for this analysis. In brief, 12–24 h pupae were fixed in

4% paraformaldehyde at 4uC overnight followed by 365 min

washes with PBST (PBS and 0.1% Triton X-100). The samples

were then dehydrated through an ascending series of ethanol

solutions (2630 min each in 70% and 96%, 2620 min in 100%),

followed by 261 h in chloroform. The dehydrated samples were

finally embedded in paraffin (56uC, Tyco Healthcare) after

overnight penetration. Histological sections (8 mm) were prepared

by using a microtome (Richard-Allan Scientific Microm) with a

low profile microtome blade (Richard-Allan), straightened on

Fisherbrand ColorFrost Plus microscope slides with 0.5% gelatin

and allowed to dry for 2 d at 40uC on the top of a slide warmer.

The sections were deparaffinized with two washes of 10 min in

xylene, rehydrated through successive baths of ethanol (100%,

96% and 70% in water, 165 min each), two water washes for

5 min for each and finally PBST for 10 min or more.

For localization of AgCht5 and AgCht8, sections were first blocked

using 1% BSA (bovine serum albumin) in PBST for 15 min followed

by incubation with a 1:100 dilution of the anti-MsCht5 or anti-sand fly

Cht8 serum in PBST at 4uC overnight. Microsections immunostained

with pre-immune serum were used as negative controls. After the

sections were washed in PBST three times, each for 2 min, they were

Table 1. Phylogenetics-based comparative classification of
chitinase and chitinase-like genes from three representative
insect species.

D. melanogaster T. castaneum An. gambiae

Old New Old New Old New

DmCht1

DmCht2 DmCht2 TcCht2 AgCht2 AgCht2

DmCht3

DmCht4 DmCht4 TcCht4 TcCht4 AgCht4 AgCht4

DmCht5 DmCht5 TcCht5 TcCht5 AgCht5 AgCht5-1

AgCht5-2

AgCht5-3

AgCht5-4

AgCht11 AgCht5-5

DmCht6 DmCht6 TcCht6 AgCht6 AgCht6

DmCht7 DmCht7 TcCht7 TcCht7 AgCht7 AgCht7

DmCht8 DmCht8 TcCht8 TcCht8 AgCht8 AgCht8

DmCht9 DmCht9 TcCht9 TcCht9 AgCht9 AgCht9

DmCht10 DmCht10 TcCht10 TcCht10 AgCht10 AgCht10

DmCht11 DmCht11 TcCht11 AgCht11

DmCht12 DmCht12 TcCht12 TcCht12 AgCht12 AgCht12

TcCht13 TcCht13 AgCht13 AgCht13

TcCht14 TcCht14

TcCht15 TcCht15

TcCht16 TcCht16 AgCht16 AgCht16

TcCht17

TcCht18

TcCht19

TcCht2 TcCht20

TcCht6 TcCht21

TcCht11 TcCht22

AgCht23

AgCht24

DmIDGF1 DmIDGF1

DmIDGF2 DmIDGF2 TcIDGF2 TcIDGF2 AgIDGF2b

DmIDGF3 DmIDGF3

DmIDGF4 DmIDGF4 TcIDGF4 TcIDGF4 AgIDGF4 AgIDGF4b

DmCht14 DmIDGF5

DmCht13 DmIDGF6a

18 16 16 22 13 20

aPreviously named as DmDS47 [31].
bAgIDGF4 and AgIDGF2 previously named as AgBR1 and AgBR2, respectively [28].
doi:10.1371/journal.pone.0019899.t001
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incubated with Alexa 488-conjugated goat anti-rabbit (for AgCht5) or

anti-mouse (AgCht8) IgG (1:500 dilution in PBST) at 4uC overnight.

After four washes in PBS for 10 min each, the sections were then

mounted for 5 min in glycerol containing 300 nM 49, 69-diamino-2-

phenylindole (DAPI; 2 mg ml21; Sigma) on a glass slide and the

fluorescence was observed using a Nikon Eclipse E800 fluorescence

compound microscope equipped with appropriate filters. Photographs

were taken with a Cool SNAP digital camera.

qPCR Data Analysis
For qPCR results, relative expression was calculated according

to the 22DDCt method [30]. The data were then transformed using

arcsine square root transformation before ANOVA. Fisher’s least

significant difference (LSD) multiple comparisons were then used

to separate the means among the samples.

Results

Identification of Chitinase and Chitinase-Like Genes in
An. gambiae
We identified a total of 20 chitinase and chitinase-like genes in the

An. gambiae genome based on the presence of signature sequences of

insect chitinases by using bioinformatics and transcript profiling

approaches (Table 1). This number includes seven new chitinase and

chitinase-like genes (AgCht5-2, AgCht5-3, AgCht5-4, AgCht11, AgCht23,
AgCht24 and AgIDGF2) that were identified in this study and 13 others

that were previously reported [28]. The GenBank accession numbers

of all of these genes are provided in Table 2. The identification of seven

new chitinase and chitinase-like genes was mainly due to our recent

discovery of a new gene cluster consisting of five duplicated AgCht5

genes including AgCht5-1, AgCht5-2, AgCht5-3, AgCht5-4 and AgCht5-5.

Based on our phylogenetic analysis of the catalytic domains of all of the

20 chitinase and chitinase-like proteins, we renamed the previously

reported AgCht5 and AgCht11 genes as AgCht5-1 and AgCht5-5,

respectively. In addition, we renamed the previously reported AgBR1

and AgBR2 genes [28] as AgIDGF2 and AgIDGF4, respectively, to reflect

their sequence similarities to other insect imaginal disc growth factors

(IDGFs). The IDGFs are chitinase-like proteins that are structurally

related to chitinases but do not possess enzymatic activity. They also

have an extra loop between the b-4 strand and the a-4 helix of the

b8a8 barrel structure of group 18 chitinases [31]. Thus, the total

number of An. gambiae chitinase and chitinase-like genes is 20, consisting

of 2 AgIDGF genes and 18 putative chitinase and chitinase-like genes.

Phylogenetic analysis based the amino acid sequences of catalytic

domains assigned these chitinase and chitinase-like proteins into eight

separate groups (I–VIII) (Figure 1). Five groups (I–V) were previously

reported inD. melanogaster [22] and the remaining three groups, VI, VII

and VIII, are closely related but clearly distinct from groups III, II and

V, respectively (gene sizes and domain analyses are shown in Table S2).

The Cht6 proteins from all three insect species are relatively large

proteins that contain 4498, 2369 and 3405 predicted amino acid

residues for DmCht6, TcCht6 and AgCht6, respectively.

Six of the eight groups (II, III and VI–VIII) of chitinase and

chitinase-like proteins consist of a single chitinase protein in each

species, AgCht10 in group II, AgCht7 in group III, AgCht6 in group

VI, AgCht2 in group VII and AgCht11 in group VIII, whereas the

Table 2. The accession numbers for revised names of chitinase and chitinase-like genes from three representative insect species.

D. malenogaster T. castaneum An. gambiae

Revised gene name Accession number Revised gene name Accession number Revised gene name

Accession

number

DmCht2 NP_477298.2 TcCht2 NP_001034516.3 AgCht2 XP_315650.4

DmCht4 NP_524962.2 TcCht4 NP_001073567.1 AgCht4 XP_315351.4

DmCht5 NP_650314.1 TcCht5 NP_001034524.1 AgCht5-1 HQ456129

DmCht6 NP_572598.1 TcCht6 XP_967813.1 AgCht5-2 HQ456130

DmCht7 NP_647768.2 TcCht7 NP_001036035.1 AgCht5-3 HQ456131

DmCht8 NP_611542.1 TcCht8 NP_001038094.1 AgCht5-4 HQ456132

DmCht9 NP_611543.3 TcCht9 NP_001038096.1 AgCht5-5 HQ456133

DmCht10 EAA46011.1 TcCht10 NP_001036067.1 AgCht6 *

DmCht11 NP_572361.1 TcCht11 XP_974461.1 AgCht7 XP_308858.4

DmCht12 NP_726022.1 TcCht12 XP_972802.2 AgCht8 XP_316448.2

DmIDGF1 NP_477258.1 TcCht13 NP_001036034.1 AgCht9 XP_307732.4

DmIDGF2 NP_477257.2 TcCht14 XP_973005.1 AgCht10 XP_001238192.2

DmIDGF3 NP_723967.1 TcCht15 XP_973077.1 AgCht11 XP_310662.4

DmIDGF4 NP_727374.1 TcCht16 NP_001034515.1 AgCht12 XP_316142.4

DmIDGF5 NP_611321.3 TcCht17 XP_972719.1 AgCht13 XP_314312.4

DmIDGF6 NP_477081.1 TcCht18 XP_973161.2 AgCht16 XP_319801.4

TcCht19 XP_973119.2 AgCht23 XP_001688641.1

TcCht20 XP_970191.2 AgCht24 XP_316256.4

TcCht21 NP_001034517.1 Ag IDGF2 XP_001237925.1

TcCht22 NP_001038095.1 Ag IDGF4 XP_317398.3

TcIDGF2 NP_001038092.1

TcIDGF4 NP_001038091.1

*cDNA sequence based on prediction.
doi:10.1371/journal.pone.0019899.t002
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other three groups, I, IV and V, contain multiple chitinase and

chitinase-like proteins that are present in the same insect species.

Multiple chitinase 5 proteins belonging to Group I were only

identified in the three mosquito species, with five members in An.

gambiae, four in Ae. aegypti and three in Culex quinquefasciatus. All of

these genes possibly originated from gene duplication events

during the evolutionary process. In contrast, chitinase 5 gene

duplication was not observed in T. castaneum, D. melanogaster and

any other known insect species. Group IV chitinases are the most

divergent and include 3, 14 and 8 chitinase proteins from D.

melanogaster, T. castaneum and An. gambiae, respectively. Group V

proteins include the putative chitinase-like IDGFs, which are

encoded by several genes in each species, for example, 6, 2 and 2

from D. melanogaster, T. castaneum and An. gambiae, respectively.

However, three Cht12 proteins from the three insect species are

not consistently grouped into the same group. Both TcCht12 and

AgCht12 fall into Group IV, the most divergent group of the insect

chitinases, whereas DmCht12 falls into Group I.

Gene Structure of Chitinase and Chitinase-Like Genes
The exon-intron organization of the 20 chitinase and chitinase-like

genes is shown in Figure 2. It is clear that the organization of chitinase

genes has diverged within the An. gambiae genome. A high variation can

be observed in both the gene sizes and the number of exons/introns.

Figure 1. Phylogenetic analysis of chitinase and chitinase-like proteins from three insect species based on catalytic domain
sequences. Ag: An. gambiae; Aa: Aedes aegypti; Tc: T. castaneum; Dm: D. melanogaster. Phylogenetic tree of insect chitinases generated by the MEGA
4 software after alignment using ClustalW (www.ebi.ac.uk/clustalW). Bootstrap values were obtained by neighbor-joining method using 5000
replications. Protein accession numbers are shown in Table 2 and Table S3.
doi:10.1371/journal.pone.0019899.g001
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Figure 2. Schematic diagram of the exon and intron organization of the chitinase and chitinase-like genes from An. gambiae.
doi:10.1371/journal.pone.0019899.g002

Figure 3. Schematic diagram of the domain architecture of chitinase and chitinase-like proteins from An. gambiae.
doi:10.1371/journal.pone.0019899.g003
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Some chitinase and chitinase-like genes have as few as only one exon

(i.e. without an intron) such as AgCht16 and AgCht5-5, whereas other
chitinase and chitinase-like genes have one to several introns. For

example, AgCht6 consists of 19 exons and 18 introns. The sizes of their
introns range from less than 100 bp to more than 2 kb.

Domain Architecture of Chitinase and Chitinase-Like
Proteins
One of the four conserved motifs in the catalytic domain [2,3]

was used as a signature sequence to identify potential chitinase or

chitinase-like proteins for all the three insect species. The

consensus sequence, DWEYP, was considered an essential

characteristic for a putative chitinase protein. Chitinase and

chitinase-like proteins showed extensive similarities at the amino

acid sequence level, but a key residue (E) substitution in DWEYP

that is known to abrogate catalytic activity is also seen in some of

these proteins. Results of the analysis of the domain organization

of the deduced chitinase and chitinase-like proteins in An. gambiae

are shown in Figure 3. Most of them have one catalytic domain

except for AgCht7, AgCht9 and AgCht10, which have 2, 2 and 4

catalytic domains, respectively. Seven of 20 chitinase and

chitinase-like proteins have one or more chitin-binding domains

(CBD) belonging to the ChtBD2 family [31]. Except for AgCht10

with four CBDs, all of the other six chitinase and chitinase-like

proteins have only one CBD.

Ten chitinases are predicted to contain a cleavable signal

peptide, which suggests that these proteins are secreted proteins

that function in an extracellular environment. However, the lack

of a signal peptide in the remaining chitinase and chitinase-like

proteins in this study could be due to its true absence and/or

failure of our predictions when using the SignalP program (http://

www.cbs.dtu.dk/services/SignalP/). On the other hand, AgCht7

is the only chitinase that has two predicted transmembrane

segments in the N-terminal region. Similarly, at least one

transmembrane segment was also found in Cht7 from other insect

species including D. melanogaster, A. mellifera and T. castaneum [22],

suggesting that Cht7 might be a membrane-anchored protein with

the active site facing the outside.

Expression of AgCht Genes in Different Developmental
Stages
Stage-specific expression patterns of AgCht genes were deter-

mined in embryos (eggs), four different larval instars (first, second,

third and fourth), pupae and adults by using RT-PCR (Figure 4).

Among the 20 genes, two IDGF genes (AgIDGF2 and AgIDGF4)
were constitutively expressed in all developmental stages from

embryo through adult stages. Ten of the remaining 18 AgCht
genes, including AgCht5-1, AgCht5-2, AgCht5-3, AgCht5-5, AgCht10,

AgCht7, AgCht16, AgCht2, AgCht6 and AgCht11, showed various

levels of expression in all of the seven stages. AgCht24 was also

expressed in most of the stages except for the embryonic stage. In

contrast, transcripts for AgCht5-4, AgCht4 and AgCht9 were detected
at various developmental stages from embryo to the fourth-instar

larva but not in the pupal and adult stages. Expression of AgCht8
was detected only in the pupal and adult stages but not in larval

stages. Our results also revealed that AgCht12, AgCht13 and

AgCht23 were almost exclusively expressed in the four larval stages,

among which AgCht12 was predominantly expressed in the fourth-

instar larva. To confirm our RT-PCR results, the expression of

selected genes including AgCht5-1, AgCht7, AgCht8 and AgCht10

were also evaluated by qPCR. The results from qPCR analysis

(Figure 5) were consistent with those of the RT-PCR analysis.

We further examined the stage-specific expression patterns of these

chitinase and chitinase-like genes in embryos and pupae. RT-PCR

analysis was performed in 12-, 24-, 36-, 48- and 60-h old eggs and in

0-, 10-, 20-, 30- and 34-h old pupae. In the eggs, the two IDGF genes

were constitutively expressed at all of the periods examined, whereas

AgCht5-2 and AgCht5-3 appeared to be expressed at all of the times but

with some apparent variation in the level of expression (Figure S1).

Most of the remaining genes were expressed in the late pupal stages

except for AgCht11, whose transcripts were detected in the early

embryonic stage but gradually decreased thereafter. In pupae most of

the chitinase and chitinase-like genes showed various expression levels

at all of the selected times of the pupal stage (Figure S2). It was also

revealed that AgCht5-2, AgCht5-5 and AgCht12 appeared to be only

expressed in the early pupal stage, whereas AgCht23was detected only

in the late pupal stage. AgCht13 had a unique expression pattern

which was limited to a narrow window in the late pupal stage (30 h).

Figure 4. Expression profiling of chitinase and chitinase-like
genes in different developmental stages of An. gambiae as
evaluated by RT-PCR. Eggs (EG,), larvae from first to fourth instars
(L1-4), pupae (PU) and adults (AD).
doi:10.1371/journal.pone.0019899.g004
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Expression of AgCht Genes in Different Tissues
Expression patterns of the 14 An. gambiae chitinase and chitinase-

like genes were analyzed in each of four selected tissues, including

foregut, midgut, hindgut and carcass by using RT-PCR. Our results

indicated that six of the 14 chitinase and chitinase-like genes,

including AgCht4, AgCht9, AgCht16, AgCht23, AgIDGF2 and AgIDGF4,
were expressed in all tissues examined, although there apparently

were some significant variations in their expression levels (Figure 6).

In contrast, AgCht2 and AgCht12, AgCht13 and AgCht6 appeared to be

exclusively expressed in the foregut, midgut and carcass, respectively.

Two AgCht5 genes showed different expression patterns. AgCht5-4
appeared to be gut-specific, whereas AgCht5-1 was expressed

predominantly only in the foregut and carcass. In addition, AgCht7
appeared to be expressed only in the foregut and carcass, whereas

AgCht10 was expressed in the foregut, hindgut and carcass. Further

analysis by qPCR revealed that AgCht5-1 and AgCht7 were

predominantly expressed in the carcass (Figure 7). Expression of

AgCht8 was mainly detected in the midgut, whereas AgCht10
expression was in the foregut and carcass. The results evaluated by

qPCR were consistent with those obtained by RT-PCR. The diverse

expression patterns of all of these chitinase and chitinase-like genes

may reflect their specialized roles in degradation of chitin in different

tissues in mosquitoes as demonstrated in T. castaneum [25].

Localization of AgCht5 and AgCht8 Proteins in Pupae by
Immunohistochemistry
To confirm the diverse expressions of these genes at the protein

level in An. gambiae, we used readily available anti-M. sexta chitinase

5 polyclonal antibodies (anti-MsCht5 for Group I chitinases) and

anti-sand fly (Lutzomyia longipalpis) chitinase 8 (anti-sand fly Cht8)

polyclonal antibodies to localize AgCht5 and AgCht8 proteins,

respectively, in paraffin-embedded thin sections of mosquito pupae

by using immunohistochemistry. Intensive signals were only

observed in certain regions of the head, developing thoracic legs

and the abdominal tip including the tail paddles of a pupa when

anti-MsCht5 was used in the analysis (Figure 8). However, the

high levels of AgCht8 protein were only detected in the pupal

compound eyes with an intensive signal in the ommatidia when

anti-sand fly Cht8 was used (Figure 8). Because our immunohis-

tochemical analysis showed distinctly different patterns in the

localization of AgCht5 and AgCht8, it is unlikely that these

antibodies can cross react with AgCht5 and AgCht8. Although we

only examined the protein expression for these two genes

belonging to two different groups, the results support our

hypothesis that different chitinase and chitinase-like genes are

expressed in different tissues or body parts where they probably

carry out specialized functions.

Discussion

The availability of whole genome sequences of different insect

species has greatly facilitated the identification of chitinase and

chitinase-like genes by using a bioinformatics approach. Previous

analyses on the chitinase and chitinase-like genes revealed 16

chitinase and chitinase-like genes in D. melanogaster, 16 in T.

castaneum and 13 in An. gambiae [22]. Analyses of these genes in D.

melanogaster and An. gambiae were based solely on computational

Figure 5. Relative expression of selected AgCht genes in different developmental stages of An. gambiae as determined by qPCR.
Same letters on the error bars indicate no significant difference based on Fisher’s LSD test (P$0.05).
doi:10.1371/journal.pone.0019899.g005
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predictions from their genomic sequences. Our extensive search of

these insect genomic databases led to the identification of 16, 22

and 20 chitinase and chitinase-like genes in D. melanogaster, T.
castaneum and An. gambiae, respectively (Table 1). These new

numbers represent the addition of 6 and 7 chitinase and chitinase-

like genes to the previous gene numbers reported for T. castaneum

and An. gambiae, respectively [22]. All of the 20 genes from An.
gambiae were further analyzed by transcript profiling in different

developmental stages and in different tissues of the mosquito.

To provide consistent classification and nomenclature of

chitinase and chitinase-like genes in different insect species, we

re-examined the genome sequences of all three insect species and

amended the previous nomenclatures of several genes in these

species as shown in Table 1. Compared with previous results from

D. melanogaster [22], we have determined that the previously

assigned two genes previously named DmCht1 and DmCht3 were

actually only portions of a larger chitinase gene (DmCht10) that has

four catalytic domains. We re-designated DmCht14 as DmIDGF5

and DmCht13 as DmIDGF6 based on our phylogenetic analysis of

these protein sequences along with those of other insect chitinase

and chitinase-like proteins. DmCht13 was cloned and sequenced in

1995 and previously named as DmDS47 [32]. With all of these

changes, we amended the total number of chitinase and chitinase-

like genes in D. melanogaster to be 16 including 10 putative chitinase

and chitinase-like genes and 6 DmIDGF-like genes.

In T. castaneum, 16 chitinase and chitinase-like genes were

previously identified by isolation and sequencing of chitinase-like

cDNAs and BLAST searching of the T. castaneum genome database

[22]. In this study we revealed 6 new chitinase and chitinase-like

genes including TcCht2, TcCht6, TcCht11, TcCht17, TcCht18 and

TcCht19. In addition, three previously assigned genes, TcCHT2,

TcCHT6 and TcCHT11, were renamed as TcCht20, TcCht21 and

TcCht22 based on our comparative genomic analysis of the three

insect species. Thus, the total number of chitinase and chitinase-

like genes in T. castaneum was increased from 16 to 22, including 20

putative chitinase genes and 2 IDGF genes.

In An. gambiae, 13 chitinase and chitinase-like genes were

previously identified from its genome database by using bioinfor-

matics approaches [22]. In this study we increased the total

number of chitinase and chitinase-like genes to 20. Except for the

six genes including AgCht23, AgCht24, AgIDGF2 and four AgCht5

genes (i.e., AgCht5-2, AgCht5-3, AgCht5-4 and AgCht5-5), each of the

14 remaining genes have putative orthologs in D. melanogaster and

T. castaneum (Table 1). RT-PCR analysis showed that all of the 20

genes were transcribed at some or all of the developmental stages

of An. gambiae (Figure 4).

We have assembled all of the chitinase and chitinase-like

proteins from three insect species into eight groups. If the five An.

gambiae Cht5 genes that apparently arose as a result of gene

duplication are not considered, six of eight groups have only a

single member, whereas Groups IV and V have multiple proteins

in each of the insect species. Group IV, the most divergent group,

contains eight chitinase and chitinase-like proteins from An.

gambiae, six of which are encoded by genes clustered on

chromosome 2L, whereas the other two are localized on

chromosomes 3L and 3R (Table 3). AgCht5 appears to be a gene

cluster that comprises five different genes that are closely located

on chromosome 2R. These genes are likely to be derived from

tandem duplications [33]. These results imply that gene

duplications and functional divergence resulted in the large

number and high diversity of chitinase and chitinase-like genes

in different species of insects.

The putative proteins encoded by these chitinase and chitinase-

like genes were predicted to have a multiple-domain organization

that includes 1, 2 or 4 catalytic domains; 0, 1, 4 or 5 chitin-

binding domains; 0 or 1 leader signal peptide or transmembrane-

spanning domain and linker regions. The domain organizations

of the chitinase and chitinase-like proteins in all eight groups from

An. gambiae showed high similarity to those from T. castaneum

except for some slight differences [31] as follows. The domain

organization of AgCht5-1 from Group I is the same as that of

TcCht5. However, An. gambiae, Ae. aegypti and C. quinquefasciatus

appear to have 4, 3 and 2 more chitinase 5 proteins as compared

to those in T. castaneum and D. melanogaster. The differences in

domain organization of the Group II chitinases (Cht10 s) between

T. castaneum and mosquitoes have been described in a recent

review [31]. The AgCht7 protein in Group III has two N-

terminal transmembrane domains, whereas only one transmem-

brane domain is found in the T. castaneum ortholog. In contrast,

Figure 6. Expression profiling of chitinase and chitinase-like
genes in different tissues of An. gambiae larvae as evaluated by
RT-PCR. Foregut (FG), midgut (MG), hindgut (HG) and carcass (CA).
doi:10.1371/journal.pone.0019899.g006
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AgCht11 in Group VIII lacks the N-terminal transmembrane

domain that is found in T. castaneum Cht11. The most divergent

Group IV chitinases of An. gambiae, D. melanogaster and T. castaneum

also showed high complexity in their domain organizations. All of

the 14 chitinase and chitinase-like T. castaneum chitinases in

Group IV have a leader signal peptide, whereas in An. gambiae

only 4 of the 8 chitinase and chitinase-like proteins have a signal

peptide. Again, the lack of a signal peptide in the remaining

chitinase and chitinase-like proteins could be due to its true

absence and/or failure of our predictions by using the SignalP

program software. In addition, AgCht9, one member in Group

IV, has two catalytic domains but no signal peptide, whereas its

counterpart in T. castaneum has only one catalytic domain and the

signal peptide. Thus, An. gambiae has three chitinases with more

than one catalytic domain, whereas T. castaneum has only two.

The phylogenetic analysis and the high similarity of the domain

organization of the chitinases belonging to the various groups of

chitinases from these two insect species suggest that all of these

chitinase proteins evolved from a common ancestor. The

preservation of the eight distinct groups with characteristic

domain organizations in mosquitoes and the beetle indicates that

the appearance of these distinctive groups of chitinases probably

predates the separation of the coleopteran and lepidopteran

lineages of insects [25,31].

Stage-dependent expression of these chitinase genes demon-

strated substantial differences in expression patterns of individual

groups of chitinase and chitinase-like proteins and even between

members of the same group with multiple members (Figure 4).

The genes encoding chitinase and chitinase-like proteins belonging

to Groups I, II, III, V, VI, VII and VIII were expressed in nearly

all of the developmental stages from eggs through adult stages with

different expression levels, whereas the genes encoding the

proteins belonging to Group IV exhibited a high complexity of

expression patterns. For example, some genes were only expressed

during the larval stages (AgCht13), whereas other genes were

expressed only in the L4 stage (AgCht12) or pupal and adult

(AgCht8) stages.

The insect chitinase and chitinase-like genes also differed in

their tissue-specific expression patterns (Figures 6 and 7). In T.

castaneum, it appears that all of the Group IV genes are expressed in

larval gut tissue, but not in the carcass (whole body minus gut and

head) [31]. However, the expression pattern in An. gambiae Group

IV genes was distinctly different. In An. gambiae all of the Cht genes

of this group were expressed in the foregut including AgCht9 and

AgCht13, which were expressed at a lower level than in the midgut.

However, it is difficult to separate cleanly the foregut from the

midgut by dissection because the mosquito larval foregut is very

small and the gastric caecum (GC) belonging to the midgut is often

cut off from the midgut and remains with the foregut. Thus, we

cannot be sure that the transcripts detected in the foregut truly

represent those genes expressed only in the foregut. Similarly, we

cannot assign the expression of each chitinase or chitinase-like

gene to specific tissues comprising the carcass, which included the

fatbodies, trachea, muscle and other tissues.

Nevertheless, one of the most interesting questions about insect

chitinases is why insects need such a large number of chitinase and

Figure 7. Relative expression of selected AgCht genes in different tissues of An. gambiae larvae as determined by qPCR. Same letters
on the error bars indicate no significant difference based on Fisher’s LSD test (P$0.05). The ribosomal S3 (AgRPS3) gene was used as a reference gene.
doi:10.1371/journal.pone.0019899.g007
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Figure 8. Immunohistochemical localization of selected chitinase proteins expressed in An. gambiae pupae. A) A paraffin-embedded
thin section of a whole pupa showing the overall structure and corresponding regions where chitinases were detected in immunohistochemical
analysis as shown in Panels B, C and D. B) Chitinase detected in the abdominal tip and the tail paddles of a pupa by anti-Manduca sexta chitinase 5
polyclonal antibodies (anti-MsCht5) as shown by green color. C) Chitinase detected in certain parts of thorax and developing legs of a pupa by anti-
MsCht5 as shown by green color. D) Chitinase detected in the ommatidia of a compound eye by anti-sand fly (Lutzomyia longipalpis) chitinase 8 (anti-
sand fly Cht8) polyclonal antibodies as shown by green color.
doi:10.1371/journal.pone.0019899.g008
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chitinase-like proteins to degrade chitin. In insects, chitin

polymorphically occurs in three different crystalline forms, a, b,

and c chitin, that differ in the degree of hydration, in the size of

the unit cell and in the number of chitin chains per unit cell [1]. It

is possible that insects use different chitinases to efficiently degrade

different types of chitin and modified forms such as partially

deacetylated chitin. The large number of chitinases expressed in

the gut may have digestive and/or immune functions. One

supporting piece of evidence for functional diversity among

chitinases comes from the fact that there are substantial differences

in biochemical properties of chitinase-like proteins belonging to

different groups including pH optima and kinetic constants for

oligomeric versus polymeric substrates [34,35].

Furthermore, different forms of chitin could occur in different

extracellular structures at different developmental stages. For

example, in addition to the chitin in the exoskeleton and

peritrophic matrix (PM), chitin and chitin-like material has

recently been reported in mosquito eggshells, embryos, ovaries

and compound eyes [36]. Different forms of chitin occurring in

different extracellular structures may be efficiently degraded by

different chitinases. In insects, a compound eye is formed with

numerous ommatidia and a part of the ommatidial surface has

capacity for secreting chitin because each ommatidium may be

regarded as an open pit of the octoderm [37]. As expected, our

immunohitochemical anlaysis showed a selective expression of a

chtinase protein in the ommatidia of the compound eyes in the

mosquito (Figure 8). All these results further suggest the specialized

functions of different chitinases in different tissues.

One special characteristic of mosquitoes is that they utilize two

types of PMs, a type 1 PM lining the adult midgut that is blood-

meal inducible and a type 2 PM lining the larval midgut and

constitutively expressed during the whole larval feeding stage.

Type 1 and type 2 PMs are different in their thickness and other

physiological properties [38]. Our results revealed specialization

between two midgut-specific chitinase genes, AgCht8 and AgCht13,

as a function of developmental stage. The former is predominately

expressed in the pupal and adult stages, but not in the larval stages,

whereas the latter is exclusively expressed in the larval stages.

These findngs further reinforce the biological significance of the

diversity and complexicity of chitinase and chitinase-like genes in

mosquitoes. However, additional work is needed to address

whether these two chitinases have specialized biochemical

properties designed for the turnover of the two types of PMs in

the adult versus larval stages of An. gambiae.

In summary we have demonstrated that An. gambiae chitinase

and chitinase-like genes differ significantly in their size, gene

structure, domain organization and expression patterns at different

developmental stages and in different tissues. All of these results

suggest that these genes belonging to different groups or even

members within the same group may have distinctly different

biological functions. This hypothesis is supported by different

physical, chemical and enzymatic properties of different chitinase

and chitinase-like proteins from T. castaneum and other organisms

[34,35]. This notion is further supported by recent studies showing

different phenotypes after different chitinase genes were silenced

by RNAi in T. castaneum [25]. It appears that Group I and Group

II chitinase genes are involved in molting and that Group III genes

have a morphogenetic role in regulating abdominal contraction

and wing expansion. Some of the members in Group V have been

shown to affect cell proliferation in imaginal disks [25]. Although

we also performed RNAi for selected chitinase genes in An. gambiae

by the injection of dsRNA for specific chitinase genes into fourth

Table 3. Predicted numbers of amino acid residues and presence (+) or absence (2) of chitin-binding domains of the proteins
putatively encoded by the chitinase and chitinase-like genes, availabilities of expressed sequence tags (ESTs) in GenBank database
and the localization of the genes in A. gambiae genome.

Gene name Amino acid residues Chitin-binding domain Availability of EST Chromosomal localization

AgCht2 485 2 2 chr2L:17,484,432–17,488,543

AgCht4 477 + + chr2L:13,688,629–13,690,127

AgCht5-1 571 + + chr2R:21,584,333–21,587,318

AgCht5-2 412 2 + chr2R:21,582,374–21,583,826

AgCht5-3 413 2 + chr2R:21,578,829–21,580,211

AgCht5-4 409 2 + chr2R:21,576,773–21,578,085

AgCht5-5 446 2 + chr2R:21,573,544–21,574,884

AgCht6 3045 + + chrX:3,235,497–3,246,126

AgCht7 1017 + + chr2L:39,004,840–39,009,056

AgCht8 525 + + chr2L:31,040,019–31,041,796

AgCht9 789 2 + chr3L:13,859,882–13,862,726

AgCht10 2402 + + chr3R:24,101,945–24,110,279

AgCht11 428 2 + chrX:7713939–7717183

AgCht12 382 2 2 chr2L:25,704,430–25,705,882

AgCht13 388 2 + chr2L:4,327,860–4,329,091

AgCht16 354 2 + chr3R:25,026,860–25,027,921

AgCht23 442 + 2 chr2L:13,682,087–13,683,505

AgCht24 360 2 + chr2L:27,626,337–27,627,404

AgIDGF4 447 2 + chr3R:4,938,228–4,939,922

AgIDGF2 439 2 + chr3R:4,934,452–4,937,215

doi:10.1371/journal.pone.0019899.t003
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instar larvae, we did not observe any phenotype due to the lack of

or only a limited RNAi response in the larvae (data not shown).

Nevertheless, the high diversity and complexity of the chitinase

and chitinase-like genes suggest their diverse functions during

different developmental stages and in different tissues of An.

gambiae. Our study has provided important information for further

investigations on the functions of chitinase and chitinase-like genes

in this important malaria vector and other arthropod species.
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