
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Comparative genomics and evolution of eukaryotic phospholipid biosynthesis

Permalink
https://escholarship.org/uc/item/6hw2202r

Author
Lykidis, Athanasios

Publication Date
2006-12-01
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6hw2202r
https://escholarship.org
http://www.cdlib.org/


 1 

Comparative genomics and evolution of  

eukaryotic phospholipid biosynthesis 

 

Athanasios Lykidis 

 

Genome Biology Program, DOE-Joint Genome Institute, 2800 Mitchell Drive,  

Walnut Creek, CA 94598, U.S.A. 

Tel: 925-2965842; Fax: 925-2965850; Email: alykidis@lbl.gov 

 

Abstract 

Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in 

multiple forms encoded by different genes.  This work utilizes comparative genomics and 

phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic 

genes and pathways in 26 eukaryotic genomes.  Although the basic structure of the pathways was 

formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme 

families followed unique evolutionary courses.  For example, choline and ethanolamine kinases 

and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the 

corresponding phosphatidyltransferases evolved mainly in a lineage specific manner.  

Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for 

the synthesis of phosphatidylglycerol and cardiolipin.  Also, base-exchange phosphatidylserine 

synthases are widespread and ancestral enzymes.  The multiplicity of phospholipid biosynthetic 

enzymes has been largely generated by gene expansion in a lineage specific manner.  Thus, these 

observations suggest that phospholipid biosynthesis has been an actively evolving system.  
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Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases 

and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate 

phosphatase. 

 

1. Introduction 

 

Phospholipids are not only the major constituents of biological membranes but they are 

also active participants in the control of diverse cellular functions such as regulation of enzyme 

and transcriptional activity, signal transduction and information processing, protein folding, 

translocation and trafficking etc.  Phosphatidylcholine (PtdCho), phosphatidylethanolamine 

(PtdEtn), phosphatidylinositol (PtdIns), phosphatidylserine (PtdSer), phosphatidylglycerol (PG), 

cardiolipin (CL), sphingomyelin (SM) and inositolphosphorylceramide (IPC) are the major 

phospholipids in eukaryotes and their percentages differ among cell types and organisms. 

Figure 1 outlines the phospholipid biosynthetic pathways that have been described in 

eukaryotic organisms [1-4].  First, phospholipid biosynthesis starts with the successive acylation 

of sn-glycerol-3-phosphate (G3P) to produce phosphatidic acid (PtdOH).  These two steps are 

catalyzed by specific acyltransferases.  Subsequently, PtdOH is distributed to either CDP-

diacylglycerol (CDP-DAG) or diacylglycerol (DAG).  The partition of PtdOH between CDP-

DAG and DAG is directed by the action of CDP-DAG synthetases (CDSs) and PtdOH 

phosphatases (PAPs).  Once formed, DAG is converted to both PtdCho and PtdEtn by the action 

of CDP-choline:diacylglycerol and CDP-ethanolamine:diacylglycerol phosphatidyltransferases.  

PtdEtn can be also synthesized via the decarboxylation of PtdSer.  On the other hand, CDP-DAG 

is directly converted to PtdIns and phosphatidylglycerol phosphate (PGP).  PGP is subsequently 



 3 

dephosphorylated to phosphatidylglycerol (PG).  Next, two reactions have been described that 

lead to the formation of cardiolipin (CL): one operating in bacteria that utilizes two molecules of 

PG and one operating in eukaryotes synthesizing CL from CDP-DAG and PG.  PtdSer can be 

synthesized either directly from CDP-DAG or via a base-exchange mechanism from PtdCho and 

PtdEtn.  Finally, PtdIns and PtdCho serve as donors of phosphoinositol and phosphocholine, 

respectively, for the formation of the sphingophospholipids inositolphosphorylceramides (IPC) 

and sphingomyelin (SM). 

In this article we employ comparative genomics and phylogenetics to analyze the 

structure and evolution of the phospholipid biosynthetic genes and pathways in eukaryotic 

organisms.  The significant number of available eukaryotic genomes from different phylogenetic 

clades provides the opportunity to explore the evolutionary history of phospholipid biosynthetic 

genes.  The development of model organisms with genetic modifications in specific phospholipid 

metabolism genes necessitates the elucidation of their evolutionary relationships.  This will allow 

for correct extrapolation and proper evaluations of the significance and relevance of the 

phenotypes that are observed in respect from one organism to the others.  Also, analysis of the 

genomic data allows for the full reconstruction of an organism’s metabolism.  Metabolic 

reconstruction is the development of a detailed overview of an organism’s metabolism obtained 

by analysis of the genome sequence.  The application of this methodology to any metabolic 

subsystem necessarily raises questions pertaining to the completeness of the pathways, the 

existence of novel relevant genes, and their correlation to “orphan” steps in the pathways. We 

report here the existence of additional genes that may participate in phospholipid metabolism and 

provide candidates for eukaryotic “orphan” steps, e.g. the conversion of PGP to CL. 
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2. Data sources and methodology 

 

 In the present study we use the genomic sequences for 26 eukaryotes: 6 animals: Homo 

sapiens (Hs) [5, 6], Mus musculus (Mm) [7], Xenopus tropicalis (Xt) (unpublished, 

http://genome.jgi-psf.org/Xentr4/Xentr4.home.html), Takifugu rubripes (Tr) [8], Danio rerio 

(Dr) (unpublished, http://www.sanger.ac.uk/Projects/D_rerio/), and Ciona intestinalis (Ci) [9]; 1 

insect: Drosophila melanogaster (Dm) [10]; 1 nematode: Caenorhabditis elegans (Ce) [11]; 1 

plant: Arabidopsis thaliana (At) [12]; 1 algae: Chlamydomonas reinhardtii (Crh) (unpublished, 

http://genome.jgi-psf.org/Chlre3/Chlre3.home.html); 5 fungi: Saccharomyces cerevisiae (Sc) 

[13], Schizosaccharomyces pombe (Sp) [14], Neurospora crassa (Nc) [15], Aspergillus 

fumigatus Af293 (Af) and Cryptococcus neoformonas (Cn) [16]; 1 ciliate, Tetrahymena 

thermophila (Tt) [17]; 3 apicomplexans: Plasmodium falciparum (Pf) [18], Theileria annulata 

(Ta) [19] and Cryptosporidium hominis (Ch) [20]; 1 slime mold: Dictyostelium discoideum (Dd) 

[21], 1 amoeba: Entamoeba histolytica (Eh) [22]; 3 kinetoplastids: Leishmania major (Lm) [23], 

Trypanosoma cruzi (Tc) [24], and Trypanosoma brucei (Tb) [25]; 1 parabasalid, Trichomonas 

vaginalis (Tv) (unpublished, http://www.tigr.org/parasiteProjects.shtml); and 1 diplomonad, 

Giardia lamblia (Gl) (unpublished, http://gmod.mbl.edu/perl/site/giardia?page=intro).  Figure 2 

illustrates consensus phylogenetic relationships between the organisms used in the current study 

[26].  Genome data was retrieved either from NCBI or Ensemble (http://www.ensembl.org) or 

the individual genome project websites. 

 The queries were either BLAST searches or Hidden Markov Models (HMMs).  HMMs 

are statistical models of the primary structure consensus of a sequence family. One can use these 

models to do sensitive database searches for proteins that contain domains similar to the query 
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model [27].   Multidirectional sequence relationships within multifunctional protein families 

were built using MCL clustering [28, 29].  The collected amino acid sequences were aligned 

using CLUSTALW and unrooted protein parsimony phylogenetic trees were constructed using 

the Phylip set of programs (http://evolution.genetics.washington.edu/phylip.html). 

 

3. CDP-diacylglycerol synthetases (CDSs) 

 

 CDS genes have been identified from a series of eukaryotic organisms: yeast [30], fly 

[31], P. falciparum [32], mouse [33], and human [34-36].  CDS homologues are present in all 

eukaryotic genomes sequenced to date (Fig. 3). 

 There is evidence that CDS expression regulates the phosphoinositide signal transduction 

pathways.  Experiments by Weeks et al [34] suggested that even modest overexpression of 

human CDS1 levels amplifies cellular signaling systems.  Drosophila mutants defective in the 

CDS isoform expressed in the photoreceptor cannot sustain a light-activated current due to rapid 

depletion of PtdIns-4,5-bisphosphate [31].  Furthermore, CDS overexpression increases the 

amplitude of the light response, indicating that CDS regulates the availability of PtdIns-4,5-

bisphosphate to phospholipase C.  Nonetheless, analysis of the D. melanogaster genome 

indicates the existence of only one CDS copy (as well as in genomes of other insects, e.g. 

mosquito and Drosophila pseudoobscura).  Also, analysis of the Expressed Sequence Tags 

(EST) database does not reveal any multiple transcripts originating from this gene.  When 

multiple transcripts arise from an individual gene they are usually captured in the EST projects.  

The above observations question the mechanism by which the mutant flies make PtdIns and 
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other anionic phospholipids and raise the possibility for the existence of a second CDS gene with 

no apparent sequence similarity to the characterized CDSs. 

 C. elegans also has one copy of the CDS gene.  The RNAi phenotypes associated with the 

nematode CDS are larval arrest and lethality [37] and abnormal locomotion [38].  The A. 

thaliana genome has 5 CDS copies, zebrafish has 3, fugu 1 whereas human and mouse have 2.  

Figure 4 presents the evolutionary trajectory of the CDS proteins in eukaryotic organisms.  The 

emergence of four copies in A. thaliana is the result of a lineage-specific expansion of the 

eukaryotic version of CDS.  The fifth form of CDS in A. thaliana (gi|4895237) is very divergent 

from the others and exhibits significant similarity to CDSs from cyanobacteria (40% identity and 

60% similarity, data not shown).  This is indicative of its direct bacterial origin.  According to 

the currently available data, the duplication event that separated mammalian CDS1 from CDS2 

occurred during the transition from insects to fish (500-900 million years ago).  Two copies of 

zebrafish CDS are related to human CDS2 whereas Takifugu has only one CDS copy 

corresponding to human CDS2.  Overall, the data indicate that the multiplicity of CDS isoforms 

has been generated by gene duplication and expansion within major eukaryotic branches.  

 

4. Phosphatidic acid phosphatases 

 

 The conversion of PtdOH to DAG is a key branching point in phospholipid biosynthesis 

which regulates the distribution of the glycerol backbone between PtdCho-PtdEtn and PtdIns-

PG-CL.  Two general classes of PAPs have been described in the literature.  The Mg
2+

-

dependent N-ethylmaleimide (NEM) sensitive form designated as PAP1 [39, 40] and the Mg
2+

-

independent NEM-insensitive form designated as PAP2.  Early biochemical work [41] 
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implicated PAP1 in the de novo synthesis of phospholipids and triacylglycerols (TAG).  It was 

shown that this activity is stimulated by fatty acids and acyl-CoA esters, which cause the enzyme 

to translocate from the cytosol to the endoplasmic reticulum.  Recent work has shown that the S. 

cerevisiae lipin homolog (PAH1) is a PAP1 [42].  Lipin was identified through positional 

cloning as the gene mutated in the fatty liver dystrophy mouse [43].  Null mutation in mouse 

lipin1 causes severe deficiency in adipose tissue mass, development of insulin resistance and 

progressive peripheral neuropathy [44, 45].  On the other hand overexpression of lipin1 in either 

skeletal muscle or adipose tissue promotes obesity [46].  Deletion of PAH1 in yeast causes 

accumulation of PtdOH and reduced levels of TAG consistent with its role as a PAP1 [42].  

RNAi knockdown of the C. elegans unique lipin gene is embryonic lethal [38, 47] and causes 

larval arrest and abnormal locomotion [48]. 

 Figure 5 shows the phylogenetic distribution of lipin homologues in 26 eukaryotic 

genomes and Figure 6 shows the evolutionary relationships between them.  Lipin homologues 

are present in almost all eukaryotic genomes, an observation consistent with the housekeeping 

enzyme activity proposed for lipin.  Only E. histolytica and G. liamblia do not have a lipin 

homolog in the current assemblies.  As we will discuss later, G. liamblia does not appear to have 

CDP-choline and CDP-ethanolamine pathways that require the conversion of PtdOH to DAG 

consistent with the absence of a PAP1 enzyme.  On the contrary, these pathways appear to be 

present in E. histolytica which is inconsistent with the absence of a PAP1 enzyme.  Examination 

of the other two ongoing Entamoeba genomes (Entamoeba dispar and Entamoeba invadens) 

using TBLASTN searches fails to identify any genomic areas that potentially code for lipin 

homologues (data not shown).  On the other hand, E. histolytica contains 14 PAP2 copies in its 

genome (Figure 7) and it may be the case that a PAP2 enzyme operates in de novo 
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dephosphorylation of PtdOH.  Most organisms have one copy of the lipin gene and the 

multiplicity of lipin homologues observed in the human genome arose after the divergence of 

vertebrates.  The data in Figure 6 indicate that (1) the gene duplications producing multiple lipin 

homologues occurred during vertebrate divergence and (2) multiple paralogs have been retained 

in all vertebrates until today indicative of their unique contributions to cell and organism 

physiology.   

 The PAP2 enzymes have been mostly implicated in signaling pathways [49-51].  

Nonetheless, members of the PAP2 family catalyze the formation of IPCs in yeast [52] and 

protozoa [53] as well as the synthesis of SM in higher eukaryotes [54].  The above publications 

refer to the existence of multiple genes coding for these enzymes in select eukaryotic genomes 

and contain comments on their phylogenetic relationships.  For the purpose of the current 

discussion one should note that the multiplicity of these isoforms appears to be generated by 

lineage-specific expansion.    

 A separate phospholipid biosynthetic reaction catalyzed by a PAP2 member has been 

described in bacteria and it is the conversion of PGP to PG catalyzed by the pgpB gene [55, 56].  

E. coli has a second enzyme that participates in PGP dephosphorylation determined as PgpA 

[57].  Moreover, genetic experiments strongly support the existence of a third E. coli gene that 

catalyzes the dephosphorylation of PGP [58].  Although PgpA and PgpB enzymes catalyze the 

same reaction they have no sequence similarity: PgpA homologues are restricted to bacteria 

whereas PgpB belongs to the universal PAP2 family of enzymes.  In contrast to bacteria no 

eukaryotic PGP phosphatase has been described.  Therefore, we explored the possibility of a 

PAP2-type protein being a candidate for the missing eukaryotic PGPP enzyme.  Given the 

almost universal distribution of such enzyme activity we would expect that the encoding gene 
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will be highly conserved and will have a widespread distribution.  Figure 7 shows the 

distribution of PAP2 enzymes in 26 eukaryotic genomes.  We observe a broad distribution of 

PAP2 proteins and only Theileria does not contain any coding sequence with the PAP2 signature 

motif.  The number of PAP2 enzymes per genome ranges from 2 in apicomplexan up to 25 in 

zebrafish.  However, further analysis of these genes reveals that although there are 

uncharacterized PAP2 members they exhibit limited phylogenetic distribution in select 

eukaryotic branches (data not shown) and it is unlikely they code for the housekeeping PGPP 

activity.  These observations suggest that the eukaryotic PGPP enzyme is probably not of a PAP2 

origin, although certain PAP2 enzymes may exhibit non specific PGPP activity.  The most 

promising PGPP candidate is a phosphatase domain fused to the S. pombe CLS gene.  This will 

be described in a subsequent section. 

 The effect of PAP2 enzymes on de novo phospholipid biosynthesis was studied in S. 

cerevisiae.  Deletion of the lpp1 and dpp1 genes in S. cerevisiae caused a decrease in the cellular 

levels of PtdIns and significant increases in PtdOH and PtdEtn levels [59].  These observations 

may be explained by the increase in PtdSer synthase activity which directs the CDP-DAG pool 

towards PtdSer and PtdEtn causing a decrease in PtdIns levels [59].  Nevertheless, S. cerevisiae 

phospholipid metabolism possesses some unique characteristics when compared to mammalian 

cells, especially regarding the metabolism of PtdOH and DAG:  1) the conversion of PtdOH to 

DAG is not the primary route to PtdCho and PtdEtn [3], and 2) S. cerevisiae does not have a 

DAG kinase indicating that the inter-conversion of PtdOH and DAG is distinct when compared 

to other eukaryotic cells.  The topology of the S. cerevisiae LPP1 and DPP1 enzymes locates the 

phosphatase active site on the cytosolic side of the membranes [60]; therefore, changes in the 

enzyme levels may affect de novo phospholipid metabolism.  This is in contrast to the 
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mammalian LPP enzymes whose active sites are facing either the lumen of intracellular 

organelles or the exterior of the plasma membrane and, therefore, they are unlikely to participate 

in de novo biosynthesis [61-63].  

   

5. Choline and ethanolamine kinases (CKs and EKs) 

 

 CKs and EKs (collectively CEKs) catalyze the first step in the CDP-choline and CDP 

ethanolamine pathways for the synthesis of PtdCho and PtdEtn, respectively.  The first CK gene 

was characterized by Uchida et al [64].  Subsequently, a second gene encoding CK was 

identified [65, 66].  Based on the dual specificity of these enzymes towards choline and 

ethanolamine it was considered that ethanolamine specific kinases may not exist.  However, 

work on the Drosphila easily shocked gene pointed to the reality of ethanolamine specific 

enzymes as well as to their potentially significant physiological role [67].  Subsequent work 

demonstrated the existence of two mammalian EK enzymes, EK1 and EK2 [68, 69].  Mice 

deficient in EK2 showed reproductive defects due to extensive placental thrombosis [69].  S. 

cerevisiae also harbors two genes with overlapping CK and EK functions [70, 71].  

Saccharomyces cki1∆∆∆∆,,,, eki1∆∆∆∆ mutants and cki1∆∆∆∆eki1∆∆∆∆ double mutants did not have a growth 

phenotype, although only the cki1∆∆∆∆    mutants suppressed the lethal phenotype of a sec14 mutant 

[71].  Multiple CKs have been also identified in C. elegans [72].  

 Figure 8 shows the distribution of CEK family members in 26 eukaryotic organisms and 

Figure 9 depicts their phylogenetic relationships.  The content of eukaryotic genomes in CEKs 

varies between one and nine members.  Several unicellular eukaryotes, including two fungi, have 

only one member of this enzyme class.  The two fungi with a single kinase component are S. 
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pombe and C. neoformans.  As it will be obvious from the subsequent discussion these two 

organisms have the other components of both CDP-choline and CDP-ethanolamine pathways 

indicating that the single kinase is apparently a bifunctional enzyme.  T. vaginalis and G. 

liamblia also have one copy of a CEK gene.  However, G. liamblia when compared to T. 

vaginalis does not have the other two components of the CDP-choline and CDP-ethanolamine 

pathways (cytidylyltransferase and phosphatidyltransferase) suggesting that its CEK may be 

operating in a different pathway.   T. annulata has nine members of this family and seven of 

them (TA14375, TA14380, TA14385, TA14390, TA14405, TA14410, and TA14415) are 

located adjacent on the chromosome.  C. elegans and A. thaliana have seven and five CEKs, 

respectively.  The phylogenetic analysis (Figure 9) indicates that most of these isoforms are 

related to CKs.  In the case of C. elegans six proteins (B0285.8, B0285.9, B0285.10, F22F7.5, 

C28D4.2, C52B9.1) group together forming a robust phylogenetic clade indicating their 

emergence by amplification of a single gene.   B0285.8, B0285.9, and B0285.10 are located 

adjacent on chromosome III.  A. thaliana has four CK homologues that form a coherent 

phylogenetic clade indicating also their emergence from a single gene.  In both cases these 

enzymes are clearly related to CKs.  Both C. elegans and A. thaliana have one member of the 

EK family (T27A10.3 and gi|15225800, respectively).  RNAi experiments targeting T27A10.3 

have no observed phenotype.  From the six Caenorhabditis CK members only B0285.8, B0285.9 

have RNAi associated phenotypes.  RNAi targeting of B0285.8 reduces fat content [73] whereas 

targeting of B0285.9 causes maternal sterility [74].  The separation between CK and EK families 

appears to be an early event in eukaryotic evolution: kinetoplastid enzymes are most related to 

CKs whereas Dictyostelium and Entamoeba enzymes are included in the EK family.  On the 

other hand, each gene follows unique evolutionary courses within major lineages with the most 
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notable example the significant expansion of the CK members in Theileria, Caenorhabditis and 

Arabidopsis. Overall, the data is consistent with the idea that the multiplicity of enzyme isoforms 

is generated by lineage-specific expansion of certain genes. 

 

6. Choline and ethanolamine cytidylyltransferases (CCTs and ECTs). 

 

 CCTs and ECTs constitute the second step in the CDP-choline and CDP-ethanolamine 

pathways for the synthesis of PtdCho and PtdEtn, respectively.  Genes encoding CCT enzymes 

have been characterized in several eukaryotic organisms.  Human and mouse have two distinct 

genes: Pcyt1a coding for CCTα and Pcyt1b coding for CCTβ1, −β2, and -β3 isoforms [75-79].  

S. cerevisiae has one CCT gene [80].  CCT genes from C. elegans [81], D. melanogaster [82], A. 

thaliana [83] and P. falciparum [84] have also been reported.  ECT genes have been identified in 

several eukaryotic species: yeast [85], human [86], rat [87] and the algae C. reinhardtii [88].  

Disruption of CCT genes has distinct phenotypes: deletion of mouse CCTα results in early 

embryonic lethality [89] whereas mice with impaired CCTβ2 expression are viable but have 

gonadal dysfunction and reduced fertility [90].  Disruption of the D. melanogaster CCT1 gene 

results also in a reproductive phenotype [91] attributed to aberrant membrane trafficking of 

ovarian growth and differentiation factor receptors [92].  S. cerevisiae CCT and ECT mutants are 

not essential for viability [80, 86] indicative of the dominant role of the CDP-DAG route to 

phospholipid biosynthesis in this organism [93].  However, only CCT mutants suppressed the 

lethal sec14 phenotype [93].  

 Figure 10 illustrates the phylogenetic distribution of CCT and ECT enzymes in the 26 

eukaryotic genomes.  The distinction between CCT and ECT is based mainly on the number of 
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cytidylyltransferase domains present in a coding sequence: if 1 domain is present the enzyme is 

considered as a CCT whereas if 2 domains are present it is assigned as an ECT.  T. annulata and 

P. falciparum constitute an apparent exception since the corresponding CCTs have two 

cytidylyltransferase domains.  The P. falciparum CCT enzyme characterized by Yeo et al [84] 

consisted of one cytidylyltransferase domain, however, the genome sequence of all Plasmodia 

and Theilerias suggests that the gene has actually two domains and is expressed as one gene.  

Most multicellular organisms have the common profile of 2 CCTs and one ECT (H. sapiens, M. 

musculus, X. tropicalis, D. melanogaster, A. thaliana).  However, fugu fish and worms have one 

additional copy of both CCT and ECT (the locus tags for the three C. elegans CCT genes are 

F08C6.2, Y18H1A.11, and F28A10.10, whereas for the two ECTs are Y37E3.11 and C39D10.3).  

In the case of C. elegans searching through the EST data confirms the expression of 4 genes.  

The third CCT gene (F28A10.10) has no corresponding ESTs and, therefore, its expression is 

uncertain.  The C. elegans genes have been targeted in whole genome RNAi experiments which 

mostly scored phenotypes related to maternal sterility, movement abnormality, lethality and 

morphology [37, 38, 48, 94].  Worms with compromised expression of F08C6.2 (which is the 

CCT previously characterized [81]) were arrested at late larval stage and had abnormal 

locomotion whereas the second CCT gene (Y18H1A.11) gave no obvious changes for the 

checked phenotypes.  RNAi targeting of both ECT genes also gave no change in phenotype 

indicating a possible redundancy in their function.  The above data are available at the C. elegans 

database, http://www.wormbase.org. 

 Most of the unicellular eukaryotes have a common distribution of one CCT and one ECT 

gene except E. histolytica and T. thermophila which appear to have two copies of ECT-like 

genes.  Kinetoplastid protozoa (T. cruzi, T. brucei, and L.major) have two genes, one with two 
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domains (ECT) and one with a single cytidylyltransferase domain fused to a 

phosphatidyltransferase.  The cytidylyltransferase (CT) – phosphatidyltransferase (PdT) fusion 

enzymes are: T. cruzi, gi|71409321; T. brucei, gi|71748856; L. Major, gi|68125996.  The 

existence of these fusion proteins in ancestral eukaryotes raises the possibility that they may 

constitute the ancestral form of CDP-choline and CDP-ethanolamine pathways.  T. vaginalis has 

four coding sequences with a cytidylyltransferase domain: one that has two adjacent domains 

and it is an apparent ECT whereas the other three sequences have similarities to the 

nucleotidyltransferases involved in NAD and coenzyme A biosynthesis. Furthermore, 

phylogenetic analysis suggests that T. vaginalis has an ECT and does not have a CCT (Figure 

11).  This conclusion is in agreement with experimental evidence that failed to label choline 

phospholipids (PtdCho, LysoPtdCho and SM) with [
32

P]orthophosphate [95] suggesting that a 

CDP-choline pathway is not present in this organism.  G. lamblia has three coding sequences 

with a single nucleotidyltransferase sequence signature.  None of these appear to be either a CCT 

or an ECT rather they are related to the nucleotidyltransferases involved in NAD and coenzyme 

A biosynthesis.  As we will discuss in the subsequent section on phosphatidyltransferases, G. 

lamblia is also missing CPT and EPT homologues.  These observations suggest that G. lamblia 

has no operational CDP-choline and CDP-ethanolamine pathways. 

 The existence of CCTs and ECTs in a range of eukaryotic organisms allows us to 

approach questions about their evolutionary origin: which gene or domain appeared first in 

evolution and what has been the evolutionary course of this family?   To investigate these 

questions we constructed a phylogenetic tree of the cytidylyltransferase domains of all CCT and 

ECT family members.  Since ECT proteins consist of two cytidylyltransferase domains we 

designated domain A the N-terminal one and domain B the C-terminal.  Each domain was 
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handled as a separate entry in the analysis.  Figure 11 shows the evolutionary relationships 

between the 3 cytidylyltransferase domains: the CCT domain, the ECT domain A and the ECT 

domain B.  The topology of the tree indicates that ECT domain B is clearly related to ECT 

domain A and appeared early in eukaryotic evolution since homologues exist in ancestral 

eukaryotes such as T. vaginalis.  An intriguing observation relates to the location of the 

kinetoplastid cytidylyltransferase domain originating from the CT-PdT fusion proteins.  This CT 

domain is phylogenetically related to ECT domain B.  This supports a hypothesis that the CCT 

and ECT enzymes emerged from ancestral eukaryotic CT-PdT fusion proteins.  ECT domain B 

was generated from the CT domain of the fusion protein and was subsequently duplicated to give 

rise to ECT domain A.  According to this model, CCTs originated from ECT domain A, which is 

also consistent with the higher similarity between them (data not shown).  As it will be discussed 

in the subsequent section and consistent with the above model, the PdT domain of the 

kinetoplastid CT-PdT fusion proteins appears to be the origin of the CEPT family of eukaryotic 

enzymes (Figure 14). 

 Furthermore, the phylogenetic analysis indicates that the generation of multiple CCT 

isoforms in higher eukaryotes also occurred in a lineage-specific manner.  For example, the 

Drosophila CCT1 and CCT2 enzymes arose from gene duplication within the Drosophila clade 

after the separation of the insect lineage.  The same holds true for the CCT genes of 

Caenorhabditis.  The duplication event that gave rise to mammalian CCTα and CCTβ forms 

occurred approximately 400 million years ago after the separation of the fish lineage. 

 

7. Phosphatidyltransferases (PdTs) 
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 7.1 Phosphatidyltransferases determine the diversity of phospholipid structures. 

PdTs catalyze the final phospholipid producing reaction and belong to two large families in 

terms of sequence characteristics:  CDP-alcohol phosphatidyltransferases (CA-PdTs) and 

phospholipase D-like phosphatidyltransferases (PLD-PdTs).  A CA-PdT (PGS) catalyzes the 

synthesis of PGP in bacteria [96].  The eukaryotic PGSs (e.g. from S. cerevisiae and Chinese 

hamster ovary cells) that have been reported previously belong to the PLD-PdT family [97, 98], 

although the plant enzyme is a CA-PdT and resembles the bacterial ones [99, 100].  PGP is 

dephosphorylated to PG [101], which in turn is the precursor to CL [101].  Two reactions have 

been described that synthesize CL.  The bacterial reaction as exemplified by E. coli utilizes two 

molecules of PG and is catalyzed by a PLD-PdT enzyme [102].  In contrast, the eukaryotic 

enzymes, isolated from yeast and human, belong to the CA-PdT family [103-106].  CA-PdTs in 

Bacillus subtilis, Helicobacter pylori and S. cerevisiae catalyze the synthesis of PtdSer [107-

109], while E. coli utilizes a PLD-PdT enzyme [110].  PtdIns is synthesized by a CA-PdT-type 

PIS and several eukaryotic as well as bacterial (Mycobacterium tuberculosis) enzymes have been 

characterized that belong to the CA-PdT family [35, 111-114].  The synthesis of PtdCho from 

CDP-DAG and choline has been recently described in Sinorhizobium meliloti and is catalyzed by 

a CA-PdT [115] although it seems that this reaction is confined in bacteria and there are no 

obvious eukaryotic cases for this reaction.  Finally, the two phosphotransferase reactions 

operating in the eukaryotic CDP-choline and CDP-ethanolamine pathways (CPT and EPT, 

collectively C/EPT) are catalyzed by CA-PdTs [116-120].   

 

 7.2 CDP-alcohol phosphatidyltransferases 
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 The genome sequences of 26 eukaryotes were searched with an HMM motif specific for 

CA-PdTs.  A total of 129 genes were identified with a density range of 2 to 8 genes per genome 

(Figure 12).  E. histolytica and T. vaginalis have the largest number (8) of CA-PdT copies in 

their genomes whereas P. falciparum, T. annulata and C. hominis had only two copies.  MCL 

clustering of the 126 CA-PdT genes classifies them in 13 clusters in terms of sequence similarity 

(Figure 13).  The first cluster contains 63 proteins with representatives from all genomes except 

G. liamblia and includes the verified yeast and human CPT, CEPT and EPT genes.  In addition, 

it includes a set of novel CA-PdTs exemplified by the human SelI gene (discussion on the SelI 

gene follows in subsequent paragraphs).  The absence of C/EPT homologues in G. lamblia is 

consistent with the corresponding absence of cytidylyltransferases and indicates that the CDP-

choline and CDP-ethanolamine pathways are not present in this organism.  The second cluster 

corresponds to PIS enzymes and contains 29 sequences with representatives from all 26 

genomes.  A. thaliana, C. rheinhardtii and T. cruzi have two PIS copies.  CLS sequences 

constitute the third cluster, which contains 14 sequences from 14 genomes.  The fourth cluster 

contains the yeast PSS enzyme and includes sequences only from the 5 fungi genomes.  The fifth 

cluster contains the 3 CAPdT-type PGSs found in plants (two from A. thaliana and one from the 

algae C. reinhardtii).  In addition, it contains three Trichomonas and one Giardia CA-PdTs 

suggesting the existence of bacterial-type CAPdT-PGSs in these organisms.  There are seven 

additional clusters with one to four members.  The sixth cluster contains three unique CA-PdTs 

from kinetoplastids T. cruzi, T. brucei and L. major (gi|71664582, gi|71748950, and 

gi|68125941, respectively).  These proteins are 415 amino acids long and exhibit remote 

sequence similarity to other eukaryotic CA-PdTs although they clearly belong to this family.  

The seventh cluster contains the PdT domain of the kinetoplastid CT-PdT fusion proteins 
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described earlier.  The eighth cluster contains two proteins from D. rerio and T. rubripes with 

significant similarity to bacterial PSSs and we will elaborate on them later.  The final four 

clusters (9-12) are one-member sets with sequences from D. melanogaster, G. lamblia, C. 

reinhardtii and T. rubripes.  The Drosophila CG4585 protein is 392 amino acids long and it is an 

insect specific PdT since it has homologues in all insect genomes sequenced until now with no 

apparent homologues in other eukaryotic genomes.  The G. liamblia protein is related to bacterial 

PSSs.  The Takifugu coding sequence is a unique form of CA-PdT with one related sequence 

from another marine organism Strongylocentrotus purpuratus (gi|72044581).  The 

Chlamydomonas protein is a unique protein with low similarity score to the CAPdT HMM 

domain and it may not represent a real PdT. 

 

 7.2.1 C/EPTs and a novel family of eukaryotic PdTs.   

 

 The first cluster in Figure 13 contains all the characterized eukaryotic C/EPTs. In 

addition, it contains a group of uncharacterized CA-PdTs as exemplified by the human SelI 

protein.  SelI (gi|50083289) was first identified as a selenoprotein in a screen to characterize the 

selenoprotein complement of the human genome [121].   The SelI protein is 397 amino acids 

long and its gene spans 9 exons on human chromosome 2.  Based on Unigene information SelI is 

widely expressed in human and mouse tissues and in levels comparable to the ones of CPT and 

CEPT (data not shown).  To investigate the evolutionary history and relationships between the 

CPT, EPT and SelI groups of proteins we performed phylogenetic analysis of 63 proteins by 

calculating protein parsimony trees.  Figure 14 presents the results of the phylogenetic analysis.  

The tree topology indicates that SelI is the human representative of a large CA-PdT subfamily. 
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SelI proteins form a robust phylogenetic group and their copy number differs among genomes.  

Human, mouse, frog, fish and nematodes have only one SelI copy, whereas the fly and the sea 

squirt have two.  It is noteworthy that two SelI homologues can be identified in a kinetoplastid 

genome, i.e. T. cruzi.  Because of the absence of SelI homologues in the phylogenetic space 

between Trypanosomes and multicellular eukaryotes we suggest that SelI enzymes emerged 

during the evolution of multicellularity and their existence in T. cruzi may be attributed to 

horizontal transfer.  RNAi phenotypes associated with the C. elegans homolog of SelI are slow 

growth [37] and larval arrest [122].   RNAi targeting of the two C. elegans C/EPT homologues 

gives distinct phenotypes: F22E10.5 does have any obvious phenotype whereas Y49A3A.1 is 

embryonic lethal or has abnormal fat content [37, 38, 47, 73].  We hypothesize that the most 

probable function for SelI is an ethanolamine-specific phosphotransferase involved in the CDP-

Etn pathway.  The members of the CDP-Etn pathway have appeared early in eukaryotic 

evolution as evidenced by the phylogenetic analysis of EK and ECT.  It is conceivable that a 

specific EPT also emerged during eukaryotic evolution.  Of course the possibility of an as yet 

uncharacterized function for SelI cannot be excluded. 

 The structure of the tree in Figure 14 provides also information on the relationship 

between the experimentally studied yeast and human CEPTs.  It is evident that yeast CPT is most 

closely related to yeast EPT rather to the human CPT and CEPT proteins.  Therefore, the 

multiplicity of the CEPT genes arose from lineage specific duplications.  Human CPT1 and 

CEPT isoforms originated from a duplication event approximately 400 million years ago during 

the emergence of vertebrates.  The C/EPT group of PdTs has undergone a significant expansion 

in E. histolytica where we recognize seven copies, although it is not clear whether there is any 

physiological significance to this observation.   
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The PdT domains of the kinetoplastid CT-PdT fusion enzymes form a coherent phylogenetic set 

clearly associated with C/EPTS (495/500) and support the hypothesis that they may constitute 

the evolutionary origin of the CDP-Cho and CDP-Etn pathways. 

 

7.2.2 CDP-alcohol phosphatidyltransferase-type PSSs, PGSs and CLSs. 

 

 A eukaryotic CAPdT-PSS has been characterized in S. cerevisiae [109] and its 

homologues can be easily recognized in all sequenced fungal genomes.  A CAPdT-PSS has been 

also reported in wheat [123] however, a homolog cannot be identified in other plants, e.g. A. 

thaliana and rice.  Also, TBLASTN searches of all available plant genomic DNA using as a 

query the reported wheat PSS did not identify any region with significant similarity.  On the 

contrary, wheat PSS has significant relationship (approximately 70% identity, and 80% 

similarity) to yeast PSSs.  As it will be discussed later A. thaliana and rice have homologues of 

the mammalian serine-exchange enzymes.  This appears to be the mechanism of PtdSer 

biosynthesis, at least in these plants. 

 Cluster 7 in Figure 13 contains two genes from fish genomes (exemplified by zebrafish 

coding sequence gi|68402375) that have high degree of similarity to bacterial PSSs, e.g. the 

Bacillus enzymes (for the purposes of the current discussion we designate these genes BLA-PSS, 

for Bacillus-Like Animal PSS).  The possibility that these genes are the result of a bacterial 

contamination artifact is minimal since the gene is present in all three fish genomes sequenced 

(Danio, Fugu, and Tetraodon) at different times in different places.  BLAST searches, using the 

aforementioned zebrafish protein as query, identify similar coding sequences in other animal 

genomes including human.  Although a human gene model for BLA-PSS is not defined in the 
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current assemblies (as of October 2006), EST sequences are easily identified indicating the 

presence and expression of BLA-PSS in mammals.  The three fish BLA-PSS proteins contain a 

complete CA-PdT active site, DG-X2-AR-X8-G-X3-D-X3-D (Figure 15) [124].  However, BLA-

PSS proteins from higher animals have incomplete CA-PdT active sites indicating a fast 

evolutionary adaptation of this gene and the possibility of a divergent function.  The human and 

mouse versions of BLA-PSS exhibit limited patterns of expression.  Human BLA-PSS ESTs 

have been identified in brain, liver, heart and testes whereas corresponding mouse transcripts 

were found mainly in brain, testes and female genital tissue (data not shown).  Based on 

sequence comparisons it is reasonable to accept that the fish BLA-PSS proteins exhibit some 

kind of CA-PdT activity, presumably PSS.  The function of the human/mouse BLA-PSS cannot 

be accurately predicted because of the divergent active site.  Nevertheless, the possibility that it 

is a PdT is really intriguing.  Thus, it is clear that BLA-PSSs have evolved from a CA-PdT and it 

will be interesting to determine their functions and examine their relationships to CA-PdTs.   

 Figure 12 shows that there are three eukaryotic CA-PdTs with PGS activity from A. 

thaliana and C. reinhardtii.  The participation of a CA-PdT enzyme in the PGS reaction is 

common in bacteria but the majority of eukaryotes utilize a PLD-type enzyme.  CAPdT-PGS 

amino acid sequences exhibit relative similarity to CAPdT-CLS enzymes, in the range of 30% 

identity and 50% similarity.  This suggests that they may be evolutionary related.  To investigate 

the relations between the PGS, CLS, PIS and PSS CA-PdT groups we constructed a phylogenetic 

tree in which we also included select bacterial sequences for PGS, PSS, PIS and CLS.  The data 

in Figure 16 indicate that the sequences of A. thaliana, T. vaginalis and G. liamblia PGSs branch 

from the bacterial PGS group.  Moreover, the eukaryotic CAPdT-CLS sequences are also 

branching from the PGS clade suggesting that the eukaryotic CAPdT-CLS genes have evolved 
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from the prokaryotic type CAPdT-PGSs present in ancestral eukaryotes.  Several eukaryotes do 

not have a CAPdT-type CLS but rather they have a PLD-type CLS (see following chapter).  

Eukaryotic PIS genes form a coherent and robust phylogenetic group and their source lies 

undetermined at the origin of the eukaryotic domain.  It is important to note that eukaryotic and 

prokaryotic PISs appear to be evolutionary unrelated.  These activities probably emerged 

independently in the two domains.  The fungi PSSs are clearly evolutionary related to bacterial 

PSSs and they probably constitute a horizontal transfer event.  

 A very interesting observation lies on the 570 amino acids long sequence of the 

Schizosaccharomyces CLS (gi|2414601).  This enzyme is a fusion between two domains: a 

phosphatase and a PdT.  This fusion event is unlikely to be an erroneous outcome of 

computational genome assembly since it is also present in the second Schizosaccharomyces 

genome undergoing sequencing, Schizosaccharomyces japonicus (data not shown).  Its amino 

terminal region contains a phosphatase domain of the HAD superfamily described by COG0647 

as NagD phosphatase.  Homologues of this domain exist in all sequenced eukaryotic genomes 

and in several bacteria.  The existence of a protein with fused domains is very strong evidence 

that these domains are functionally linked.  The function linked to eukaryotic CL synthesis with 

no characterized representative is the dephosphorylation of PGP to PG.  As mentioned earlier, 

bacteria utilize a type-II PAP to catalyze this reaction but our analysis does not point to a specific 

eukaryotic PAP2 candidate for the PGPP step.  Based on the above observations, we suggest that 

the NagD region of gi|2414601 constitutes a candidate for the uncharacterized eukaryotic 

phosphatidylglycerol phosphate phosphatase (cPGPP).  Other eukaryotic genomes encode 

proteins with a single NagD domain and length of approximately 350 amino acids.  The human 

genome has one correspondent cPGPP gene which is located on chromosome 22q11 and 
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specifically in the region responsible for the cat eye syndrome which contains a total of 14 genes 

[125].  Cat eye syndrome is characterized by chromosomal abnormalities in the 22q11 region 

and exhibits variable clinical features, particularly congenital malformations.  Further 

biochemical experiments are required to validate the prediction that these NagD proteins are 

indeed PGPPs.  In addition to catalyzing the PGP dephosphorylation, these genes may also 

participate in the dephosphorylation of PtdOH and may represent the residual Mg
2+

-dependent 

PAP1 activity observed in S. cerevisiae PAH1 mutants [42]. 

 

 7.3 PLD-type phosphatidyltransferases 

 

 A separate class of PdTs is encoded by enzymes that have sequence signatures 

resembling the ones found in PLDs.  BLAST and HMM searches of the 26 eukaryotic genomes 

identify 126 sequences containing PLD sequence motifs (Figure 17) which are clustered in 11 

groups based on their overall sequence similarity (data not shown).  The first cluster contains 50 

sequences and constitutes the group of the signaling PLDs that includes the well-characterized 

human PLD1 and PLD2 as well as the yeast SPO14 proteins [126].  The second and fourth 

clusters contain 23 and 7 uncharacterized proteins with PLD sequence motifs, respectively.  

There are two clusters that contain phospholipid synthesis enzymes: the third cluster contains 19 

sequences from 19 genomes and includes the experimentally verified PGS from S. cerevisiae 

[97]; the fifth cluster contains six sequences from Trypanosoma, Leishmania, Theileria, 

Plasmodium, Cryptosporidium and Dictyostelium with significant homology to prokaryotic 

CLSs.  Therefore, we conclude that these organisms utilize the “prokaryotic”-type CLS reaction 

between two PG molecules for the synthesis of CL.  This is an interesting observation indicating 
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the evolutionary survival of the prokaryotic reaction for CL formation into the eukaryotic 

kingdom.  G. lamblia, T. vaginalis and E. histolytica do not have any form of recognizable CLS.  

Although these genomes are not complete, the lack of CLS is consistent with the lack of 

mitochondria in these organisms.  CL is located in mitochondria and these amitochondriate 

eukaryotes apparently have not evolved (or have lost) the machinery for its synthesis.  E. 

histolytica does not have either a CA-PdT or a PLD like PGS and this is in agreement with 

experimental results suggesting that its membranes do not have PG [127].  Six PLD-PdT clusters 

(6-11) are one and two member sets with uncharacterized proteins from unicellular eukaryotes.  

 Figure18 summarizes the occurrence of the various PdT forms in eukaryotic genomes.  It 

is evident that besides the C/EPT and PIS reactions that are uniformly encoded by homologous 

genes other phospholipid biosynthetic reactions have utilized genes from different origins.  

Overall, there are at least two uncharacterized CAPdT families with unique evolutionary 

positioning: the SelI proteins found mostly in multicellular eukaryotes and T. cruzi and the three 

unique kinetoplastid PdTs reported in the sixth cluster of Figure 13. 

 

8. Base-exchange phosphatidylserine synthases (PSSE) 

 

 Higher eukaryotes synthesize PtdSer by a base-exchange mechanism in which serine 

substitutes for the choline and ethanolamine groups of PtdCho and PtdEtn, respectively.  In 

mammals, two enzymes have been identified: PSSE1 which catalyzes the exchange reaction with 

PtdCho [128, 129] and PSSE2 which utilizes PtdEtn [130, 131].  PSSE2-deficient mice do not 

have severe developmental abnormalities or alterations in phospholipid content [132] whereas 

CHO-K1 cells lacking both PSSE forms are PtdSer auxotrophs [133].   
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 HMM searches of 26 eukaryotic genomes reveal the existence of PSSE homologues in 

the majority of eukaryotic genomes (Figure 19).  Further phylogenetic analysis specifies the 

evolutionary history of the PSSE family (Figure 20).  Essentially, only fungi and G. liamblia 

utilize the CAPdT-PSS mechanism.  Besides fungi, the only genomes that do not have a PSSE 

homolog are T. annulata and T. vaginalis.  Two multicellular eukaryotes (Fugu and Ciona) 

appear to have three PSSE genes, whereas others (Drosophila and Arabidopsis) appear to have 

only one.  C. elegans has two PSSE genes (T27E9.5 and ZC506.3) and RNAi experiments show 

that reduction in T27E9.5 expression causes embryonic and post-embryonic developmental 

abnormalities whereas reduction in ZC506.3 levels causes a small phenotype 

(http://www.wormbase.org).  However, the tree topology indicates with high statistical 

confidence that both C. elegans enzymes are evolutionary related to the human PSSE1 and arise 

from species-specific duplication.  Nonetheless, they apparently acquired specific functions 

related to the worm physiology.  The Drosophila enzyme also belongs to the PSSE2 subfamily, 

whereas the Arabidopsis and apicomplexan genes are part of the PSSE1 group.   An open 

question relates to the specificity of these enzymes towards PtdCho and/or PtdEtn and whether it 

corresponds to the specificity of their human counterparts.  If this is true then different 

eukaryotes would utilize either PtdCho or PtdEtn as a PtdSer precursor depending on the 

presence of a PSSE1 or PSSE2 isoform.  Further biochemical experiments are required to clarify 

this point. 

 The above results indicate that PSSE enzymes are abundant in the eukaryotic kingdom 

they appeared early in eukaryotic evolution and the separation between PSSE1 and PSSE2 is a 

relatively ancient evolutionary event.   
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9. Phosphatidylserine decarboxylase (PSD) 

 

 PSD catalyzes the decarboxylation of PtdSer to PtdEtn.  This is the only route for PtdEtn 

formation in prokaryotes and PSD encoding genes have been characterized from E. coli [134] 

and B. subtilis [135].  In eukaryotes, the reaction has been studied in S. cerevisiae whose genome 

harbors two PSD genes, PSD1 [136, 137] and PSD2 [138, 139].  The two yeast isoforms are 

localized in different subcellular compartments: PSD1 resides in mitochondria, whereas PSD2 is 

found in the vacuole and Golgi compartments.  Disruption of both PSD1 and PSD2 genes causes 

yeast to become ethanolamine auxotrophs, whereas deletion of the single mouse PSD gene is 

embryonic lethal [140].  PSD genes have been also cloned and characterized from plants [141] 

and P. falciparum [142].  RNAi phenotypes associated with the single C. elegans PSD gene 

include abnormal embryonic and post-embryonic development, slow growth and an unusual 

transparent appearance of the worms [37, 38, 48, 143]. 

  Figure 21 depicts the phylogenetic distribution of the PSD enzymes in eukaryotes.  PSD 

is found in the majority of eukaryotic genomes with the exception of E. histolytica and T. 

vaginalis which are missing mitochondria.  These two organisms apparently utilize exclusively 

the CDP-ethanolamine pathway for PtdEtn biosynthesis; the existence of a second ECT enzyme 

in E. histolytica may relate to the absence of a PSD.  There is significant variability in the 

number of PSD genes in each genome.  X. tropicalis is the only vertebrate with two PSD copies.  

A. thaliana and D. discoideum have three PSD copies, whereas S. cerevisiae appears to be an 

exception in the fungi domain with only two copies.  Other fungi have anywhere between three 

and five PSD copies. 
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 Figure 22 depicts the phylogenetic relationships between the different PSD groups.  The 

tree also includes select bacterial PSD proteins because of the relatively high overall similarity 

between eukaryotic and bacterial PSDs.  Two well-separated clusters representing the previously 

studied PSD1 and PSD2 enzymes are formed.  The distribution of individual genes in these 

clusters is not uniform.  For example, A. thaliana has two PSD2 and one PSD1 related genes, 

whereas one Dictyostelium protein belongs to the PSD2.  In addition, there is a clear formation of 

a third PSD class (PSD3) that includes two genes from A. fumigatus and N. crassa, and one from 

C. neoformans.  Although the PSD3 enzymes branch off the PSD2 clade with high statistical 

significance (493/500), it is clear that they constitute a separate PSD group.  For example, 

comparison of the A. fumigatus gi|66844383 protein to S. cerevisiae PSD2 enzyme reveals 

limited overall identity and similarity, which is indicative of their divergent evolutionary paths.  

Moreover, the PSD3 forms lack the calcium-dependent membrane targeting C2 domains found 

in the PSD2 proteins.   While processing this sequence data, we observed that the fungal PSD3 

enzymes exhibit high similarity to bacterial PSD proteins.  For example, the above mentioned 

Aspergillus protein has 49% identity and 65% overall similarity to a protein from Chlorobium 

phaebacteroides. Overall there are currently 23 bacterial species that have enzymes with high 

sequence similarity to PSD3 and apparently constitute a case of horizontal transfer.  It will be 

interesting to examine whether the proposed PSD3 isoforms have distinct contributions to the 

physiology of the corresponding organisms.  In addition, Figure 22 indicates that PSD enzymes 

from ancient eukaryotes (G. liamblia, Trypanosomes etc) are clearly associated with PSD2 

suggesting that the appearance of PSD1 is a subsequent evolutionary event. 

 

10. Phosphatidylethanolamine methyltransferase (PEMTs) 
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 The methylation of PtdEtn is a well-established route for the synthesis of PtdCho.  It is 

quite abundant in bacteria [144] and it is has been studied in several eukaryotes.  S. cerevisiae 

has two enzymes that catalyze the methylation of PtdEtn to PtdCho: the PEMT1 protein 

(gi|6321596) which is 869 amino acids long and the PEMT2 protein (gi|129766) which contains 

206 amino acids.  Mammalian cells contain only a PEMT2-type enzyme [145] and disruption of 

the murine PEMT2 gene results in viable mice [146].  In the absence of nutritional choline, 

PEMT2-/- mice developed severe liver pathology with concomitant decrease in PtdCho levels 

[147]. 

 Figure 23 presents the phylogenetic distribution of PEMT enzymes.  In contrast to other 

phospholipid biosynthetic enzymes, PEMTs exhibit a sporadic distribution throughout 

eukaryotes suggestive of a selective evolutionary survival of this pathway.  PEMT homologues 

cannot be identified in insects, nematodes, plants as well as in several unicellular protists.   

 

11. Summary 

 

 The availability of ever increasing eukaryotic genomes provides the opportunity to 

examine the evolutionary history of phospholipid biosynthetic genes.  The existence of multiple 

genes coding for phospholipid biosynthetic enzymes necessitates the development of an 

evolutionary context for their emergence.  The most important theme emerging from the current 

analysis is the generation of enzyme multiplicity by lineage-specific duplications and expansion.  

This hypothesis implies that usually there is no one-to-one evolutionary correspondence between 

phospholipid biosynthetic genes from different organisms and, hence, specific phenotypes 
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observed in genetically modified model organisms may not be directly applicable to other 

species.  For example, in most cases the duplicate human gene is not a direct descendant of a fly 

or yeast gene rather it has evolved in a vertebrate-specific manner.  On the contrary, human 

genes are usually directly correlated with mouse genes in terms of evolutionary history.   

 A large number of phospholipid biosynthesis genes and enzymes from various eukaryotic 

organisms have been identified and characterized during the last decade.  However, examination 

of the available genomic sequences points to the existence of novel eukaryotic enzymes 

(particularly phosphatidyltransferases and phosphatases) that presumably participate in 

phospholipid biosynthesis.  Experimental interrogation of these genes is necessary and may 

reveal novel pathways and regulatory mechanisms operating in phospholipid biosynthesis. 

 Phospholipid biosynthesis is a cellular process that is controlled both temporally and 

spatially and responds to various intracellular and environmental stimuli.  The evolution of 

multiple enzyme forms that will regulate phospholipid formation is depicted in the genomic 

sequences.  Future work will establish the specific contributions of each enzyme class to the 

physiology of individual organisms. 

 

Figure Legends. 

 

Figure 1. Eukaryotic pathways for phospholipid biosynthesis.  CDSs and PAPs regulate the 

distribution of phosphatidic acid (PtdOH) between CDP-diacylglycerol (CDP-DAG) and 

diacylglycerol (DAG).  Phosphatidyltransferases utilize CDP-DAG and DAG to synthesize 

phospholipids.  DAG serves also as a substrate for DAG acyltransferase (DGAT) during the 

synthesis of triacylglycerols. CCT, phosphocholine cytidylyltransferase; CDS, CDP-DAG 
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synthetase; CK, choline kinase; CLS, cardiolipin synthase; CPT, CDP-choline:diacylglycerol 

phosphotransferase; DGAT, diacylglycerol acyltransferase; ECT, phosphoethanolamine 

cytidylyltransferase; EK, ethanolamine kinase;  EPT, CDP-ethanolamine:diacylglycerol 

phosphotransferase;  ICS, inositol phosphorylceramide synthase; PAP, phosphatidate 

phosphatase; PEMT, phosphatidylethanolamine methyltransferase; PIS, phosphatidylinositol 

synthase; PGPP, phosphatidylglycerol phosphate phosphatase; PGS, phosphatidylglycerol 

phosphate synthase; PSS, phosphatidylserine synthase; PSD, phosphatidylserine decarboxylase; 

PSSE, phosphatidylserine synthase via base-exchange; SMS, sphingomyelin synthase. 

 

Figure 2.  Phylogeny of eukaryotes.  An unrooted phylogeny of major eukaryotic lineages 

utilized in the current analysis was adapted from more detailed reports, [26] and references 

therein. 

 

Figure 3.  Phylogenetic distribution of CDSs.  Genome data were queried with either a CDS 

HMM using HMMER (Pfam domain PF01148, CTP-transf-1) or CDS protein sequences using 

BLASTP and TBLASTN.   

 

Figure 4.  Evolution of eukaryotic CDSs.  Amino acid sequence alignments were performed 

using ClustalW.  Alignments were manually edited to remove ambiguous positions.  The 

phylogenetic tree was created using the protein parsimony method in the Phylip package using 

421 unambiguously aligned amino acid positions.  Numbers at nodes indicate the frequencies of 

branch associations on the basis of 500 bootstrap repetitions.  Originating genome, accession 

numbers for proteins included are indicated. 
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Figure 5.  Phylogenetic distribution of lipin. Genome data were queried with either a lipin 

HMM using HMMER (Pfam domain PF08235, LNS2) or lipin protein sequences using BLASTP 

and TBLASTN. 

 

Figure 6.  Evolution of lipins.  Amino acid sequence alignments were performed using 

ClustalW.  Alignments were manually edited to remove ambiguous positions.  The phylogenetic 

tree was created using the protein parsimony method in the Phylip package using 563 

unambiguously aligned amino acid positions.  Numbers at nodes indicate the frequencies of 

branch associations on the basis of 500 bootstrap repetitions.  Originating genome, accession 

numbers for proteins included are indicated. 

 

Figure 7.  Phylogenetic distribution of PAP2.  Genome data were queried with either a PAP2 

HMM using HMMER (Pfam domain PF01569) or PAP2 protein sequences using BLASTP and 

TBLASTN.   

 

Figure 8.  Phylogenetic distribution of CEKs.  Genome data were queried with either a CEK 

HMM using HMMER (Pfam domain PF01633, Choline-kinase) or CEK protein sequences using 

BLASTP and TBLASTN.   

 

Figure 9.  Evolution of CEKs.  Amino acid sequence alignments were performed using 

ClustalW.  Alignments were manually edited to remove ambiguous positions.  The phylogenetic 

tree was created using the protein parsimony method in the Phylip package using 414 
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unambiguously aligned amino acid positions.  Numbers at nodes indicate the frequencies of 

branch associations on the basis of 500 bootstrap repetitions.  Originating genome, accession 

numbers and/or locus tags for proteins included are indicated. 

 

Figure 10.  Phylogenetic distribution of CCTs and ECTs. Genome data were queried with 

either a CCT HMM using HMMER (Pfam domain PF01467, CTP-transf-2) or CCT and ECT 

protein sequences using BLASTP and TBLASTN.   

 

Figure 11.  Evolution of cytidylyltransferase domains.  The analysis was performed only on 

the cytidylyltransferase domains.  Proteins that contain two domains were considered as two 

separate entries: domA refers to the amino terminal domain and domB refers to the carboxyl 

terminal domain. Amino acid sequence alignments were performed using ClustalW.  Alignments 

were manually edited to remove ambiguous positions.  The phylogenetic tree was created using 

the protein parsimony method in the Phylip package using 176 unambiguously aligned amino 

acid positions.  Numbers at nodes indicate the frequencies of branch associations on the basis of 

500 bootstrap repetitions.  Originating genome, accession numbers and/or locus tags for proteins 

included are indicated. 

 

Figure 12. Phylognetic distribution of CAPdTs.  Genome data were queried with either a 

CDP-alcohol phosphatidyltransferase HMM using HMMER (Pfam domain PF01066) or protein 

sequences using BLASTP and TBLASTN.   
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Figure 13.  Clustering of CAPdTs.  132 CAPdT sequences were processed with the MCL 

algorithm.  Activity assignment to individual clusters is based on the inclusion of sequences with 

specific enzyme activities. 

 

Figure 14.  Evolution of CEPTs.  A phylogenetic tree of the 62 C/EPT sequences clustered in 

Figure 14. Amino acid sequence alignments were performed using ClustalW.  Alignments were 

manually edited to remove ambiguous positions.  The phylogenetic tree was created using the 

protein parsimony method in the Phylip package using 376 unambiguously aligned amino acid 

positions.  Numbers at nodes indicate the frequencies of branch associations on the basis of 500 

bootstrap repetitions.  Originating genome, accession numbers and/or locus tags for proteins 

included are indicated. 

 

Figure 15.  Comparison of the fish BLA-PSS predicted amino acid sequences with B. 

subtilis PSS and similar mammalian genes.  The CAPdT active site region is underlined. It is 

present in the fish proteins but has been substantially modified in higher eukaryotes.  NCBI 

Accession Numbers are:  D. rerio, gi|68402375, Tetraodon nigroviridis, gi|47229076; M. 

musculus, gi|58037399; Bos taurus, gi|113911913; Macaca mulatta, gi|109003372; and Pan 

troglodytes, gi|114556073; T. rubripes does not have an NCBI accession number; B. subtilis 

PSS, gi| 730414. 

 

Figure 16.  Evolution of PIS, PGS, CLS, PSS.  51 sequences from the PIS, CLS, PGS and PSS 

clusters were combined with selected PGS, PSS, PIS and CLS sequences of bacterial origin.  A 

total of 63 sequences were used for the construction of the phylogenetic tree.  Amino acid 
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sequence alignments were performed using ClustalW.  Alignments were manually edited to 

remove ambiguous positions.  The phylogenetic tree was created using the protein parsimony 

method in the Phylip package using 228 unambiguously aligned amino acid positions.  Numbers 

at nodes indicate the frequencies of branch associations on the basis of 500 bootstrap repetitions.  

Originating genome, accession numbers and/or locus tags for proteins included are indicated.  

Ec, Escherichia coli; Bs, Bacillus subtilis; Hp, Helicobacter pylori; Pa, Pseudomonas 

aeruginosa;  Mt, Mycobacterium tuberculosis; Pm, Prochlorococcus marinus. 

 

Figure 17.  Phylogenetic distribution of PLDs.  Genome data were queried with either a PLD 

HMM using HMMER (Pfam domain PF00614) or protein sequences using BLASTP and 

TBLASTN.   

 

Figure 18.  Distribution of PdTs types and activities in eukaryotic genomes.  * E. histolytica 

has a total of seven genes classified in the C/EPT cluster. 

 

Figure 19.  Phylogenetic distribution of PSSEs.  Genome data were queried with either a PSSE 

HMM using HMMER (Pfam domain PF03034) or protein sequences using BLASTP and 

TBLASTN.   

 

Figure 20. Evolution of PSSEs.  Amino acid sequence alignments were performed using 

ClustalW.  Alignments were manually edited to remove ambiguous positions.  The phylogenetic 

tree was created using the protein parsimony method in the Phylip package using 296 

unambiguously aligned amino acid positions.  Numbers at nodes indicate the frequencies of 
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branch associations on the basis of 500 bootstrap repetitions.  Originating genome, accession 

numbers and/or locus tags for proteins included are indicated.  

 

Figure 21. Phylogenetic distribution of PSDs.  Genome data were queried with either a PSD 

HMM using HMMER (Pfam domain PF02666) or protein sequences using BLASTP and 

TBLASTN.   

 

Figure 22.  Evolution of PSDs.  Amino acid sequence alignments were performed using 

ClustalW.  Alignments were manually edited to remove ambiguous positions.  The phylogenetic 

tree was created using the protein parsimony method in the Phylip package using 528 aligned 

amino acid positions.  Numbers at nodes indicate the frequencies of branch associations on the 

basis of 500 bootstrap repetitions.  Originating genome, accession numbers and/or locus tags for 

proteins included are indicated.  Coding sequences from the following bacteria have been 

included:  Chlorobium phaeobacteroides BS1 (CphaeBS1), Lactobacillus acidophilus NCFM  

(LacidNCFM), Lactobacillus johnsonii NCC 533 (LjohnsNCC533), Vibrio angustum S14 

(Vang), Flavobacterium johnsoniae UW101 (FjohnsUW101), Burkholderia cenocepacia HI2424 

(BcencepHI2424), Burkholderia cenocepacia AU1054 (BcencepAU1054), Burkholderia 

pseudomallei 1655 (Bpsedom1655), Burkholderia mallei ATCC 23344 (BmalATCC23344), 

Burkholderia xenovorans LB400 (BxenLB400), Anaeromyxobacter dehalogenans 2CP-C 

(Adeh2CP-C), Campylobacter jejuni subsp. jejuni HB93-13 (CjejHB9313), Campylobacter 

jejuni subsp. Doylei 269.97 (Cjej269.97), Campylobacter jejuni RM1221 (CjejRM1221), 

Polaromonas sp. JS666 (PolarJS666), Coxiella burnetii Dugway 7E9-12 (Coxbur), 

Dechloromonas aromatica RCB (DaromDCB), Myxococcus xanthus DK 1622 (MxanDK1622), 
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Helicobacter pylori HPAG1 (HpylHPAG1), Acidovorax avenae subsp. citrulli AAC00-1 

(AcitrAAC00-1), Alcanivorax burkumensis SK2 (AborkSK2), Vibrio fischeri ES114 

(VfisES114), Bacillus subtilis strain 168 (Bs), Escherichia coli K12 (K12), Haemophilus 

imfluenzae R2846 (Hinfl). 

 

Figure 23. Phylogenetic distribution of PEMTs.  Genome data were queried with either a 

PEMT HMM using HMMER (Pfam domain PF04191) or protein sequences using BLASTP and 

TBLASTN.   
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