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Background. Lactobacillus plantarum is widely used in the manufacture of dairy products, fermented foods, and bacteriocins. The
genomes of the strains contain multiple genes which may have been acquired by horizontal gene transfer. Many of these genes are
important for the regulation, metabolism, and transport of various sugars; however, other genes may carry and spread virulence and
antibiotic resistance determinants. In this way, monitoring these genomes is essential to the manufacture of food. In this study, we
aim to provide an overview of the genomic properties of L. plantarum based on approaches of comparative genomics. Results. The
finding of the current study indicates that the core genome of L. plantarum presents 1425 protein-coding genes and is mostly
related to the metabolic process. The accessory genome has on average 1320 genes that encodes protein involved in processes as
the formation of bacteriocins, degradation of halogen, arsenic detoxification, and nisin resistance. Most of the strains show an
ancestral synteny, similar to the one described in the genomes of L. pentosus KCA1 and L. plantarum WCFS1. The lifestyle
island analyses did not show a pattern of arrangement or gene content according to habitat. Conclusions. Our results suggest
that there is a high rate of transfer of genetic material between the strains. We did not identify any virulence factors and
antibiotic resistance genes on the genomes. Thus, the strains may be useful for the biotechnology, bioremediation, and
production of bacteriocins. The potential applications are, however, restricted to particular strains.

1. Background

Lactobacillus plantarum is a facultative heterofermentative
lactic acid bacteria (LAB). It may obtain energy from differ-
ent sugars, and it occupies an adaptive nutrient-rich niche
such as gastrointestinal, vaginal, and urogenital tracts, vege-
tables, dairy products, and fermented foods [1–6]. This bac-
teria also carries relevant properties for not only the
manufacture of a variety of food and wine but also vitamin
production, bacteriocin, probiotic, antifungal, and potential
anticaries agents [7–11]. In general, LAB has reduced
genomes, but L. plantarum presents a larger genome with
numerous genes, which have been acquired by horizontal
gene transfer (HGT) mainly via mobile elements (prophages,
plasmids, transposons, and integrons) [12, 13].

L. plantarum strains are capable of producing different
antimicrobial compounds, suchashydrogenperoxide, organic
acids (primarily lactic and acetic acid), antiaflatoxigenic,

and bacteriocins [14–16]. The latter act against a wide
range of bacterial pathogens, in the broad and narrow spec-
tra [17, 18]. The plantaricins (or two-peptide bacteriocins)
are usually produced by L. plantarum and include the plan-
taricins J51, JK, and EF [19–21].

Kleerebezem et al. [12] and Molenaar et al. [22] described
in the L. plantarum WCFS1 genome a region known as the
lifestyle island. It may have been acquired by HGT and is
divided into two subregions of approximately 150 kb and
190 kb and contains several genes critical for the regulation,
metabolism, and transport of sugars.

Mobile genetic elements are segments of DNA that can
move within and between bacteria. They are potential dis-
seminators of virulence factors and determinants of antibi-
otic resistance (AR). Several of these elements are found in
the genomes of L. plantarum [23–27]; therefore, it is essential
to screen these unwanted genes in the new strains. Previous
studies have reported that AR genes have already been
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described in L. crispatus, L. gasseri, L. reuteri, and L. plan-
tarum although their strains are considered safe in the
United States through the Generally Recognized as Safe
(GRAS) designation [28–35].

The aim of the paper is to provide an overview of the
structural and genomic properties of L. plantarum genome
strains available in the GenBank sequence database. We used
complete genomes for avoiding the underestimation of gene
content [36, 37]. The results show that the great majority of
the mobile elements are Sha1 and Phig1 bacteriophages, orig-
inally isolated from L. plantarum [38, 39]. It suggests a high
gene transfer rate between the strains. The outcomes also
suggest a great potentiality in producing bacteriocins, except
for the strains 16 and Zhang-LL. Therefore, the various
applications of strains are unequivocal. In addition to their
recognized applications, the strains may be useful to the
pharmaceutical industry, in the bioremediation of haloge-
nated pollutants and arsenic-rich soils.

2. Methods

2.1. Complete Genomes. The genome data was available in the
NCBI (National Center for Biotechnology Information)
(https://www.ncbi.nlm.nih.gov). Details regarding the identi-
fication and source of the samples used are in the additional
file Table S1. Prokka version 1.12-beta [40] with the
arguments kingdom Bacteria, and genus Lactobacillus was
used for verifying the genome annotations.

2.2. Prediction of CRISPR Sequences and Mobile Elements.
CRISPR sequences, mobile elements, genomic islands, and
resistance genes were obtained via CRISPRFinder (http://
crispr.i2bc.paris-saclay.fr/Server/) and PHAge Search Tool
Enhanced Release (PHASTER) (http://phaster.ca) [40, 41]
under the references intact score > 90, questionable score
70-90, and incomplete score < 70.

CARD (Comprehensive Antibiotic Resistance Database)
(http://arpcard.mcmaster.ca/) was used to predict the resis-
tome under the BLAST (Basic Local Alignment Search Tool),
and RGI (Resistance Gene Identifier) (under Perfect hit,
rigorous hit alone, and Perfect, Strict, and Loose hit cri-
teria) [42]. The ResFinder 3.0 server (https://cge.cbs.dtu.dk/
services/ResFinder/) was used to identify acquired antimicro-
bial resistance genes and/or chromosomal mutations [43].

2.3. Pan-genome. BPGA (Bacterial Pan Genome Analysis)
tool [44] version 1.3 was used to identify core, accessory,
and unique protein families. It was also used to search for
the presence or absence of genes, phylogenetic inference,
and atypical GC content and for mapping gene functions
based on COG (Clusters of Orthologous Groups of proteins).
The orthologous clusters were generated via USEARCH
9.2.64 (identity cut off = 50%) [45]. MUSCLE generated the
alignments and the phylogenies [46], and gnuplot 4.6.6
(https://sourceforge.net/projects/gnuplot/files/latest/
download source code freely distributed) was applied to plot
the graphs [47].

2.4. Multiple Genome Alignment. Mauve, under progressive-
Mauve, was used to perform the synteny analyses and the

multiple genome alignments (default setting) [48, 49]. L. pen-
tosusKCA1 was used as the outgroup. Another analysis using
the last subregion of the lifestyle island was also performed.
In this, the value of minimal LCBs was equal to 1000.

3. Results and Discussion

3.1. Mobilome and Resistome. The results obtained via PHA-
STER showed that the sequences of bacteriophage origin
have about 151 kb, i.e., about 48% of the size of the L. plan-
tarum genomes. Bacteriophage proteins (DNA packaging
protein, holin protein, lysin, tail, capsid, protease, terminase,
and integrase) and hypothetical proteins were the most fre-
quent (about 91%). The bacteriophages most encountered
were Sha1 and Phig1, both isolated from L. plantarum [34,
35] as shown in Figure 1 and the additional file Table S2.

Nine of the 49 genomes display the CRISPR-Cas system
(class 2, type II with four genes, cas9, cas1, cas2, and cns2,
as found in Streptococcus thermophilus) [50]. These strains
are from fermented foods (LY-78, MF1298, ZS2058, and
TS12), raw milk (LZ206 and LZ227), an environmental sam-
ple (CLP0611), faeces of a newborn (ZJ316), and a cell cul-
ture (CGMCC 1.557). Length of the CRISPR sequence
varies from 300 to 2111 bp, and the number of CRISPR
spacers was four to 31. The degenerate repeat DR-

consensus (5′-GTCTTGAATAGTAGTCATATCAAACA

GGTTTAGAAC-3′) was equally reported in the L. pentosus
MP-10 and L. pentosus KCA1 genomes [51, 52]. Evaluation
of the spacer sequences revealed several invasion events by
Lactobacillus bacteriophages (from L. alimentarius DSM
20249, L. brevis 925A, and L. helveticus FAM8627) and
mainly by L. plantarum bacteriophages. This result is consis-
tent with what was obtained via PHASTER and suggests that
the CRISPR-Cas system is not the primary defence against
bacteriophage invasion (additional file: Table S3). According
to Abriouel et al. [51], the presence of bacteriophages may
provide some selective advantage to the bacterial cell, by
helping in the fight against other prophage infections. The
domestication of of mobile genetic elements, which is useful
for different bacterial processes, has been described [53–56],
and it may also be applied to Lactobacillus, including
L. plantarum.

ResFinder, CARD, and PATRIC did not indicate
potential antibiotic resistance or virulence determinants.
Most L. plantarum strains have putative genes annotated
as antibiotic resistance genes or a virulence factor (such
as the putative formate acetyltransferase 3-ybiW gene or
mdxE-maltodextrin ABC-transporter protein gene), but
they seem to be only spurious partial hits [40], which may
exert other cellular functions. AR genes were not detected
in the plasmids, as well.

3.2. Pan-genome. On average, the genomes present 2917
protein-coding genes, 1425 of which belong to the core
genome. Most core orthologous groups (OGs) are related to
metabolism. OG distribution in COG categories is shown in
Figure 2. This result is not surprising, due to the lifestyle
island [3, 4, 57]. Other important OGs from the core genome
are protein-coding genes involved in the synthesis of
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exopolysaccharides (EPS), histidine protein kinase (HPK),
L-2-haloacid dehalogenase, sortase A (srtA), and fibrinogen-
binding. They are essential genes to the synthesis of plantar-
icin and degradation of halogenated compounds and for
host-bacterial interaction [58–64].

Hpk6, hpk7, and hpk11 proteins, belonging to histidine
protein kinase (HPK), have a regulatory function in the syn-
thesis of plantaricins and are therefore crucial to the strains
[61]. The deh gene encodes an L-2-haloacid dehalogenase,
an enzyme that degrades halogenated compounds present
in drugs and environmental pollutants such as chloroben-
zene, chlorocyclohexane, chloroalkane, and chloroalkene
[62]. This enzyme presents applications in chemical indus-
tries, bioremediation, and sustainable chemistry [60, 61].
Results obtained for the pan-genome are shown in the addi-
tional file Table S4.

Genome analysis indicates that an efficient system for
arsenic detoxification is restricted to L. plantarum WCFS1.
This mechanism is regulated by the arsR gene and depends
on ArsD, ArsA, and ArsB proteins [12, 65]. The other strains

contain only arsC and arsR genes, and therefore, they have
the arsenic partial detoxification [64].

The nisin (nsr) gene is found in all strains analyzed in this
study but encodes a protein truncated in ten strains (16, 5-2,
JDM1, MF1298, p-8, ST-III, TMW 1.25, TMW 1.277,
WCFS1, and ZJ316). In a similar way, Sun et al. [66]
described in L. lactis a truncated nisin protein, with the activ-
ity reduced. Hence, it is expected that these strains also show
a reduced nisin activity.

The production of vitamins in the food industry is greatly
exploited by food biotechnology. However, L. plantarum is
deficient in the production of vitamin B complex biotin
(B7), niacin (B3), pantothenate (B5), and pyridoxine (B6)
[67, 68]. But it produces large amounts of folate (B9)
[69, 70]. Folate gene clusters are described by Kleerebezem
et al. [12] in the L. plantarum WCFS1 genome. This cluster
presents nine genes (folA, folB, folC1, folC2, folD, folE, folK,
folP, and folQ) identified in the core genome of all strains
analyzed here. In contrast, the presence of the ribo genes
(ribA, ribB, ribD, and ribH) required for riboflavin synthesis
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Figure 1: Types of prophage detected in L. plantarum genomes.
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Figure 2: Pan-genome prediction. (a) core, accessory and unique genes into the functional standard of the COG; (b) the specific distribution
of the genes into 20 COG categories.
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is restricted to ten strains (the ATCC 8014, JDM1, KC28,
LPL-1, TMW 1.25, TMW 1.277, TMW 1.708, TMW
1.1623, X7021, and ST-III strains) originally isolated from
food. Other strains present a rib operon incomplete and
probably do not produce riboflavin [71].

Besides the production of nisin and vitamins, the moni-
toring of the production of biogenic amines (BA) by LAB is
also of paramount importance to the food industry. BA, such
as putrescine and spermidine, are nitrogen compounds
formed during the decarboxylation of amino acids by bacte-
ria [72]. They are toxic when accumulated in food processing
and storage, causing human health problems [73, 74]. In this
way, the ability to produce large amounts of BA may be an
obstacle to the use of some LAB. Alan et al. [75] monitored
the ability of L. plantarum JDM1 to produce metabolites
based on the decarboxylase test and its genic content. The
authors concluded that the presence of the glutamate decar-
boxylase (gadB) gene is not enough to produce BA.

In this work, we observed that the gene encoding in the
enzyme glutamate decarboxylase is common to all the strains
analyzed. Another decarboxylase gene, panD (encoded 1-
decarboxylase aspartate), was also found in the L. plantarum
B21, L. plantarum TMW 1.708, and L. plantarum WCFS1
genomes. Based on genomic analysis, it is not possible to
assess whether the amounts of BA produced are deleteri-
ous, but analyses in culture medium show that they are
not [75, 76].

Only one plantaricin (pln) gene was identified in the core
genome. This gene encodes a bacteriocin immunity protein
with 88 amino acids (lp_2952 in reference genome WCFS1).
Other genes are restricted to the accessory genome and
unique gene families. The accessory genome has an average
of 1320 OGs, mostly related to the phosphotransferase sys-
tem (PTS) and biosynthesis of amino acids. PTS proteins
transport substance into the cell, including carbohydrates.
The sugar-specific transport of these proteins explains their
greater genetic representation within the accessory genome
of the L. plantarum strains.

A protein-coding gene involved in the export of bacte-
riocins, the bacteriocin ABC-transporter gene was found
in most samples (except in the Asian strains GB-LP1,
JBE490, LPL-1, LZ206, LZ227, Zhang-LL, and ZJ316). The
mannose-specific adhesin (msa) gene also belongs to the
accessory genome, being present in 22 strains extracted from
different sources (fermented foods, flies, saliva, cell culture,
faeces, environment, and probiotics). In addition, the colla-
gen binding protein (cnaB) gene encodes an adhesion, likely
related to colonisation and competition against pathogenic
bacteria, an important feature of probiotic strains [77–79].

Phylogenetic trees obtained from the pan-genome and
core genome are shown in Figures 3(a) and 3(b), respectively.
The core genome tree recovered better the phylogenetic rela-
tionships between the strains (reference NCBI-Genome Tree
Report: https://www.ncbi.nlm.nih.gov/genome/tree/1108?).
In contrast, the pan-genome tree may show genomic novel-
ties, such as the gaining of new genes by HGT [80, 81]. The
monophyly of the strains extracted from flies and from
potential probiotics was recovered in the phylogenetic trees.
Two branches highlighted in Figure 3(a) indicate strains

grouped according to the geographical location where they
were isolated. L. plantarum LZ206, ZJ316, and LZ227 strains
are from Hangzhou, China, and have the same GC content
(45.2%). The milk strains LZ206 and LZ227 share a CRISPR
spacer (AAACGTTCTATGCTTCGTTTCCTCAGCATC)
and are also the final part of a 74.2 kb foreign fragment. This
may suggest a shift of genetic material between them. The
origin of the cluster formed by L. plantarum TMW 1.25
+TMW 1.277 (monophyletic group), TMW 1.1623, and
TMW 1.708 strains from Germany appears to be more com-
plex than those of the other group. It has a similar CG con-
tent (between 45.2 and 45.4%) but does not have CRISPR
sequences that could indicate recent invasions. Based on bac-
teriophage analysis, we were able to identify that the L. plan-
tarum TMW 1.1623 strain partially shares with L. plantarum
TMW 1.708 a 44.2 kb fragment (on positions 1129520 to
1173731), mainly containing the bacteriophage Lactob_
Sha1 (35) and Lactob_JCL1032 (8), while with the L. plan-
tarum TMW 1.25 and TMW 1.277 strains, it shares in a
region of about 47.3 kb (positions 2074572-2121906), com-
posed mainly of bacteriophages of the types Oenoco_phiS13
(16), Oenoco_phi9805 (15), and Lactob_Lj965 (14).

3.3. Bacteriocin Genes. Twenty-one strains present EF and JK
plantaricin genes, which make up the pln cluster (formed by
25 genes). However, L. plantarum 16, L. plantarum C410L1,
and L. plantarum subsp. plantarum p-8 strains have a frame-
shift in the plnE gene, and thus, the synthesis of EF plantari-
cin by them is questionable. These strains contain IS3 and
IS256 insertion elements (IS) in the middle of the pln cluster,
suggesting that IS may be related to the loss of function in the
plnE gene. The bacteriocin genes present in the strains are
shown in Figure 3(b).

Capy et al. [82], Schneider and Lenski [83], and Eraclio
et al. [84] proposed that IS could have an adaptive function
and play a significant role in the chromosomal rearrange-
ment. This assertion is likely persuasive since IS and trans-
posable elements can inactivate, insert, delete, or displace
operons and gene cassettes, shifting the adaptive value of
the microorganism within its habitat.

Protein-coding genes for class IIb bacteriocin, a lactobin
A/cerein 7B protein, are restricted to CLP0611, JBE245,
LPL-1, LY-78, Z227, and CGMCC 1.557 strains. PLNC8αβ
genes expressed in L. plantarum NC8 [85] were also found
in the genomes of MF1298 (fermented sausage, Norway)
and LZ206 (cow milk, China) strains. PLNC8αβ proved
effective in controlling Porphyromonas gingivalis, a bacte-
rium that causes periodontitis [85, 86]. Thus, products based
on the LZ206 and MF1298 strains may be potentially useful
for the treatment of periodontitis. LPL-1 presents pediocin
PA-1 bacteriocins (class IIa), similar to that found in "Pedio-
coccus acidilactici H".

The origin of some bacteriocins is attributed to defective
bacteriophage proteins, such as the R-type pyocin related to
the P2 bacteriophage, carotovoricin to tail-like bacteriocin,
and monocins to TP901-1-like bacteriophage tails [87–90].
We found no evidence that bacteriocins are bacteriophage-
derived proteins; however, these proteins may be important
in rearrangement and environmental adaptation [72–74].
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3.4. Multiple Genome Alignments. The genomic arrangement
possesses small variations among strains, mainly in the life-
style island (Figure 4). We also conducted a comparative
analysis using the lifestyle island (lp_3131 to lp_3661 posi-
tion genes, using L. plantarum WCFS1 as reference) [3, 4,
23, 91]. The analysis of this genomic region did not show a
pattern associated with the habitat of the strains (Figure 5).
Some arrangements were consistent with the phylogenetic

relationship shown in Figure 3(b), for instance, L. plantarum
ATCC 8014, DOMLa, and JDM1 strains, while other similar
arrangements arose via HGT.

4. Conclusions

L. plantarum strains are potentially useful in biotechnology,
bioremediation, and pharmaceutical products and in the
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Figure 3: Phylogenies based on pangenome analyses of L. plantarum. (a) A phylogenetic tree constructed by pangenome data. The branches
highlighted indicate the geographical locations where the strains were isolated. (b) A phylogenetic tree based on core genome data. The first
box shows which colors correspond to the source of the strains, and the box below described the symbols used here to represent the
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present in most strains.

6 International Journal of Genomics



manufacture of bacteriocins. None of the strains has antibi-
otic resistance genes or virulence factors. But the genomic
screening of new strains is essential because the bacterial
genomes are dynamic entities. HGT seems to play a large role
on genomic innovations, and it may be related to the great
adaptability of the L. plantarum to different ecological niches.
In contrast, we found no evidence on the adaptive role of the
lifestyle island.
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