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Abstract

Background: Pichia pastoris has emerged as an important alternative host for producing recombinant

biopharmaceuticals, owing to its high cultivation density, low host cell protein burden, and the development of

strains with humanized glycosylation. Despite its demonstrated utility, relatively little strain engineering has been

performed to improve Pichia, due in part to the limited number and inconsistent frameworks of reported genomes

and transcriptomes. Furthermore, the co-mingling of genomic, transcriptomic and fermentation data collected

about Komagataella pastoris and Komagataella phaffii, the two strains co-branded as Pichia, has generated

confusion about host performance for these genetically distinct species. Generation of comparative high-quality

genomes and transcriptomes will enable meaningful comparisons between the organisms, and potentially inform

distinct biotechnological utilies for each species.

Results: Here, we present a comprehensive and standardized comparative analysis of the genomic features of the

three most commonly used strains comprising the tradename Pichia: K. pastoris wild-type, K. phaffii wild-type,

and K. phaffii GS115. We used a combination of long-read (PacBio) and short-read (Illumina) sequencing

technologies to achieve over 1000X coverage of each genome. Construction of individual genomes was then

performed using as few as seven individual contigs to create gap-free assemblies. We found substantial syntenic

rearrangements between the species and characterized a linear plasmid present in K. phaffii. Comparative analyses

between K. phaffii genomes enabled the characterization of the mutational landscape of the GS115 strain. We

identified and examined 35 non-synonomous coding mutations present in GS115, many of which are likely to impact

strain performance. Additionally, we investigated transcriptomic profiles of gene expression for both species during

cultivation on various carbon sources. We observed that the most highly transcribed genes in both organisms were

consistently highly expressed in all three carbon sources examined. We also observed selective expression of certain

genes in each carbon source, including many sequences not previously reported as promoters for expression of

heterologous proteins in yeasts.

Conclusions: Our studies establish a foundation for understanding critical relationships between genome structure,

cultivation conditions and gene expression. The resources we report here will inform and facilitate rational, organism-

wide strain engineering for improved utility as a host for protein production.
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Background
Societal pressures to lower healthcare costs, enable

precision medicine, and foster economic growth in

emerging markets, combined with the projected market

demands for both new biopharmaceutical drugs (cardio-

vascular and neurodegenerative diseases) and biosimi-

lars, motivate continued innovation in manufacturing of

biopharmaceutical drugs [1, 2]. Engineering alternative

hosts other than conventional mammalian systems such

as Chinese hamster ovary (CHO) cells could facilitate

new streamlined processes that allow for fast production

of high-quality proteins with simplified operations and

reduced costs [3, 4]. Pichia pastoris is a promising

eukaryotic host used today to produce marketed prod-

ucts throughout the world [5, 6], including FDA-

approved Jetrea® and Kalbitor®. Despite its commercial

successes to date [7], advanced engineering of its

secretory capacity, metabolic health, and pathways for

post-translational modifications of proteins are still

needed to realize its potential as a routine alternative to

CHO cells, particularly for proteins with increased com-

plexity [8].

A critical issue impeding efforts to further understand

the biology of this yeast, and engineer its metabolic state

and secretion system, is the entwinement of learning re-

lated to two distinct organisms (Komagataella phaffii

and K. pastoris) [9, 10]. Previously defined, and now co-

branded, as Pichia pastoris, both species are used for

heterologous protein expression; understanding of their

behaviors in expression and fermentation are assumed

to apply to each. The GS115 strain—an auxotrophic mu-

tant of K. phaffii (NRRL Y-11430) derived by chemical

mutagenesis—is also widely used for protein production

and further complicates the literature [11].

Previous characterization of the genomes and tran-

scriptomes for these three strains have established inde-

pendent tools for working with each. Pyrosequencing of

K. phaffii GS115 provided the first assembled genome

with annotated genes based on Sacchromyces cerevisiae

[12]. Short-read sequencing of a K. pastoris strain

(DSMZ 70382) yielded super contigs without a genome-

level assembly [13]. A similar approach for wildtype K.

phaffii (NRRL Y-11430; CBS7435) refined the assembly

of GS115, and included a fully annotated mitochondrial

genome and methanol utilization pathway [14]. Recent

studies have identified other potential functional ele-

ments within the genome, including autonomously repli-

cating sequences (ARS) in a ura3-deficient mutant

GS115 (JC308) [15], as well as two IRES elements [16].

While Pichia-specific microarrays have been reported

[17, 18], transcriptional analyses have relied primarily on

microarrays based on S. cerevisiae [19, 20], and there is

limited published knowledge on how gene expression of

null strains compare during growth on relevant carbon

sources, namely glycerol, glucose, and methanol. Despite

the range of studies on specific strains and fermentation

conditions, including two reports using data generated

by RNA-seq [16, 21], unified datasets of genomic fea-

tures and transcriptional landscapes are scarce for the

two organisms [20]. Without a common genomic and

transcriptional framework, biological engineering of

these strains to enhance their specific productivity and

metabolic state remains difficult.

Based on these considerations, we present here a com-

prehensive and standardized comparative analysis of the

genomic and transcriptomic features of the parental

strains of K. phaffii and K. pastoris, as well as a detailed

map of the mutational landscape of GS115 relative to its

parental strain, wildtype K. phaffii. This resource pro-

vides a standardized and cohesive foundation for future

strain engineering to help overcome secretory capacity

limitations and improve metabolic pathways for desir-

able growth and quality-by-design (QbD) production.

Results and discussion

Genome and transcriptome sequencing, assembly,

and annotation

We sequenced the genomes of K. phaffii (wildtype:

NRRL Y-11430 or ATCC 76273 and GS115: ATCC

20864) and K. pastoris (wildtype: NRRL Y-1603 or ATCC

28485) using a combination of long-read (PacBio) and

short-read (Illumina) sequencing technologies (Additional

file 1: Table S1). For all three strains, poly(A)-enriched,

strand-specific cDNA was also sequenced (RNA-Seq)

from triplicate batch cultivations in various carbon

sources (Additional file 2: Figure S1; Additional file 3:

Table S2). Both the genome sequencing and de novo

assembled transcript models from the initial outgrowth

were used for the assembly and initial annotation of each

genome (Table 1) [22]. For each genome, the PacBio

Table 1 Genome assembly and annotation statistics for major

chromosomes

K. Pastoris K. Phaffii

WT GS115

Genome Size (Mb) 9.6 9.4 9.4

Chromosomes 4 4 4

Contigs 11 7 9

Pacbio Coverage 168x 118x 207x

Illumina Coverage 312x 1869x 1498x

Coding (%) 78.6 79.9 79.5

Coding Genes 5241 5167 5183

tRNA Genes 122 123 123

5S rRNA Genes 23 21 21

GC% 41.5 % 41.3 % 41.3 %
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sequencing provided more than 100x coverage and the

Illumina as high as 1,800x coverage; more than 78 % of

reads aligned in post hoc validation. The exceptional

coverage and long reads yielded a maximum of 11 total

contigs from which to assemble the genomes—more than

ten times fewer than previous reported assemblies. The

genome of K. pastoris is 9.6 Mbp in size, slightly larger

than that of K. phaffii (9.4 Mbp), consistent with previous

reports [23]. There were no gaps in coverage remaining in

the four major chromosomes for each species, though

there were 4–5 small contigs for each strain containing

rDNA or telomeric sequences that we were unable to as-

sign to any major chromosome due to their highly repeti-

tive content despite manual curation of the assembly

using long reads from PacBio sequencing.

The annotations of each species yielded 5,241 genes in

K. pastoris and 5,167 in K. phaffii. These were linked to

existing publicly-available annotated genomes using

BLAST (Additional file 4: Table S3). Sequence clustering

at the mRNA level was used to compare the two species

and the GS115 mutant to identify orthologs between

strains. Using this approach there were 4,601 orthologs

at the gene level (1:1:1 association between strains), with

4,996 orthologs (1:1) between K. phaffii and the mutant

GS115. Manual analysis of the clustering resulted in fur-

ther annotation of 48 orthologs between K. pastoris and

K. phaffii. The remaining gene differences between these

strains may be attributed to artifacts incurred during an-

notation of adjacent genes, including fragmented gene

prediction or incomplete UTR annotation. (For a de-

tailed discussion of manual orthology assignment, see

Orthology Assignment and Gene Naming in Methods.)

Seven genes were found only in the K. phaffii wildtype

and are attributed to a linear plasmid in this strain (see

further discussion below). Additionally, one gene in K.

phaffii wildtype is likely inactivated in the GS115 mutant

due to a frame shift mutation. Three hundred ninety-

eight genes appear to be species-specific, occurring only

in either K. pastoris or K. phaffii, and are not a result of

data contamination [24]. Our constructed phylogeny

confirmed that K. pastoris and K. phaffii are closely re-

lated, but distinct species (Additional file 2: Figure S2).

Of the orthologs between the species, 3,556 genes

were named by association to S. cerevisiae. An additional

30 genes, associated either with flocculation [25], or cen-

tral carbon metabolism [14, 26] (including the methanol

utilization (MUT) pathway) were manually assigned,

though these genes may not correspond to S. cerevisiae

(see Additional file 5: Table S4 for a complete list of

named orthologs). Alignment to the annotated genomes

of next-nearest neighbor (e.g., Kluyveromyces lactis or

Hansenula polymorpha) could improve the curation.

Using an 80 % identity cut-off to establish ~4600 1:1

orthologs, there was a reasonable conservation at the

nucleotide level between the two species (~91 % average

base pair identity; Additional file 2: Figure S3). The alpha

factor protein (Chr 2 both species) is <85 % identical at

both the nucleotide and amino acid level. This relatively

low identity results from two repeated sequence motifs

present in K. phaffii, but not in K. pastoris—a feature

common in other proteins identified in K. pastoris as well

(e.g., flocculation genes). Two commonly used promoters

are highly conserved between the species, but not identi-

cal (PAOX1, Chr 4, 90 % identity, and PGAPDH, Chr 2, 88 %

identity). The observed variances between species imply

that precise sequences of genes and loci are important for

engineering specific sites in each species.

Key features of Komagataella genomes and transcriptomes

Genome characteristics and rearrangements between species

We then compared the assembled genomes of K. pas-

toris and K. phaffii and found substantial syntenic

rearrangements between the two species (Fig. 1). The

breakpoints of these rearrangements appear to lie adja-

cent to 5S rDNA loci. The internal structure of the chro-

mosomes, however, were largely conserved. As an

example, the MUT pathway retains its gene order and

relative orientation within the chromosome despite its

relocation within the genome. Examples of gross

chromosomal rearrangements (GCRs) caused by un-

stable repetitive loci under conditions of environmental

stress have been reported in the brewing industry [27].

There were no gene copy number variations among the

three strains (Additional file 2: Figure S4). Both species

have extremely similar codon usage with 122–123 tRNA

genes identified (Additional file 2: Figure S5); the usage

for K. phaffii agreed with previous reports [12].

Identification of functional DNA elements

We identified 100–340 bp of telomeric repeats

(TGGATGC) on chromosomal termini of all three

strains. These homogenous repeated sequences are

similar to ones found in closely related yeasts Yarro-

wia lipolytica (TTAGTCAGGG) and H. polymorpha

(TGGCGGGG), and unlike the heterogeneous telomeric

repeat sequences found in S. cerevisiae ([TG]2-3[TG]1-6)

and Schizosaccharomyces pombe (TTAC[A][C]G2-8) [28].

An rDNA cluster (containing 18S, 5.8S and 16S rRNA

genes) was located at a subtelomeric position on Chr

1, 3 and 4 in K. pastoris, on Chr 1, 3, and 4 in wild-

type K. phaffii and on Chr 1 in the K. phaffii GS115

strain. We also located 21–23 copies of the 5S rRNA

gene dispersed throughout the genome.

Characterization of a linear plasmid in K. phaffii strains

We found a highly AT-rich (~72 %) contig (~11 Kb) in

the wildtype K. phaffii assembly devoid of both rDNA

and telomeric sequences that did not align to other
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chromosomal sequences in any of the three genomes.

While naturally-occurring episomal plasmids have not

previously been used in Komagataella strains, an unde-

scribed 20 kb linear plasmid was recently reported for K.

phaffii [14]. Our annotation pipeline predicted the pres-

ence of seven genes within this contig (Fig. 2a), all of

them homologous to genes of the well-known linear

dsDNA killer plasmid system from K. lactis [29]. Five

out of these seven genes have no known function, but

two code for putative subunits of DNA and RNA poly-

merase, respectively. The high AT content throughout

the contig, particularly at its termini, suggests that this

linear plasmid may have a distinct mechanism of replica-

tion and self-maintenance. RNA-seq revealed that all

seven genes express at extremely low levels compared to

average genome-wide expression (Fig. 2b). Gene expres-

sion increased modestly during batch cultivation, but did

not vary substantially with carbon source. It is currently

unclear if any of these genes encode a secreted killer

toxin or if the presence of this plasmid confers either

killer activity or a selective advantage to the K. phaffii

host strain. The low expression means it is not likely

useful for heterologous protein expression, but could

provide sites for introducing genome editing tools.

Although the linear plasmid was not assembled in the

GS115 genome, we found transcripts encoding GS115

orthologs of linear plasmid genes. To investigate the

relative stability and quality of these sequences in the

two strains, we calculated the rate of mismatches de-

tected in the Illumina reads from each strain. Despite

similar mismatch rates in the plasmid genes for both

strains, there were many fewer aligned reads detected

for the plasmid in GS115 on both sequencing platforms

(Additional file 6: Table S5). This result suggests a lower

copy number present for this plasmid in GS115. RNA-

seq data appeared to corroborate this hypothesis; expres-

sion levels for the majority of the seven genes were sub-

stantially lower in GS115 (Fig. 2b). There was no

evidence for the plasmid in K. pastoris: No PacBio reads

aligned to the plasmid, no transcripts were detected for

any of the seven genes encoded on the plasmid, and

there were no positive BLAST hits.

Identification of alternatively spliced genes

Based on detection of gapped alignment in our initial

annotation, we found that only 21 genes from either K.

pastoris or K. phaffii exhibited splice variants that al-

tered coding sequences (CDS), with five of these genes

having alternative isoforms present in both species. We

did not observe any significant changes in isoform dom-

inance of these alternatively spliced genes attributable to

our batch cultivation from either carbon source or

Fig. 1 Comparative genome structure of K. pastoris and K. phaffii. Circos plot indicating the sequence alignment between K. pastoris and K. phaffii

marked with methanol utilization pathway (MUT) genes. Functional genetic elements marked on the plots include: small rDNA subunits (white

circles), large rDNA subunits (black circles), and telomeric repeats (orange triangles)
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duration (Additional file 2: Figure S6). There was no

functional enrichment observed among these alterna-

tively spliced genes based on assignment of GO terms.

An additional 175 potential CDS-altering variants were

detected by stringent manual review of the RNA-Seq

data (Additional file 7: Table S6), along with different

splice junctions for four genes identified in the initial

analysis. These putative variants require additional valid-

ation to confirm alternative splicing and to determine

the exact number of isoforms present for each species.

Impact of genomic structure on gene expression

Since there were substantial differences in the chromo-

somes between K. pastoris and K. phaffii, we next inves-

tigated if there was any influence of chromosomal

organization on transcriptional activity during cultiva-

tion. The specific expression of regions within the ge-

nomes could guide the selection of loci for inserting

heterologous proteins. We initially, therefore, decided to

focus our efforts on the most highly expressed genes

(top 10 %) from our RNA-seq data collected during fer-

mentation in each carbon source and mapped the loca-

tions of these genes to the chromosomes of each species.

Neither species showed any global regions of transcrip-

tional activity specific to any carbon source, but rather

highly expressed genes distributed across the four

chromosomes. (Additional file 2: Figure S7) We also ex-

amined the potential influence of specific functional

elements within the chromosomes on genome-wide

transcriptional activity, namely autonomously replicating

sequences (ARS). Recently, GC-rich ARS sites associated

with transcription were identified for Pichia pastoris

[15], but a positive correlation between gene expression

and replication has not been established. We mapped

the GC-rich ARS motifs to our assembled genomes for

both species (Additional file 8: Table S7) by BLASTing

the reported consensus sequences. Interestingly, their

locations did not correlate with increased gene ex-

pression in any carbon source (Fig. 3). This finding

suggests that the GC-ARS motif may not impact gene

expression directly, but could act via regulation of

other nearby functional elements, including transcrip-

tion factors.

Impact of cultivation conditions on selective expression

While transcriptional activity did not localize to a spe-

cific site or functional element within either genome, we

did observe subtle differences in the chromosomal pro-

files of highly expressed genes during cultivation in dif-

ferent carbon sources (Additional file 2: Figure S7).

Transcriptomes are expected to vary with cultivation

conditions and the use of different carbon sources

provides a means to alter gene expression [30]. Un-

derstanding these variances could guide host engin-

eering for improved heterologous protein production,

including identification of promoter elements tuned

Fig. 2 Linear plasmid annotation and expression in K. phaffii. a) Schematic representation of the 11 kb linear plasmid annotated with seven

genes homologous to the K. lactis killer plasmid. b) Comparison of gene expression between genes located on the killer plasmid in i) wild type

K. phaffii or ii) K. phaffii GS115 and the average gene expression among chromosomally-located genes in each species during cultivation on three

different carbon sources
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to carbon utilization or metabolic pathways needing

enhancement, some aspects of which have already

been explored [31–33].

We compared gene expression during cultivation for

all 1:1 orthologs among each carbon source used, both

within a species, and across species cultivated in the

same carbon source. The most highly transcribed genes

in each organism were consistently highly expressed

across all carbon sources; these genes were also consist-

ently expressed over time following transitions between

carbon sources (Fig. 4a). Remarkably, only 10 out of

these 24 genes have previously been described as useful

promoter sequences for protein expression in Pichia

[5, 32–36]. These genes were associated with GO terms

for central metabolism, transport, and stress response,

suggesting housekeeping functions. These genes may rep-

resent useful promoters for engineering in either species,

though disrupting the native loci of each could disrupt

essential functions within the cell.

We then sought to identify genes selectively expressed

in a particular carbon source (Fig. 4b). Such genes

represent promoters (or loci) for use in expression of

heterologous proteins during growth in a particular

carbon source condition. Methanol has historically

been useful as a carbon source to induce heterol-

ogous protein expression in Pichia [37]. Recently, it

Fig. 3 Gene expression as a function of chromosomal location. Map of chromosomal location (base pair identity) for the most highly expressed

genes (top 10 % expression) in a) K. pastoris and b) K. phaffii. Black lines indicate gene expression level at 24 h time point during batch cultivation

in methanol. Red lines indicate locations of GC-rich autonomously replicating sequence (GC-ARS) motifs identified by BLAST. c) Box and whisker

plot of the relative distance to the nearest GC-ARS motif in K. pastoris and K. phaffii for genes expressed at average levels genome-wide (45–55 %

of max expression) and for the most highly expressed genes (top 10 % expression). Histograms of relative distances to GC-ARS motifs are shown

alongside box plots for each gene set analyzed
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was shown that methanol-based cultivation associates

with higher levels of translational activity over that

observed in glucose- or glycerol-based cultivation [30].

This finding could imply a more extensive transcriptional

activation specific to methanol cultivation. Indeed, we

confirmed that there were two- to threefold more genes

Fig. 4 Gene expression in K. pastoris and K. phaffii as a function of cultivation conditions. a) Heat map of gene expression (log2 fpkm) for the

most highly expressed genes at in both strains. Gene expression is shown as a function of batch growth in glycerol, glucose or methanol during

a 48 h cultivation period. b) Venn diagrams depicting the intersection between K. pastoris (orange) and K. phaffii (green) for genes that are highly

(top 10 % expression) and differentially expressed (log2-fold change > 2, p < 0.05) during fermentation on a particular carbon source. Circle size is

proportional to the total number of genes present for a given condition

Love et al. BMC Genomics  (2016) 17:550 Page 7 of 17



selectively and highly expressed in methanol, depending

on the species.

Genes related to transport, lipid metabolism, central

metabolism and cellular amino acid metabolic processes

were consistently highly expressed in all cultivations, but

no categories of GO terms dominated the genes highly

expressed in a particular carbon source (Additional file 9:

Table S8). During cultivation in methanol, peroxisomal

genes (noted similarly in [26]), protein folding and stress

response genes were enriched, but also many genes related

to diverse cellular activities. Genes specifically enriched

during cultivation in glycerol or glucose showed less diver-

sity among GO terms, but still no apparently dominant

pathways.

Our analysis revealed all previously reported carbon

source-specific promoters used in heterologous protein

expression [5, 32–36] in yeasts, but more than 90 % of the

genes selectively expressed in any particular carbon source

have not been previously used as promoters. Nearly half

of these previously unreported genes may lack orthologs

in S. cerevisiae, and thus, understanding of what pathways

are highly active in particular growth conditions will re-

quire further studies. Furthermore, we observed key differ-

ences in gene expression between the two species. For

example, only 62 out of 199 genes selectively expressed in

methanol are common among the two strains (Fig. 4b).

These differences imply that strain engineering, including

promoter selection, must be tuned for each species.

Biological pathways active during cultivation

To further understand how groups of genes or pathways

varied during the batch cultures, we clustered the ex-

pression data from each cultivation for each organism

using self-organizing maps (SOMs) [38]. During the pre-

processing of the expression data for this analysis, we

noticed that only 120 genes in K. pastoris and 72 in K.

phaffii (of the 4,600 annotated orthologs between the

species) are unexpressed during cultivation (Additional

file 2: Figure S8A and S8B). This result implies that

these strains are expressing ~98 % of their genome all

the time. A minimum and non-degenerate number of

clusters (Additional file 2: Figure S8C) was achieved for

each organism and cultivation condition to group genes

that were changing expression similarly (Additional file 2:

Figures S9 and S10). Each of these clusters represents a

different expression phenotype within a particular cultiva-

tion condition—for example, genes consistently increasing

expression over time (Map 8, Glucose; Additional file 2:

Figure S10) or genes consistently decreasing expression

over time (Map 1, Glucose; Additional file 2: Figure S10).

Interestingly, both organisms had a similar number of

clusters for each specific carbon source; maps attributed

to each carbon source also had similar shapes for both

organisms.

To better understand how particular cellular processes

may associate with the expression phenotypes, we used

simplified GO biological process terms [39] to classify all

genes of known function present in the analysis into 36

distinct groups (Additional file 10: Table S9). Pathway

associations for expression phenotypes were largely

similar between the two Komagatella species (Fig. 5,

Additional file 2: Figures S11 and S12). Transport-

related genes were associated with phenotypes wherein

gene expression increased during the cultivation period;

these phenotypes were also dominated by metabolic pro-

cesses, which could imply coordinated transcription.

Genes related to translation and protein expression were

strongly correlated with decreasing expression over time

and are inversely correlated with phenotypes indicating

increased gene expression over time, particularly for gly-

cerol and methanol growth conditions. These results

likely indicate that the cultures are approaching station-

ary phase at the end of cultivation sampling, as similar

results of decreased gene expression have been reported

as cellular growth rates decline [40]. Protein folding ma-

chinery also generally increased in expression over time,

(with the notable exception in the glycerol cultivation of

K. phaffii), likely due to the triggering of stress responses

as cultivation progresses. Indeed, we observed that

HAC1, a master stress response regulator [41], is a

highly differentially expressed gene during cultivation in

methanol. Secretory pathway-resident genes are in-

versely correlated with increasing expression pheno-

types, particularly in glycerol and methanol. These

results together suggest that optimizing Komagatella

strains as expression hosts for sustained protein expres-

sion and secretory function during cultivation will require

genome engineering and concomitant optimization of

fermentation.

Characterization of Komagatella secretome

We were intrigued by the decline in secretory function

over time observed in our expression analysis. We pos-

tulated that this result could stem from a decline in the

expression of proteins entering the secretory pathway,

which could have beneficial implications for simple

downstream purification of material produced in Koma-

gatella. Previous characterization of the secretome

expressed in K. pastoris highlighted its utility as a host

organism in producing minimally contaminated heterol-

ogous proteins when cultivated in glucose [13]. We iden-

tified 170 1:1 orthologs predicted to have a signal

peptide present in both strains. Single sample Gene Set

Enrichment Analysis (ssGSEA) [42] was used to com-

pare the expression of these genes between the two

strains in each carbon source cultivation condition

(Additional file 2: Figure S13A). While it appears that

K. pastoris had elevated secretory protein expression
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compared to K. phaffii, these proteins trended down-

ward in expression in both strains over time, which

we verified by examination of cultivation supernatants

using SDS-PAGE (Additional file 2: Figure S13B). Our

data suggests that cultivation of K. phaffii in metha-

nol has the greatest potential to yield a cultivation

supernatant with few contaminating host cell proteins,

as the overall expression of the secretome is lowest

for this condition.

Characterization of mutational variation in K. phaffii

GS115

Given the exceptional coverage of the K. phaffii ge-

nomes, we also characterized the point mutations

present in the GS115 strain. This derivative strain was

selected for histidine auxotrophy following random

mutagenesis with nitrosoguanidine [11]. Beyond the

known mutation in the HIS4 gene, no description of the

mutations present in this organism has been reported.

We found 35 single nucleotide polymorphisms (SNPs)

with potential influence to protein function randomly

distributed across the four major chromosomes in the

GS115 strain (Fig. 6a and Additional file 11: Table S10),

out of which 32 non-synonymous mutations were in

coding regions, one was in a 3′ untranslated region

(UTR) and the remaining two were the gain and loss of

a stop codon respectively (Additional file 12: Table S11).

No other types of mutations, including indels or GCRs,

were detected.

We examined the potential of detected mutations to

impact the organism’s phenotype in silico. First, the

genes containing mutations were annotated for existence

of known functional domains. Then, a conservation-

based evaluation of the impact of each mutation on pro-

tein function was performed. Several mutations were

predicted to strongly impact protein function due to

mutation of highly conserved amino acid residues within

essential domains. One notable example in the HIS4

gene was the C557R mutation that occurs in the histidi-

nol_dh domain and is responsible for gene inactivation

and strain auxotrophy. Several mutations lie outside pro-

tein domains, but are still predicted to impact protein

Fig. 5 Biological process enrichment as a function of cultivation in methanol. Heat map representation of the enrichment of GO biological

process terms for expression phenotypes observed in K. pastoris and K. phaffii during a 48 h batch cultivation in methanol as characterized by

self-organizing maps (SOMs). Representative temporal trajectories of gene expression were generated for each SOM by averaging expression data

at each time point for genes present within a given map. Color density relates to the number of genes assigned to a particular process as a

percentage of the total number genes present in a particular expression phenotype or map
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function, including the S752F mutation in the DNA re-

pair protein RAD5 (radiation sensitivity protein 5). We

compared the survival rates of WT phaffii and GS115 to

increasing levels of UV radiation and noted that GS115

displayed lower survival rates overall (Fig. 6b), indicating

a phenotypic difference that could be related to the

point mutation in RAD5 [43].

Finally, the expression of each of the 35 mutated

genes was also directly examined by comparing gene

expression between WT and GS115 for each time

point sampled during a cultivation (10 possible com-

parisons). Gene YDR248C—a probable gluconokinase

(http://www.uniprot.org/uniprot/Q03786) that is con-

nected to the pentose phosphate pathway (PPP)

[44]—consistently displayed lower expression in GS115

relative to wild type in six out of the ten conditional ex-

pression comparisons. Given the role of the PPP in amino

acid precursor formation and its complex relationship

with glycolysis [45], we postulated that there could be a

difference in doubling time between the two strains. In-

deed, the GS115 consistently outgrew the WT strain

(Fig. 6c). These comparisons between wildtype K. phaffii

and GS115 suggest that many of these discovered

mutations may have direct phenotypic effects; based

on our conservation and expression analyses as many

as half of the reported mutations could be conse-

quential to phenotype and each one should be studied

independently.

Conclusions

Here, we have established a comprehensive foundation

for both the genomes and transcriptomes of the two

organisms that comprise Pichia pastoris. The refined

genomic sequences and assemblies now enable direct

comparisons of both organisms and establish a base for

specific engineering of each one. The transcriptomic

analyses from RNA-sequencing of batch cultivations for

each strain in three common carbon sources provide a

well-defined reference from which further understanding

of metabolism and heterologous gene expression can be

derived. These data reveal interesting opportunities for

improved selectivity of expression, novel sites for inte-

gration, and a framework for metabolic modeling and

engineering. There remain many interesting elements to

explore, including the inter-relationships between locus

accessibility and promoter activity on gene expression

Fig. 6 Locations of mutations found in GS115 and phenotypic differences observed between GS115 and wildtype K. phaffii. a) The chromosomal

locations of the 35 single nucleotide polymorphisms (SNPs) found in GS115 relative to wildtype K. phaffii. b) Growth curve of Komagatella strains

on glucose media. Wildtype K. phaffii growth data is indicated with squares and GS115 growth data is indicated with triangles. Data shown for

each strain is the mean from triplicate measurements. Error bars indicate 95 % confidence intervals. c Kill curve of Komagatella strains following

exposure to UV light. Data shown for each strain is the mean from two experiments, each run in triplicate. Error bars are the standard deviation

across all data collected for both experiments
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under different carbon sources. The discovery of telo-

meric and linear plasmid sequences should facilitate the

engineering of new vectors or artificial chromosomes.

The insights to the organism’s transcriptional activity

should inform both host engineering and process engin-

eering for biologic production. For example, the reduced

burden of host cell proteins with time highlights an at-

tractive feature of this host for subsequent purification

of products. The detailed mapping of mutations in the

GS115 strain will help guide the intentional engineering

of enhanced hosts with specific phenotypic benefits,

such as enhanced growth. The common ground pro-

vided here can now enable systematic efforts to under-

stand the genetic basis of enhanced protein expression

in optimized strains and generate mechanistic insight

into the cell biology of P. pastoris. In turn, these ad-

vances ultimately will improve the productivity and ro-

bustness of an increasingly important host for the global

manufacturing of protein biologic drugs.

Methods

Genome sequencing

The three Komagataella strains - (1) K. pastoris (NRRL

Y-1603 or ATCC 28485), (2) K. phaffii ‘WT’ (NRRL Y-

11430 or ATCC 76273) and (3) K. phaffii GS115 (ATCC

20864) were grown overnight in YPD (BD Difco, Cat. #

242820). DNA was extracted using the YeaStar Genomic

DNA Kit (Zymo Research, Cat. # D2002) and RNA using

the YeaStar™ RNA Kit (Zymo Research, Cat. # R1002).

The extracted DNA was sequenced on the Pacific

Biosciences (PacBio) single molecule real-time (SMRT)

platform. Genomic DNA was also sequenced on Illumina

HiSeq2000 from both fragment and jumping libraries.

Illumina fragment libraries were generated as previously

described [46] with the following modifications. For each

sample, 100 ng of genomic DNA was sheared to 200 bp in

size using a Covaris LE220 instrument (Covaris, MA) with

the following parameters: temperature: 7–9 °C; duty cycle:

20 %; intensity: 5; cycles per burst: 200; time: 90 s; shear-

ing tubes: Crimp Cap microTUBES with AFA fibers

Covaris, MA). DNA fragments were end repaired, 3′ ade-

nylated, ligated with indexed Illumina sequencing adapter,

and PCR enriched, as previously described [47]. The

resulting Illumina fragment sequencing libraries were

normalized and were size selected to contain inserts of

180 bp ±3 % in length using a Pippen Prep system (Sage

Science, MA) following the manufacturer’s recommenda-

tions. In jumping libraries, JUMP processing deletes the

DNA in between the sections of interest that are far apart

and combines them in order to be sequenced. Initial

genomic DNA was sheared to get the sample to 5 kb

in 150 ul. A caliper quality check was performed after

end repair to insure proper shearing, and a critical

circularization step was performed for 16 h. A second

shear was performed to lower the size of the DNA to

500 bp after an exonuclease cleanup. Immobilization,

a second end repair, an A-base addition, and PCR

was performed for 18 cycles, which were all followed

by washes. Adaptor ligation with Illumina paired end

adapters also was performed before PCR to ensure

the samples can be pooled before being sequenced.

The multiple wash steps ensures clean PCR product

is being loaded on sequencers.

Illumina sequencing libraries were quantified using

quantitative PCR (KAPA Biosystems, MA) following the

manufacturer’s recommendations. Libraries were nor-

malized to 2 nM and denatured using 0.1 N NaOH.

Sequencing Flowcell cluster amplification was per-

formed according to the manufacturer’s recommenda-

tions using the V3 TruSeq PE Cluster Kit and V3

TruSeq Flowcells (Illumina, CA). Flowcells were se-

quenced with 101 base paired end reads on an Illumina

HiSeq2000 instrument, using V3 TruSeq Sequencing by

synthesis kits and analyzed with the Illumina RTA v1.12

pipeline (Illumina, CA).

Genome assembly

Pacbio reads were assembled using a hierarchical

genome-assembly process (HGAP) [48] and the Illumina

paired-end reads were aligned [49] to the assemblies for

error correction and assembly improvement using Pilon

[50]. Assemblies were refined by manual curation. Pair-

wise alignments were carried out using BLAST (version

2.2.27). For each genome assembly, contigs were exam-

ined and removed if redundant (i.e. aligning to any other

contig in the same assembly with >90 % identity). All

contigs containing rDNA repeats were excluded from

the above step. Large contigs were manually connected

to construct telomere-to-telomere sequences and checked

for consistency with the previously reported genome [12].

One gap in the wildtype K. phaffii assembly was closed by

using corresponding and overlapping sequence from

K. phaffii GS115 to bridge the missing segment. The

validity of this bridging process was supported by

manual examination of PacBio and Illumina sequences

and raw sequencing reads that documented the manual

junctions. The genomic sequencing data and assembled

and annotated genomes are deposited at NCBI under bio-

project accession numbers PRJNA304627 (K. pastoris),

PRJNA304977 (K. phaffii wildtype), and PRJNA304986

(K. phaffii GS115).

Transcriptome analysis

The three Komagatella strains were grown in shake flask

(30 °C, 250 rpm, μavg = 0.26) using complex glycerol-

containing media (BMGY, Teknova, Cat. # B8000) to an

OD600 of 2.0 (low density) or to an OD600 of 20 (high

density). Following initial biomass accumulation, the

Love et al. BMC Genomics  (2016) 17:550 Page 11 of 17



cells were harvested by centrifugation and re-suspended

in either glycerol- (BMGY), glucose- (YPD, BD Difco,

Cat. # 242820) or methanol-containing media (BMMY,

Teknova, Cat. # B8100). Samples were collected before

changing media (0 h) and after resuspension into fresh

media (6, 24 and 48 h). RNA was extracted from three

independent cultivations for each time point sampled

using the RNAeasy Kit (Qiagen, Cat. # 74104) and ana-

lyzed to ensure that RNA Integrity Number (RIN) score

was >7. RNA sequencing libraries were constructed

using the Truseq mRNA stranded HT kit (Illumina, Cat.

# RS-122-2103) and sequenced on the Illumina NextSeq

platform to generate 75-nucleotide paired-end reads at a

read depth of at least 3 million reads per sample.

To assess the technical quality of RNA-seq reads for

each condition sampled, each raw data set was down-

sampled to 1 M paired-end reads and aligned to the

assembly using BWA 0.7.5a. Then, Bedtools (version

2.17.0) was used to overlap the resulting alignments to

the annotations to count the reads falling into genes,

coding regions, intronic regions, 5′ or 3′ UTRs, flanking

3 kb genic regions and intergenic regions. Other basic

statistics, including mapping rate, unique mapping rate,

multiple mapping rate, number of perfect match reads,

number of alignments with 1 or 2 mismatches and ratio

of sense vs. anti-sense reads were also collected for each

sample (see Additional file 3, Table S2 with quality con-

trol data for each RNA-seq sample). The complete data

set set for each condition and time point was used for all

analyses reported. RNA-seq data are deposited at NCBI

under the bioproject accession number PRJNA304627.

Copy number analysis

DNA sequencing reads were down-sampled to ~2 M

reads for both K. pastoris and wildtype K. phaffii WT

samples; HMMcopy (version 0.1.1) was used to evaluate

the copy number in 1000 bp windows. Mappability and

GC content tracks were generated as control following

the HMMcopy documentation. BWA (version 0.7.10)

was used to map the reads to the reference (default

options were used).

Genome annotation

For initial annotation purposes, the standard fungal an-

notation pipeline used by the Broad Institute Genome

Sequencing Platform [22] was deployed on these ge-

nomes. Given the low proportion of spliced genes

(<5 %), protein-coding gene predictions were more ac-

curately made using a prokaryotic ab initio tool, thus

Prodigal [51] was employed. The rRNA loci were pre-

dicted by RNAmmer (version 1.2) [52] and tRNA by

tRNAscan-SE (version 1.12) [53]. RNA was also se-

quenced on the Illumina platform (see above) and a sub-

set of the resulting RNA-seq reads were assembled using

Trinity (version r20140717) [54] and aligned to the

genomes. PASA [22] was then run using the Trinity

assembly alignments to update the prodigal genesets

with splicing and UTR information. The genes were

then filtered to remove all genes smaller than 300 nucleo-

tides without evidence of overlap to either Hmmer, Gene-

Wise (version 2.2.0) or RNA-seq data. Genes were then

repeat-filtered using an in-house repeat-filtering pipe-

line (TPSI: e-value of 1e-10 and a minimum of 30 %

Query Coverage; RepBase; repeat Hmmer domains;

and Multihits: > = 8 times without non-repeat do-

mains, minLength = 100, and percentId > = 90 %). Qual-

ity control was performed and genes were repaired so that

none contained partial codons, in-frame stops, or un-

known bases. Finally, protein-coding genes demonstrating

70 % overlap with non-coding genes (rRNA or tRNA

annotations) were filtered out. Gene product was

assigned based on BLAST best hit (E-value < 1e-10,

version 2.2.25) against three databases in the follow-

ing order of precedence: i) Swissprot (release

2011_03; at > =60 % identity and > =60 % query cover-

age, <30 % length difference), ii) TIGRfam (TIGRfam13),

iii) KEGG (version 65; at > =60 % identity and > =60 %

query coverage, and must have KO#). Genes without a

match had their product defined as “hypothetical pro-

teins”. Following initial gene identification, unmapped and

intergenic RNA-seq reads from all culture conditions were

subjected to a second Trinity assembly in an effort to

identify conditionally dependent novel transcripts. The

resulting transcripts from this second trinity run were in-

cluded in subsequent annotation and gene expression

analyses.

The genome annotations for each of the three strains

were linked to the two other publicly-banked complete

K. phaffii genomes with annotations [12, 14]. The refseq

proteins from GS115_644223 and all proteins from

CBS7435_981350 (both banked with NCBI) were used

as separate BLAST (version 2.2.27) targets for all pro-

teins from our three genomes. The best BLAST hit, as

defined by highest bit score, per protein are reported for

each genome (Additional file 4, Table S3).

Orthology assignment and gene naming

Sequence clustering at the mRNA level was used to identify

orthologs between strains. For each pairwise strain com-

parison, mRNA sequences were pooled into a FASTA file

and used as input for the application CD-HIT-EST (version

4.6.1) [55]. For comparison of orthology in wildtype K.

phaffii versus K. phaffii GS115, a clustering threshold of

95 % identity was used. For comparison of orthology in K.

pastoris versus K. phaffii, a lower clustering threshold of

80 % identity was used due to divergence between strains.

Orthology percent identity analysis was derived from CD-

HIT clustering results using custom scripts.
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This automated analysis resulted in identification of

4,601 orthologous pairs between K. pastoris and K. phaf-

fii. Manual analysis of the clustering using a custom

script, TIBCO Spotfire and Integrated Genomics Viewer

(version 2.3.72) resulted in annotation of an additional

48 ortholog pairs. Of the 595 remaining sequence clus-

ters with unclear orthology, 33 contain only Trinity tran-

script groups of varying complexity. 129 have complex

relationships, such as 2:1 (91 examples) or 2:2 (38 exam-

ples), typically caused by gene prediction artifacts during

annotation of adjacent genes, including fragmented gene

prediction or incomplete UTR annotation. 7 genes found

in K. phaffii are not found in K. pastoris, those located

on the linear plasmid. 398 clusters contain a single se-

quence that cannot be further associated by clustering at

lower threshold and may represent species-specific

genes. To address the possibility that these genes result

from data contamination from other organisms, these

398 proteins were used to query Swissprot with BLASTP

(2.2.27), but we observe no high-identity matches to any

known proteins. The resulting alignments are consistent

with species-specific genes, usually of fungal origin,

rather than contamination with genetic material from

other species.

For wildtype K. phaffii and K. phaffii GS115, 4,996

ortholog pairs were identified from the 5,169 sequence

clusters by the automated analysis described above.

(Note: the 5,169 sequence clusters do not correspond to

genes, but are collections of related sequences.) Of the

remaining 163 sequence clusters with unclear orthology,

30 contain only Trinity transcript groups of varying

complexity and 46 clusters have complex relationships,

such as 2:1 (25 examples), 2:2 (20 examples), or 3:2 (1

example). Forty-seven sequence clusters are found in

wildtype, but not GS115, including the seven genes

encoded on the linear plasmid; 40 clusters are found in

GS115 but not wildtype. 50 of these 80 sequence clusters

form 25 pairs of orthologs when a lower identity thresh-

old is used during clustering with CD-HIT (85 % instead

of 95 %). To address the remaining 30 sequences,

TBLASTN (version 2.2.27) analysis was performed using

proteins found in one strain to query the genome of the

other strain. These analyses suggest that 1 wildtype

genes and 13 GS115 genes are present in the other strain

despite the lack of gene prediction during annotation. 1

additional wildtype gene (GQ67_00697) that is situated

in a complex locus was unannotated in GS115, though

underlying nucleotide sequences in the strains align with

high identity. Alignment between the predicted protein

from wildtype gene GQ67_04936 and the DNA se-

quence from GS115 indicates a frame shift; this gene

may by inactivated in GS115. GS115 genes GQ68_05325

and GQ68_05326 are located near the terminus of Chr 4

in that strain, but a neighboring gene (GQ68_05329) has

an ortholog ~200 Kb from the end of Chr 4 in wildtype

indicating a small gene rearrangement between the

strains.

Additional analysis with Kraken [56] (version 0.10.6)

and the MiniKraken database, consisting of bacterial,

archaeal and viral genomes, demonstrated a low degree

of sequence contamination in our genomic reads at

0.19 % in K. phaffi WT, 0.37 % in K. phaffi GS115 and

3.23 % in K. pastoris, with the majority of contaminating

sequences matching bacterial taxonomies. BLASTX

(2.2.27) alignment of potentially contaminating reads to

the predicted proteins from all 3 of our genomes yielded

shortened or low identity results, indicating that these

reads are non-identical to any predicted proteins in the

genome annotations. These results indicate that se-

quence contamination does not contribute to gene pre-

diction and annotation, nor to the sequence sets that

lack clear orthology between strains.

Komagataella genes were associated with S. cerevisiae

genes using BLAST-based approaches (version 2.2.27).

The results were parsed and best hits were compared

using a combination of custom scripts, Tibco Spotfire

(version 6.5.3.12) and MySQL. Komagataella orthologs

with consistent reciprocal best hits to S. cerevisiae genes

were named according to the S. cerevisiae convention.

Three thousand five hundred sixty-six Komagataella

ortholog groups were thus named with S. cerevisiae gene

names. An additional 30 genes associated either with

flocculation [25], or central carbon metabolism [14, 26]

(including the methanol utilization (MUT) pathway)

were manually assigned, though these genes may not

correspond to S. cerevisiae (see Additional file 5:

Table S4 for a complete list of named orthologs).

Phylogenetic analysis

Multiple sequence alignment was carried out using

alignments derived from ten randomly selected proteins

found in all three Komagataella strains and with apparent

1:1 orthology relationships in any pairwise comparison be-

tween species. After gaps were removed, the phylogeny

was constructed using a concatenated alignment and reli-

ability was assessed using bootstrapping. Phylogenetic

trees were calculated with neighbor-joining, distance-

based, maximum likelihood and maximum parsimony

methods using the Phylip (version 3.6.96) package of pro-

grams. The highest confidence clades having 100 % boot-

strap support in all methods were highlighted.

Codon usage

Codon usage was determined using ANACONDA

(version 2.0.1.15). The coding sequences were extracted

from the genome annotations and used as input for

ANACONDA. ANACONDA determines codon usage as

Relative Synonymous Codon Usage (RSCU).
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Gene expression analysis

RNA-seq analysis was performed using RSEM (version

1.2.15) with bowtie2 (version 2.2.3) and a transcriptome

alignment target containing a combination of original

annotated transcripts plus transcripts derived from de

novo Trinity assembly. Gene and isoform FPKM and

count data were processed for analysis with custom

scripts and Tibco Spotfire (version 6.5.3.12). Count data

for differential expression testing was done using DESeq

(version 1.10.1) and R (version 2.15.3). Unsupervised

hierarchical clustering (Ward’s Method) was used to

examine data relationships for the three biological repli-

cates performed for each cultivation condition. In all but

3 cases, consistent clustering of biological replicates

were observed. For those 3 cases, (wildtype K. phaffii,

48 h Glucose Replicate 1; wildtype K. phaffii, 24 h

Glycerol Replicate 1; and K. phaffii GS115, 48 h Glucose

Replicate 3) the inconsistent replicate was excluded from

downstream analyses. A table of raw expression data

(log2 FPKM and integer count) for all genes and repli-

cates included in the analyses of each of the three ge-

nomes is provided (Additional file 13: Table S12).

For a subset of cultivation conditions, RNA-seq was

performed using RNA collected from a higher density

cultivation (see above). Unsupervised hierarchical clus-

tering suggested expression data were highly correlated

between similar cultivation conditions sampled at two

different densities. To confirm this correlation, a custom

R script called bivariatetrelliscompact. R was prepared to

calculate Pearson correlation coefficients between vec-

tors of gene expression data for each strain, culture, and

density condition. The input vectors were averages of

3 biological replicates from the initial Tophat-based

processing of the data. The correlation coefficients

obtained range between 0.969 and 0.995 (Additional

file 2: Figure S14).

Alternative splicing analysis

Alternatively spliced isoforms that result in alterations to

protein coding sequences were identified in the initial

gene annotation using Bedtools (version 2.20.1); the ex-

pression values associated with these isoforms was ex-

tracted from the RSEM output (see above). Results were

used for downstream expression analysis of alternatively

spliced genes in various cultivation conditions. In order

to address the scale of uncaptured alternative spliced

isoforms, reads from two diverse low-density cultivations

(Glycerol, 0 h and Methanol, 48 h) were aligned to the

corresponded genomes using Tophat (version 2.0.12),

allowing for novel exon junction discovery. Novel junc-

tions that overlapped coding sequences and had >5 dis-

tinct supporting reads were identified using custom

scripts and Bedtools (version 2.20.1). We defined this

additional resulting exon-junction set as containing

“potential CDS changing junctions” (Additional file 7:

Table S6).

Linear plasmid mismatch rate analysis

PacBio reads from each strain were aligned to the linear

plasmid found in wildtype K. phaffii with bwa-sw

(version 0.7.10). Illumina reads were aligned with bwa-

mem (version 0.7.10) and mismatch rates per 1000 bases

per 1000 reads were calculated with custom scripts.

Analysis of expression data sampled from batch

cultivation using Self Organizing Maps (SOMs)

Gene expression data processing was guided by previous

methods [38]. A low-expression, low-variance filter was

implemented to exclude genes that may not be

expressed. Genes with average log2FPKM <1 and vari-

ance <0.5 across the 10 cultivation condition averages

were excluded. No condition-specific fold change filter

was implemented. The GenePattern module Preprocess-

Dataset was used to row normalize the data by setting

averages to 0 and variances to 1. The preprocessed data

were then used as input to the GenePattern module

SOMClustering with a cluster range of 2–50. Elbow ana-

lysis was performed to identify the optimal number of

clusters that minimizes degeneracy, where the variance

captured by additional clusters was less than 0.01. The

corresponding odf file was selected for additional ana-

lysis. Representative profiles for each map were gener-

ated by averaging expression data at each time point

within a given map.

Secretome identification and analysis

Potential secreted proteins were identified using Signalp

(version 4.1) and custom processing scripts. Genes with

a predicted signal peptide and having clear orthologs in

all strains were used to create a gene set for single sample

Gene Set Enrichment Analysis (ssGSEA) [42]. ssGSEA

was performed using R (version 3.2.2) and scripts freely

downloaded from the Broad GenePattern server (http://

genepattern.broadinstitute.org/). The resulting ssGSEA

projections were normalized using PreprocessDataset.

Mutational variant calling

Variant calling was carried out using the GATK Best

Practices workflow [57]. Alignments were performed

using Burrows-Wheeler Aligner (BWA-MEM, version

0.7.5a) [49]. K. phaffii GS115 Illumina sequencing reads

were mapped to the wildtype K. phaffii PacBio genome

assembly and wildtype K. phaffii Illumina sequencing

reads were mapped to the K. phaffii GS115 PacBio

genome assembly. PCR duplicates were removed using

Picard (version 1.94) MarkDuplicates after sorting the

sequences using SortSam. Samtools (version 0.1.19) was

used for the first round of SNP and Indel calling. These
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high quality Indels and SNPs were then selected as the

input for GATK Best Practice Indel local realignment

and base quality recalibration steps (version 3.1.1).

Variation calling output by GATK was annotated to

identify non-synonymous SNPs using Snpeff (version

2.0.5d, http://snpeff.sourceforge.net) (Additional file 12:

Table S11). This larger set of variations was further refined

to a list of high confidence variations by identifying recip-

rocal genotype calls in both strains.

The potential function of these mutations was charac-

terized in more detail using a two-fold approach. First,

the variants were annotated with respect to protein do-

main using SMART (http://smart.embl-heidelberg.de/)

and Pfam (http://pfam.xfam.org/). Second, conservation-

based evaluation of the impact of the observed amino acid

substitutions were scored using SIFT (http://sift.jcvi.org/).

The reference orthologous protein sequences for use

in SIFT analysis were obtained from the Fungal

Orthogroups Repository (http://www.broadinstitute.org/

regev/orthogroups/).

Additional files

Additional file 1: Table S1. Genome sequencing, assembly and

annotation statistics. (XLSX 13 kb)

Additional file 2: Supplementary figures. Figure S1. Experimental

timeline for RNA sequencing of Komagatella strains. Schematic timeline

for collection of RNA samples during batch cultivation of strains in shake

flasks on three different carbon sources. Three independent cultivations

were sampled for each time point. Figure S2. Phylogenetic comparison

of K. pastoris and K. phaffii to other related yeasts. Phylogeny was generated

using a concatenated, gap-free alignment of ten orthologous proteins.

Phylogenetic tree was calculated using neighbor-joining, distance-based,

maximum likelihood and maximum parsimony methods; reliability was

assessed using bootstrapping. Clades marked with an asterisk are supported

by 100 % of bootstrap replicates in all four methods. Figure S3. Gene

conservation between K. pastoris and K. phaffii. a) Histogram denoting

homology at the base pair level for all 1:1 orthologous genes. b)

Alignment of the PGAPDH promoter element between K. pastoris and

K. phaffii. c) Alignment of the PAOX1 promoter element between K. pastoris

and K. phaffii. Figure S4. Copy number determination for major

chromosomes in a) K. pastoris, b) K. phaffii wild-type and c) K. phaffii

GS115 strains. Figure S5. Codon usage for a) K. pastoris and b) K. phaffii as

determined from all coding sequences identified in genome annotation.

The relative abundance observed for each codon is represented as a

percentage of total codon usage for the corresponding amino acid.

Figure S6. Isoform expression in K. pastoris and K. phaffii as a function of

cultivation conditions. Heat maps of gene expression (log2 fpkm) for

isoforms of alternatively spliced genes that alter coding sequences in

a) K. pastoris and b) K. phaffii detected in initial genome annotation.

Alternatively spliced genes with sufficient homology to S. cerevisiae

are named, otherwise gene identifiers from genome annotation are

used. Isoform expression is shown as a function of batch growth in glycerol,

glucose or methanol during a 48 h cultivation period. Figure S7.

Chromosomal locations of highly expressed genes. Map of chromosomal

location (base pair identity) for the most highly expressed genes (top 10 %

expression) in a) K. pastoris and b) K. phaffii. Black lines indicate gene

expression level at 24 h time points during batch cultivation in either

glycerol, glucose or methanol. Red lines indicate locations of GC-rich

autonomously replicating sequence (GC-ARS) motifs identified by

BLAST. Figure S8. Variance in gene expression during batch cultivation

of K. pastoris and K. phaffii. Scatter plots of the average variance versus

expression observed for all annotated genes across the 10 conditional

averages generated from either a) K. pastoris or b) K. phaffii expression

data. Genes with average log2 fpkm <1 and variance <0.05 were excluded

from further analyses. c) Elbow analysis of input cluster number to identify

optimal expression data clustering by self- organizing maps (SOMs). Large

circles denote the number of clusters for each expression data set where

the additional variance captured by further clustering was < 1 %. Figure S9.

Gene expression phenotypes in K. pastoris as a function of cultivation

conditions. Self-organizing maps (SOMs) of genes changing expression

similarly in K. pastoris during a 48 h batch cultivation in a) glycerol, b)

glucose or c) methanol. Figure S10. Gene expression phenotypes in

K. phaffii as a function of cultivation conditions. Self-organizing maps

(SOMs) of genes changing expression similarly in K. phaffii during a 48 h

batch cultivation in a) glycerol, b) glucose or c) methanol. Figure S11.

Biological process enrichment as a function of cultivation in glucose.

Heat map representation of the enrichment of GO biological process

terms for expression phenotypes observed in K. pastoris and K. phaffii

during a 48 h batch cultivation in glucose as characterized by self-

organizing maps (SOMs). Representative temporal trajectories of gene

expression were generated for each SOM by averaging expression data

at each time point for genes present within a given map. Color density

relates to the number of genes assigned to a particular process as a

percentage of the total number genes present in a particular expression

phenotype or map. Figure S12. Biological process enrichment as a

function of cultivation in glycerol. Heat map representation of the

enrichment of GO biological process terms for expression phenotypes

observed in K. pastoris and K. phaffii during a 48 h batch cultivation

in glycerol as characterized by self-organizing maps (SOMs). Representative

temporal trajectories of gene expression were generated for each

SOM by averaging expression data at each time point for genes

present within a given map. Color density relates to the number of

genes assigned to a particular process as a percentage of the total

number genes present in a particular expression phenotype or map.

Figure S13. Secretory pathway protein expression in K. pastoris and

K. phaffii. a) Row normalized single set Gene Set Enrichment Analysis

(ssGSEA) projections for 170 proteins bearing a signal peptide as

identified by Signalp. b) SDS-PAGE analysis of host-cell protein

expression in supernantants during batch cultivation of K. pastoris

and K. phaffii for 48 h in glucose or glycerol-containing media.

Figure S14. Correlation of gene expression at two different cultivation

densities. Scatter plots of gene expression between similar cultivation

conditions for a) K. pastoris, b) wildtype K. phaffii, and c) K. phaffii GS115

grown at two different cell densities. Density A corresponds to cultures

outgrown to OD600= 2.0 prior to sampling and Density B corresponds to

cultures outgrown to OD600 = 20 prior to sampling. Pearson correlation

coefficients were calculated from expression vectors that were averages of

three biological replicates for each cultivation condition and density.

(PDF 1991 kb)

Additional file 3: Table S2. RNA sequencing statistics. (XLSX 31 kb)

Additional file 4: Table S3. BLAST-based linkage of reported genome

annotations to existing annotations available for K. phaffii strains.

(XLSX 3291 kb)

Additional file 5: Table S4. Gene names for simple orthologs (1:1:1

association between Komagataella species) given by association with

S. cerevisiae or manually assigned. (XLSX 148 kb)

Additional file 6: Table S5. Linear plasmid sequencing statistics.

(XLSX 9 kb)

Additional file 7: Table S6. Alternatively spliced genes in K. pastoris

and K. phaffii. (XLSX 25 kb)

Additional file 8: Table S7. GC-ARS motif locations in K. pastoris and

K. phaffii. (XLSX 30 kb)

Additional file 9: Table S8. GO annotation of genes that are highly

and differentially expressed in a particular carbon source during

fermentation. Genes classified here were highly (top 10 % expression)

and differentially expressed (log2-fold change >2, p < 0.05) during

fermentation on the carbon source listed. (PDF 393 kb)

Additional file 10: Table S9. Self-organizing maps (SOMs) of

expression phenotypes observed in K. pastoris or K. phaffii and

annotated with simplified GO biological process terms. (XLSX 5464 kb)
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Additional file 11: Table S10. List of mutational variants in GS115 and

their potential to affect protein function. Lower SIFT scores indicate

higher degrees of conservation for the native amino acid affected by the

nucleotide change. Scores below the default threshold of 0.05 are highly

likely to affect protein function. The differential expression summary

column consists of three numbers in x/y/z format, where x corresponds

to the number of culture conditions (out of 10 total) where the gene is

found to be significantly differentially expressed between GS115 and

wildtype K. phaffii (log fold change >2, p <0.05), y is the number of times

the expression comparison tests are significantly higher in wildtype K.

phaffii, and z is the number of times the expression comparison test are

significantly higher in GS115. (PDF 339 kb)

Additional file 12: Table S11. Summary of mutational variants found

in GS115. (PDF 176 kb)

Additional file 13: Table S12. Raw gene expression data for all

replicates, all genes (log2 FPKM and integer counts). (XLSX 8921 kb)
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