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Recent computational scans for non-coding RNAs (ncRNAs) in multiple organisms have relied on existing multiple
sequence alignments. However, as sequence similarity drops, a key signal of RNA structure—frequent compensating
base changes—is increasingly likely to cause sequence-based alignment methods to misalign, or even refuse to align,
homologous ncRNAs, consequently obscuring that structural signal. We have used CMfinder, a structure-oriented
local alignment tool, to search the ENCODE regions of vertebrate multiple alignments. In agreement with other
studies, we find a large number of potential RNA structures in the ENCODE regions. We report 6587 candidate
regions with an estimated false-positive rate of 50%. More intriguingly, many of these candidates may be better
represented by alignments taking the RNA secondary structure into account than those based on primary sequence
alone, often quite dramatically. For example, approximately one-quarter of our predicted motifs show revisions in
>50% of their aligned positions. Furthermore, our results are strongly complementary to those discovered by
sequence-alignment-based approaches—84% of our candidates are not covered by Washietl et al., increasing the
number of ncRNA candidates in the ENCODE region by 32%. In a group of 11 ncRNA candidates that were tested
by RT-PCR, 10 were confirmed to be present as RNA transcripts in human tissue, and most show evidence of
significant differential expression across tissues. Our results broadly suggest caution in any analysis relying on
multiple sequence alignments in less well-conserved regions, clearly support growing appreciation for the biological
significance of ncRNAs, and strongly support the argument for considering RNA structure directly in any searches
for these elements.

[Supplemental material is available online at www.genome.org.]

The main objective of the ENCyclopedia Of DNA Elements
(ENCODE) project is to identify all functional elements in the
human genome sequence. For this purpose, 30 Mb, or roughly
1% of the total genome, have been selected as ENCODE regions
for this pilot project. The Pilot Project involves close interactions
between computational and experimental scientists to evaluate
various methods for annotating the human genome (The
ENCODE Project Consortium 2007). A major challenge in the
project is to annotate the large number of non-coding RNAs
(ncRNAs), which are difficult to find by computational or experi-
mental means. The discovery of a steadily increasing number of
untranslated RNAs since the late 1990s has dramatically changed
views on the roles and importance of ncRNAs.

The task of computationally finding ncRNAs is difficult be-
cause one has to consider secondary structure as well as nucleo-
tide sequence. With only one sequence available, one can fold
the sequence using single sequence folding methods (Hofacker et
al. 1994; Zuker 2003; Ding et al. 2004), but structure can be
detected more reliably from a set of related sequences, if available
(Westhof and Michel 1994; Westhof et al. 1996). Predicting the

RNA secondary structure is a necessity when searching for struc-
tured ncRNAs, and this makes RNA search algorithms computa-
tionally expensive. The seminal approach of Sankoff (1985) per-
forms simultaneous alignment and structure inference, but it re-
mains too computationally expensive for broad use. Various
approximations to it have been developed, including
FOLDALIGN (Havgaard et al. 2007), Dynalign (Harmanci et al.
2007), Stemloc (Holmes 2005), and Consan (Dowell and Eddy
2006), all attempting to increase performance without sacrificing
accuracy, but even these procedures remain relatively computa-
tionally expensive. A natural alternative approach is to align the
sequences first and then do RNA structure inference based on the
alignment. This strategy is particularly attractive now that high-
quality whole-genome multiple sequence alignments are avail-
able for 17 or more vertebrates (e.g., see Blanchette et al. 2004).
Two recently developed programs, RNAz (Washietl et al. 2005a,b)
and EvoFold (Pedersen et al. 2006), exploited these alignments to
search for ncRNAs. These timely scans resulted in thousands of
putative novel structured ncRNAs. The initial RNAz and EvoFold
scan restricted attention to those portions of the multiple align-
ments that were defined to be highly conserved (Siepel et al.
2005), thus minimizing the number of alignment errors. This
year the RNAz and EvoFold developers joined forces to scan all
multiple alignments in the ENCODE regions for putative
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ncRNAs, not only the most conserved ones (Washietl et al. 2007),
resulting in many additional candidates in these regions (albeit
with estimated false-positive rates on the order of 50%).

Although these programs have significant strengths, their
false-negative rates and other limitations of these studies are es-
sentially unexplored. A particular concern is exactly the reliance
on existing multiple sequence alignments, which are based on
DNA sequence similarity alone. Unfortunately, as sequence simi-
larity drops, a key feature of RNA structure—frequent compen-
sating base changes—is increasingly likely to cause sequence-
based alignment methods that are ignorant of RNA structure to
misalign, or even refuse to align, homologous ncRNAs, conse-
quently obscuring that structural signal. As illustrated by an ex-
ample below, even modest misalignments in moderately well-
conserved sequences can have an adverse effect. Torarinsson et
al. (2006) provide even deeper evidence, by using FOLDALIGN to
show the apparent presence of thousands of RNA structures con-
served between human and mouse in regions not aligned in the
UCSC MULTIZ alignments. An additional concern is that RNAz
and EvoFold generally assume that an RNA structure, if present,
is present in all sequences in the alignment, ignoring the possi-
bility of gain or loss on some branches of the phylogeny. Finally,
both programs initially evaluate only global alignments within
fixed-width sliding windows, which further reduces sensitivity
since a given placement of the window may include extraneous
sequence flanking a given RNA structure, may include only part
of the structure, or both.

In short, reliance on sequence-based alignments (and cur-
rent tools) both biases away from regions that are conserved in
structure but not sequence, while not fully protecting from align-
ment errors that also mask structure conservation. These obser-
vations lead us to apply CMfinder (Yao et al. 2006) to the
ENCODE regions as a complement to the RNAz/EvoFold scans.
CMfinder searches a set of (presumably) orthologous, unaligned
sequences for local patterns indicative of conserved RNA se-
quence and structure. We do not rely on externally supplied
alignments (except to indicate orthology), do not use a sliding-
window approach, and can ignore diverged sequences that do
not appear to share the discovered RNA motif.

CMfinder has been very successfully used in discovering
ncRNAs in bacteria. In a genome-wide study in the Firmicutes
(Yao et al. 2007), CMfinder’s top-ranking motifs included most
known Firmicute RNA elements, and it achieved high accuracy in
both membership prediction and secondary structure prediction
in comparison to the hand-curated motif models from the Rfam
database (Griffith-Jones et al. 2003). In addition, CMfinder pre-
dictions have led to discovery of many novel regulatory elements
in this and other bacterial groups, including several new families
of riboswitches (Weinberg et al. 2007).

In agreement with the previous studies, we find a large num-
ber of potential RNA structures in the ENCODE regions. We re-
port 6587 candidate regions with an estimated false-positive rate
of 50%. More intriguingly, many of our predicted motifs may be
better represented by alignments taking the RNA secondary
structure into account than those based on primary sequence
alone, often quite dramatically. For example, approximately one-
quarter of our motifs show revisions in >50% of their positions,
in comparison to the sequence-based MULTIZ alignments. Fur-
thermore, our candidate regions are largely complementary to
the results of the RNAz/EvoFold scans—while overlap with the
candidates generated by those scans is much greater than would
be expected by chance, 84% of our candidate regions do not

overlap results of previous scans (Washietl et al. 2007). These
results broadly suggest caution in any analysis relying on mul-
tiple sequence alignments in less well-conserved regions, clearly
support growing appreciation for the biological significance of
ncRNAs, and strongly support the argument for taking RNA
structure directly into account in any searches for these elements.

Results

The candidates

We scanned 2 � 56,017 (forward/reverse) multiple alignment
blocks from the UCSC MULTIZ multiple alignment (.maf) files,
one block at a time (155 nt long on average). Since previous
studies were presumed to be effective in well-conserved regions,
we restricted analysis to alignment blocks that overlap neither
exons nor the most conserved elements (as defined by the
PhastCons Conserved Elements; Siepel et al. 2005). These align-
ments covered 8.68 Mb of human sequence (out of the total of
30 Mb in the ENCODE regions), and included 3.87 Mb of repeti-
tive sequence as defined by the RepeatMasker (http://
www.repeatmasker.org) track of the UCSC alignments. We in-
cluded alignments in repeat regions in human because many of
the known ncRNAs are found there. This resulted in 10,106 pre-
dicted motifs that met our cutoff criteria: a composite score >5
and Gibbs energy >�5 kcal/mol (see Methods). We estimated a
false-positive rate of 50% by repeating the analysis on shuffled
alignments (see Methods). Composite score and energy distribu-
tions for randomized versus original alignments are depicted in
Figure 1, showing a slight shift in the distribution toward lower
energy and higher score for our native predictions. Some of these
predicted motifs overlap or are sense/antisense to each other.
Considering these as a single candidate region, we have 6587
candidate regions. Our candidate regions average 80 nt in length,
collectively covering a total of 0.53 Mb, or 6.1% of our human
input sequence. Candidate regions are approximately twice as
dense (per nucleotide) in nonrepetitive regions (0.38 Mb of 4.81
Mb, or 7.9%) than in repeat regions (0.15 Mb of 3.87 Mb, or 3.9%
of the repetitive input data set).

Known ncRNAs

As noted by Washietl et al. (2007), the ENCODE regions are sur-
prisingly poor in annotated ncRNAs. In fact, when studying
Rfam (Griffiths-Jones et al. 2003), the Functional RNA project
(http://www.ncRNA.org), and the snoRNA and miRNA tracks
that have been mapped to the human genome by the UCSC
Genome Browser (Kent et al. 2002), we could only find one
ncRNA that fully overlapped our input alignments. This was the
miRNA hsa-miR-483 on chromosome 11 identified by Fu et al.
(2005) in fetal liver in human. In addition, miR-483 has been
annotated in mouse and rat “by similarity” in mirBase (Griffiths-
Jones 2004; Griffiths-Jones et al. 2006). This miRNA was detected
in our scan (composite score 8.6, energy �31.4) and was scored
highly as an miRNA by RNAmicro (Hertel and Stadler 2006),
which we ran on all our predictions. Our prediction, in addition
to human, rat, and mouse, also includes dog, cow, and rabbit.
Hsa-miR-483 was also detected by RNAz but was not in the input
set for EvoFold (Washietl et al. 2007).

Transcription data and purifying selection

Using oligonucleotide tiling-array techniques, transcription
maps of TARs (transcriptionally active regions) (Bertone et al.
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2004) and transfrags (transcribed fragments) (Cheng et al. 2005)
have been generated. We compared our predictions to TARs and
transfrags generated as a part of the ENCODE project, which used
11 human tissues (The ENCODE Project Consortium 2007). Note
that these maps were derived from RNA fragments >200 nt. TARs
and transfrags were only generated for the RepeatMasked regions
of the genome, whereas we included the repeat regions, thus
candidates in repeat regions (25% of our total candidate regions)
were ignored in calculating the following numbers. Of these can-
didate regions, 16.9% overlap TARs/transfrags. At the nucleotide
level, 11.8% of the bases in the predictions overlap a TAR or a
transfrag, compared to 7.0% of the input bases (i.e., our whole
RepeatMasked input data). In a recent study by Kapranov et al.
(2007), the genomic origins and the relations of human nuclear
and cytosolic polyadenylated RNAs >200 nt (lRNA) in eight cell
lines and whole-cell RNAs <200 nt (sRNA) in two cell lines were
investigated. Comparing our candidate regions to these new
transfrags, on the nucleotide level, 3.0% and 27.4% of our can-
didates were overlapped by short and long RNAs, respectively,
compared to 1.5% and 16.0% of the input bases. The increased
overlap with TARs/transfrags, sRNA, and lRNA is highly signifi-
cant with P-values of 10�40, 10�24, and 10�86, respectively. Still,
one has to be cautious since, as noted by Washietl et al. (2007),
the tiling-array studies may be more sensitive on G+C-rich re-
gions and the TARs/transfrags are very G+C-rich. With this in
mind, we divided our input data into five bins based on G+C
content (0%–35%, 35%–40%, 40%–45%, 45%–50%, 50%–100%
G+C ranges, chosen to contain similar numbers of alignment
blocks) and repeated our analysis on each bin separately. Surpris-
ingly, none of the five G+C bins show statistically significant
overlap with the tiling-array data. Basically, the explanation is
that our predictions, the tiling-array predictions, and the ob-
served overlap between them are all concentrated in the high
G+C range, and controlling for this bias erases the apparent sig-
nificance of the overall overlap. We did the same analysis for the
RNAz and EvoFold candidates that are in our input data, and
came to the same conclusion for their candidates. Although our
analysis included only a portion of their candidates, it does sug-
gest that there is not a significant overlap with TARs/transfrags

when considering G+C content—the apparent overall signifi-
cance of overlap with the tiling-array data is seemingly explained
by the G+C biases. However, Washietl et al. (2007) further point
out that it is unclear whether the G+C bias for tiling-array data
has a biological explanation or is a technical artifact. Addition-
ally, they note that secondary structure may affect detection per-
formance on tiling arrays, considering the observation of several
examples where highly stable ncRNAs result in negative signal
“holes” in tiling-array data (Cheng et al. 2005). Together, these
observations leave open whether to expect tiling-array technol-
ogy to sensitively identify structured ncRNAs.

Lunter et al. (2006) have identified non-coding regions ap-
parently under purifying selection on the basis of lack of indels.
We compared our candidate regions to their set of Indel Purified
Segments (IPSs) on human assembly hg18. For our two most
G+C-rich bins (where the majority of our candidate regions lie),
there is a significant overlap to the IPSs (P <10�8 and P <10�31),
indicating that many of our candidate regions are under purify-
ing selection.

GENCODE

We also compared our candidate regions to the GENCODE an-
notations (Harrow et al. 2006), which aim to identify all human
protein-coding genes in the ENCODE regions. We find that 40%
of our candidates are intergenic, whereas 60% overlap some non-
exonic part of a protein-coding gene (see Table 1). We also ana-
lyzed whether introns, 3� UTRs, or 5� UTRs were enriched for our
candidate regions, again stratified by G+C. Significant enrich-
ment of predicted candidate regions is seen only in the highest
G+C bin of 5� UTRs (P < 10�6).

RNAz and EvoFold

As mentioned above, a similar scan to ours was performed with
the global, alignment-dependent programs RNAz and EvoFold
(Washietl et al. 2007). Note that they use the TBA (Threaded
Blockset Aligner) RepeatMasked multiple sequence alignments
with up to 28 species as prepared by the ENCODE alignment
group (Margulies et al. 2007), whereas we used the MULTIZ align-

Figure 1. Score distribution of the full CMfinder input set (A) composite score and (B) consensus minimum free energies for the native and random
(shuffled) sequences. There is a slight shift toward lower energy and higher score for our native data.
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ments (with autoMZ driver) with up to 17 species available at the
UCSC Genome Browser. In both cases, the alignments are pre-
pared using the TBA/MULTIZ software (Blanchette et al. 2004).
We used the latest assemblies (human hg18), whereas Washietl et
al. (2007) use earlier assemblies (human hg17) because the TBA
ENCODE alignments are only available for hg17. We used hg18
because it was the latest assembly with genome-wide multiple
alignments available. Furthermore, the input alignments for
RNAz and EvoFold were pre-processed according to different
preferences of these programs (Washietl et al. 2007).

To compare our predictions with those of RNAz and Evo-
Fold, we used all their candidates (low and high confidence) that
overlapped neither exons nor the PhastCons conserved elements
(38% of their total predictions) (Siepel et al. 2005) and compared
them to our 4933 (75% of our total candidate regions) candidates
in non-repetitive regions. Only 6.7% of these candidate regions
overlap with EvoFold predictions, whereas 17.2% overlap with
RNAz candidates (see Fig. 2). To estimate the significance of this
overlap, we calculated P-values for our five G+C bins. For the two
most G+C-rich G+C bins (45%–50% and 50%–100%, which con-
tain the majority of our candidates), the overlap with EvoFold
was significant (P < 10�5 in both bins). The overlap with RNAz
was significant in all five G+C bins (P < 10�22, P < 10�17,
P < 10�28, P < 10�27, and P < 10�39, ordered by increasing
G%+C%.) In the regions that do not overlap exons, PhastCons
conserved elements, or repeat regions, we add 3861 new candi-
dates to the 6071 RNAz or EvoFold candidates. Furthermore, we
predict 1654 candidates in regions that are in repeat regions in
human (excluded by Washietl et al. 2007) and thereby add 5515
candidates to the 17,046 RNAz or EvoFold candidates in the
ENCODE regions, corresponding to 32% of the total number of
candidates.

EvoFold has a strong preference for TA-rich regions, whereas
RNAz prefers G+C-rich regions since the minimum free energy is

important to RNAz. The CMfinder predictions are approximately
normally distributed, centered on 53% GC content. Still, when
considering that the background G+C content is 43%, it is clear
that CMfinder also prefers G+C-rich regions that tend to be more
structurally stable.

Candidate database

All of our candidate regions are available in an online database
(http://genome.ku.dk/resources/cmf_encode). The database in-
cludes a variety of additional annotations such as the overlaps
described above, occurrences such as conserved tetraloop motifs,
and predicted microRNA using RNAmicro (Hertel and Stadler
2006). The database also supports easy access to subsets of the
candidates with different features. For example, one can easily
retrieve all candidates overlapping TARs/transfrags or all miRNA
predictions. Furthermore, each candidate region is linked directly
to the UCSC Genome Browser. Despite the relatively high false-
positive rate, it is possible and simple to use the information in
our database to select higher confidence predictions through the
“Database Search” link. For example, one can choose predictions
that overlap with EvoFold/RNAz predictions and/or overlap
TARs/transfrags.

Realigning parts of the genomes

A benchmark study by Gardner et al. (2005) compared the rela-
tive performances of structure- versus sequence-based methods
when aligning pairs of known tRNAs. The study revealed a dra-
matic divergence in performance for sequences with identity be-
low ∼60%; that is, sequence-based methods were dramatically
worse below this threshold. Note that Gardner et al. define pair-
wise sequence identity as IDENTITIES/MIN(length A, length B)
for sequences A and B (Paul P. Gardner, pers. comm.), whereas
we, dealing with multiple alignments, define this as IDENTITIES/
MAX(length A, length B). IDENTITIES is the number of identical
positions in the alignment, and the length is the gap-free length
of the sequence. For example, the sequences ATGC and AG are
100% identical by the former definition, but only 50% identical
by the latter. Applying our definition to Gardner et al.’s data
lowers the pairwise sequence identities by 3% on average. Al-
though Gardner et al.’s observation is based on pairwise align-
ments on tRNAs, it is reasonable to assume that there exists a
sequence identity threshold, for sequence-based multiple align-
ment tools, below which the generated alignments will be sub-
optimal when considering structured ncRNAs. This means that
one should be careful when searching for structured ncRNAs in
sequence-based alignments when the sequence similarity is be-
low this threshold, because these alignments will contain many
more errors that will propagate through alignment-dependent
methods. CMfinder considers both sequence and structure infor-
mation and is therefore expected to perform better on regions
with low sequence similarity. Considering that our input align-
ments have 50% average pairwise sequence similarity, it is clear

Figure 2. Overlap of predictions made by CMfinder, RNAz, and Evo-
Fold. Only predictions that are not highly conserved (phastCons), outside
exons, and repeat regions are considered, since these regions are the
common subset of the input regions to these three programs. The total
number for each program is indicated in parentheses below the label.

Table 1. GENCODE overlaps: Total number and percentage of candidates overlapping non-exonic GENCODE annotations

Sense Antisense Both Intron 5� UTR 3� UTR

1721 (43.7%) 1332 (33.8%) 884 (22.5%) 3274 (83.1%) 551 (14%) 89 (2.3%)

There are also 23 candidates that overlap with an exon, because we use the GENCODE annotation here, whereas our initial filtering was done with UCSC
known genes annotation.
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that when RNA secondary structure is of importance, these align-
ments will often benefit from being realigned, taking structure
into account. We calculated how much of the sequence is being
realigned by CMfinder, compared to the original sequence-based
alignment; as expected, the degree of realignment correlates with
sequence similarity (Pearson correlation of �0.77) (see Fig. 3).
Approximately one-quarter of the alignments show realignment
in >50% of positions (see Methods).

Most of the known ncRNA families probably exhibit artifi-
cially high sequence similarities because of ascertainment bias—
members are often discovered based on sequence similarity. To
demonstrate possible benefits of structure-aware alignment, we
examined MULTIZ multiple alignment blocks identified by
Wang et al. (2007) to contain matches to Rfam ncRNAs (Grif-
fiths-Jones et al. 2003), with good matches to the Rfam model in
all species in the same region of the alignment. In one example
containing 10 mammals, with fairly high sequence identity
(∼72%), neither EvoFold nor RNAz reports a candidate there.
However, CMfinder identifies a candidate (composite score >5
and energy <�5) in all 10 species in good general agreement with
the H/ACA snoRNA known there (Rfam accession RF00402).
CMfinder’s alignment of the region differs from the MULTIZ
alignment in only 13% of positions, yet this change is sufficient
to flip the RNAz prediction from negative (“RNA probability”
0.11, based on using their script to select six organisms) to
strongly positive (probability 0.98) (see Supplemental material).
EvoFold did not predict anything for either alignment. While
this is just one example, it does highlight the fact that even
reasonably solid sequence-based alignments may not suffice for
RNA discovery. Considering the high number of ENCODE region
alignments with relatively low sequence similarities, it is reason-
able to expect CMfinder, in many cases, to perform better on
these alignments than sequence-alignment-dependent tools.

Furthermore, it should be noted that RNAz and EvoFold
remove individual sequences with >25% and 20% gaps, respec-
tively, as compared to human. This is not necessary when using
CMfinder since it is alignment-independent. CMfinder found

motifs in 1408 and 673 individual sequences that would have
been removed because of too many gaps by EvoFold and RNAz,
respectively. Also RNAz is limited to four to six sequences, thus
they sample six sequences (repeated three times if there are more
than 10 sequences in the alignment), optimizing the selected
sequences to have sequence similarity as close to 80% as possible.
EvoFold considers every sequence in the alignment, resulting in
a lower score if any sequence is missing the motif. In contrast,
although the number of species is a factor in its composite score,
CMfinder can ignore a sequence if it does not contain the motif
and still report a high-scoring motif for the rest of the sequences.

Experimental verification

An increasing number of ncRNAs are reported to be implicated in
tissue-specific developmental and disease processes (for review,
see Costa 2005), yet the precise biological function of most
ncRNAs remains elusive. To further explore the biological rel-
evance of our prediction method, we selected 11 high-scoring
ncRNA candidates for experimental verification. We selected
high confidence predictions by setting stricter score cutoffs (com-
posite score >9 and energy <�15) and by requiring a minimum
length of 60 and required more than five compensating base
changes, indicating a possible evolutionary pressure to maintain
the structure. We tested the expression of these 11 candidates in
human RNA pools using strand-specific primers (see Methods).
We found that eight out of 11 ncRNA candidates, indeed, could
be detected in human RNA samples by reverse-transcription PCR
(RT-PCR; ncRNA candidates #1, #2, #4, #7, #8, #9, #10, and #11)
(Fig. 4A). Such expression may simply reflect transcriptional
noise, yet current literature suggests that mammalian ncRNAs
exhibit highly tissue-specific expression profiles, which is likely
to be indicative of specialized functions in the organism (Ravasi
et al. 2006; Sasaki et al. 2007). Hence, in order to expand our
analysis and identify potential spatial and functional roles of our
predicted set of ncRNAs, we performed an extensive expression
analysis in 22 human tissues by RT-PCR totaling more than 250

separate duplicated reactions (see Meth-
ods). Our analysis demonstrated that 10
out of the 11 candidates are, indeed, ex-
pressed in one or more human tissues
(Fig. 4B). Interestingly, this analysis
showed that seven of 10 confirmed can-
didates exhibited a highly tissue-specific
expression profile, whereas only two
ncRNAs were more ubiquitously ex-
pressed (#10 and #11) (Fig. 4B). Hence,
in agreement with the current consen-
sus, we believe that the predicted
ncRNAs may have highly defined bio-
logical roles (Ravasi et al. 2006; Sasaki et
al. 2007). In addition, the highly differ-
ential expression patterns of the ncRNA
candidates strongly suggest that the ex-
pression is real and not merely transcrip-
tional noise, thus supporting the valid-
ity of our prediction method.

An interesting observation is that
nine out of 11 ncRNA candidates were
detected in brain (Fig. 4B). In fact, a simi-
lar enrichment of ncRNA expression in
brain versus other tissues has previously

Figure 3. Average pairwise sequence similarity of the predicted motifs versus the fraction that has
been realigned compared to the original alignments.
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been demonstrated in mouse (Ravasi et al. 2006), and several
reports on the involvement and relative abundance of ncRNA in
human CNS function and development have recently emerged
(Cavaille et al. 2001; French et al. 2001; Pollard et al. 2006; Sone
et al. 2007). Furthermore, an RNAz screen of porcine EST se-
quences revealed that developmental brain tissue seems to con-
tain more ncRNAs than other tissues (Seemann et al. 2007). In
order to examine the expression profile of our CNS-expressed
candidates in more detail, we performed RT-PCR analysis on hu-
man RNA purified from total brain, fetal brain, cerebellum, hip-
pocampus, and spinal cord (Fig. 4C). Again, distinct expression
profiles were identified. For example, as observed in the other
tissues, candidate #11 was expressed in all the investigated ner-
vous tissues (Fig. 4C). Candidate #8, on the other hand, showed
a more restricted expression profile, detected in fetal brain and,
although less pronounced, hippocampus of adult brain (Fig. 4C).
Hence, even within a single organ, the predicted ncRNA candi-
dates appear to have highly specialized expression profiles,
which is suggestive of a distinct biological function.

To expand our analysis, Northern blot analysis was per-
formed for the 10 ncRNA candidates, confirmed by RT-PCR, on

human RNA from 11 different tissues (Fig. 4D). In general, de-
tection of ncRNAs by Northern blotting has proven very difficult
as the majority of ncRNAs are low-abundance transcripts (Sasaki
et al. 2007). However, we were able to detect bands for ncRNA
candidate #6 (Fig. 4D), and the expression of candidate #6 was
confirmed to be strictly brain-specific by the Northern blot analy-
sis. The 2.8-kb-long transcript is located within a 4-kb-long in-
tron of synapsin III (SYN3) along with five more non-overlapping
CMfinder-predicted motifs on the same strand. In Figure 4D we
have removed four tissues because of a high level of background
noise, interfering with the results.

Next, we investigated the precise genomic locations of the
ncRNAs; five of the ncRNA candidates (#1, #2, #6, #9, and #10)
are located within intronic sequences of known genes, all but
candidate #1 on the same strand. Overall, we find a good corre-
lation between our ncRNA expression analysis and database
searches for the predicted host mRNA; for instance, candidate #6
is located within an intron of synapsin III (SYN3), which is neu-
ron-specific and predominantly expressed in the brain (Kao et al.
1998). This expression profile is well confirmed by both our RT-
PCR and Northern blot analysis showing a clear brain-specific

Figure 4. Expression of predicted ncRNA candidates by RT-PCR and Northern blot analysis. (A) Strand-specific RT-PCR analysis of ncRNA candidates
on human RNA pools (see Methods). �-Actin was used as control, yielding PCR products in the presence of reverse transcriptase (RT+), but not in its
absence (RT�). (B) Tissue-specific expression of ncRNA candidates as evaluated by RT-PCR analysis of human RNA samples. The same �-actin controls
as for A were used. (C) Expression of ncRNA candidates within the human CNS as evaluated by RT-PCR analysis. The same �-actin controls as for A and
B were used. (D) Expression of ncRNA candidate #6 as evaluated by Northern blotting of human RNA samples from 11 tissues.
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expression of ncRNA #6. Furthermore, candidate #9 is located
within an intron of the GRM8 (glutamate receptor metabotropic
8) precursor encoding a G-protein-coupled metabotropic gluta-
mate receptor expressed in the central nervous systems (Duvoisin
et al. 1995). Again, our RT-PCR analysis confirms candidate #9
expression both in spinal cord and in most compartments of the
brain and (Fig. 4B,C). Finally, candidate #10 is located within the
primary TIMP3 RNA transcript (which lies antisense to intron 5
of SYN3) that encodes an inhibitor of matrix metalloproteinases
(GenBank accession NM_000362). TIMP3 mRNA is rather broadly
expressed predominantly in brain, kidney, and lung (Leco et al.
1994), which correlates well with the expression patterns of can-
didate #10 as evaluated by our RT-PCR analysis (Fig. 4B). In con-
clusion, we find by both RT-PCR and Northern blot analysis that
predicted ncRNA candidates are expressed in a highly tissue-
specific manner, which is likely indicative of specialized biologi-
cal functions and thus supports the validity of our prediction
method.

Discussion

Non-coding RNAs are receiving increasing attention in genome
science. This study describes the first large-scale search for struc-
tured ncRNAs in several vertebrate genomes using a local struc-
tural motif finding algorithm, which has identified several thou-
sand novel candidate ncRNAs. Our work complements a previous
pairwise scan for local structured RNA elements in corresponding
unaligned regions of the human and mouse genomes (Torarins-
son et al. 2006) by extending it to multiple genomes and includ-
ing a wider range of sequence similarities. Furthermore, except to
indicate orthology, the scan was not dependent on sequence-
based pre-aligned genomic regions, as is the case with RNAz and
EvoFold scans (Washietl et al. 2007), allowing us to increase the
number of ncRNAs candidates in the ENCODE regions by 32%.
With a growing number of sequenced genomes, and with im-
proving genome alignment methods that are capable of captur-
ing orthology among phylogenetically diverse species, analysis of
syntenic yet diverse regions becomes more feasible (Margulies et
al. 2006). Alignments of increasingly diverse regions often mean
decreasing average pairwise sequence similarity. This is problem-
atic for sequence-based alignment methods. When searching for
structured ncRNAs, one can therefore benefit from disregarding
these alignments and realign the regions considering sequence
and structure, often resulting in better alignments. Indeed, it has
been shown, for pairwise alignments of tRNAs, that it is prefer-
able also to consider structure when aligning these if sequence
similarity is below ∼60% (Gardner et al. 2005).

There are several remaining challenges in this field. Extend-
ing the analysis to (presumably) syntenic unaligned regions ad-
jacent to aligned regions is one important direction. The main
obstacles in doing this is data collection complexity and in-
creased computation time. Candidate scoring is another chal-
lenge. Although useful, we don’t believe that any of the methods
used to date constitute the last word on this topic. Even seem-
ingly simple issues like the dinucleotide composition of shuffled
alignments used as null examples are problematic. Additionally,
we expect many functionally important ncRNA motifs to be re-
peated in the genome, for example, cis-regulatory elements con-
trolling several genes in a common pathway or multiple mem-
bers of as-yet-unknown RNA families. There has been limited
work to date attempting to identify or cluster repeated motifs

predicted by genome-scale RNA discovery approaches (Torarins-
son et al. 2007; Will et al. 2007). The CMfinder-based approach
we have described in this paper potentially provides an efficient
alternative to these clustering approaches. Since each of our RNA
motifs is described by a covariance model, in principle, we could
use each to scan the genome for additional instances. Pragmati-
cally, using each to scan the set of sequences representing each
other motif should be effective and fast enough to be feasible
(Weinberg and Ruzzo 2006), since we would expect reasonable
cross-species conservation of each motif instance. However,
completion of a full-genome CMfinder scan is a prerequisite. Fi-
nally, there is big need for high-throughput methods, computa-
tional and experimental, to identify a potential function for the
tens of thousands of candidates that have resulted from scans like
this.

Methods

Data
The multiple alignments from the ENCODE regions were ob-
tained from the UCSC Genome Browser, more specifically,
the multiple alignments of 16 vertebrate genomes with the
human genome (assembly hg18, March 2006). We post-
processed these alignments to remove all alignments blocks that
overlapped with exons of known genes (http://hgdownload.cse.
ucsc.edu/goldenPath/hg18/database/knownGene.txt.gz) or the
h i g h l y c o n s e r v e d P h a s t C o n s e l e m e n t s ( h t t p : / /
hgdownload.cse.ucsc.edu/goldenPath/hg18/database/
phastConsElements17way.txt.gz) in human. Furthermore, we
made an additional set with the reverse complementary se-
quences of each sequence in the alignment. GENCODE, TARs,
transfrags, EST, and IPS data were obtained from UCSC’s Table
Browser (http://genome.ucsc.edu/cgi-bin/hgTables) and con-
verted, when needed, from assembly hg17 to hg18 using their
liftOver software (http://genome.ucsc.edu/cgi-bin/hgLiftOver).
sRNA and lRNA data were obtained at http://transcriptome.
affymetrix.com/publication/hs_whole_genome. EvoFold and
RNAz candidates were obtained at http://www.tbi.univie.ac.at/
papers/SUPPLEMENTS/ENCODE. Repetitive regions were defined
by the UCSC RepeatMasker track for human (hg18).

False-positive rate
In order to estimate the false-positive rate, we shuffled all of our
input alignments and ran CMfinder on them. The alignments
were shuffled as described by Washietl and Hofacker (2004), re-
sulting in random alignments of the same base composition,
sequence conservation, and gap patterns. The shuffling method
we used retains a coarse-grained pattern of conservation (only
columns with mean pairwise identity >0.5 and <0.5 were shuffled
with each other, respectively) (Washietl et al. 2007). Note that
this shuffling does not conserve the dinucleotide frequencies,
which is an unsolved problem for shuffling multiple alignments.
Dinucleotide frequencies have an effect on the Gibbs free ener-
gies due to stacking interactions. Since the Gibbs free energy
plays a role in our scoring of the candidates, this has an unknown
effect on our estimated false-positive rate.

Running CMfinder
We ran CMfinder (version 0.2) separately on each alignment
block in the MULTIZ alignment as well as the reverse comple-
ment of each such block. When running CMfinder, we output up
to five single stem predictions (size range 30–100 bp) and five
predictions containing two stems (size range 40–100 bp). This
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corresponds to running CMfinder with the options “-n 5 -m 30
-M 100” and then with the options “-n 5 -s 2 -m 40 -M 100.” Then
we tried to combine the motifs using the greedy heuristics imple-
mented in CMfinder’s CombMotif.pl procedure, which estimates
alignment scores for concatenation of all pairs of motifs and
combines them progressively by merging the two motifs with the
highest concatenation score. See Yao et al. (2006) for more details
about these options.

We ranked all CMfinder motifs using a heuristic scoring
function that favors motifs with instances in diverged species
and stable consensus secondary structure. CMfinder sometimes
identifies purely structural motifs (e.g., alignments of single hair-
pins) that could easily arise by chance. Such motifs are usually
scored well by both EvoFold and RNAz. To discriminate against
such, likely spurious, structural motifs with no sequence conser-
vation, we consider local sequence conservation in the scoring
function. This is based on the observation that most known
ncRNA motifs, even the ones with low sequence conservation,
contain mosaic patterns of local sequence conservation, which
are plausibly interaction sites for other molecules under strong
selection. On the other hand, we penalize global sequence con-
servation, as highly similar sequences are more likely to be con-
served by selection pressure on primary sequence than on struc-
ture. The final score is defined as

r = sp *� lc
sid

*
bp
len

where sp is the number of species in which the motif occurs, lc
the local sequence conservation score (see Supplemental Material
for details), sid the global average pairwise sequence identity, bp
the number of base pairs in the consensus structure, and len the
alignment length. This score is referred to as the “composite
score” (see Supplemental Material for details). A variant of this
somewhat ad hoc scoring scheme performed well on ncRNA dis-
covery in bacteria (Weinberg et al. 2007; Yao et al. 2007). The
score used here is length-normalized to favor motifs with com-
pact RNA structure. We have tried a few alternatives, including
RNAz and Evofold, both of which strongly favor short, stable
stem–loop motifs with low sequence similarity that are very
likely to be aligned by chance. We have also tried to integrate our
motif features for scoring by machine-learning algorithms in-
cluding support vector machine (SVM) and logistic regression,
but these methods did not perform well, probably because of the
heterogeneity of the features and limitations of available training
data.

After systematically studying various cutoffs, we chose to
focus on candidates with a composite score >5 and Gibbs energy
<�5, which resulted in a large number of candidates with a rea-
sonable false-positive rate (see Supplemental Material for details).
The energy is computed as the average energy of each sequence
in the alignment as calculated by RNAfold (Hofacker et al. 1994)
when constrained to the secondary structure annotated by
CMfinder.

P-value calculation
To calculate the P-values, we counted the number of candidate
regions whose center nucleotide overlaps the data we are testing
against, that is, TARs. To get a P-value, we compare it to the null
model that each candidate is a dart thrown randomly onto the
genome. If the TARs cover a fraction P of the ENCODE nucleo-
tides in MAF blocks (our input data), then it is a simple binomial
model: each of the N darts has probability P of hitting a TAR. For
N candidates, the expected number of hits is µ = N * P, with a
standard deviation

� = �N * P * �1 − P�.

We then calculate the P-value using the normal approximation
to the binomial distribution, pnorm function in R [pnorm (ob-
served, µ, �, lower.tail = F)]. Out of a concern that various edge
effects might distort the statistics, we also calculated the P-values
using the leftmost and rightmost nucleotide, instead of the cen-
ter nucleotide. This gives very similar results, although, when
comparing to RNAz and EvoFold, the P-values were a bit worse,
probably because they are global and use window lengths,
whereas CMfinder is local, therefore an overlap with our candi-
dates’ central nucleotide to RNAz and EvoFold candidates seems
more likely. See Supplemental material for all the P-values.

Realignment calculation
To quantify how much has been realigned by CMfinder in a
given motif compared to the original multiple alignment (see Fig.
3), we calculate the following quantities. Let sp be the number of
sequences in the CMfinder alignment, and define m to be the
number of matched positions in that alignment, that is, the
number of quadruples (s, t, i, j) with 1 � s < t � sp and such that
position i of sequence s is aligned with position j of sequence t.
Let v be the number of those matches that are realigned relative
to the MULTIZ alignment, that is, the number of quadruples as
above for which position i of s is matched to position j of t in the
CMfinder alignment, but not in the MULTIZ alignment (i and j
are aligned either to nucleotides in different positions or to gaps).
The overall realignment fraction we report is v/m. For example, if
we have two multiple alignments, A and B, of four sequences that
are all 10 bp long, we will compare all six possible sequence pairs
(all pair combinations of the four sequences). If we have, say, six
columns that are aligned differently in alignments A and B be-
tween sequences 1 and 3 and that the rest is aligned alike, then
we would say that 10% [6/(6*10)] of alignment B is realigned
compared to alignment A.

Experiments
The tissue-specific expression profiles of 11 candidate ncRNAs
were determined by RT-PCR using purified total RNA from 22
different human tissues (adrenal gland, bone marrow, brain
[whole, fetal, cerebellum, and hippocampus], kidney, liver [fetal],
lung, prostate, salivary gland, skeletal muscle, spleen, testis, thy-
mus, thyroid gland, trachea, uterus, colon, and small intestine).
cDNA was generated by reverse transcription (RT) using M-MLV
SuperScript III Reverse Transcriptase (Invitrogen). The RT was
carried out according to the supplied standard protocol using
either random hexamer primers (Fig. 4B) or gene-specific primers
to test for strand specificity (Fig. 4A) (see the Supplemental Ma-
terial for the primer list). A total of 5 pmol of primer and ∼1 µg of
RNA was used per 20-µL RT reaction. Directly upon completion
of the RT, the cDNA was amplified by PCR using HotStarTaq DNA
polymerase (Qiagen) according to the supplied protocol. The
PCR was carried out on ∼10% of the total cDNA (by mass per
20-µL RT reaction) using the following program: 6 min at 95°C
denaturing (denaturing for 30 sec at 95°C; annealing for 30 sec at
54°–56°C; elongation for 30 sec at 72°C) (40 cycles); and elonga-
tion for 10 min at 72°C. A primer set for �-actin was used as a
positive control. Blank and negative “no RT” RNA controls (equal
mass of RNA to cDNA) were also included to test for DNA con-
tamination of the RNA samples. The PCR products were visual-
ized by ethidium bromide staining on a 2% agarose gel. The
complete procedure of RT-PCR and gel visualization was per-
formed at least twice for each candidate in each individual tissue.
The identity of the detected DNA fragments was confirmed by
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sequencing using the BigDye Terminator v3.1 Cycle Sequencing
Kit (Applied Biosystems) according to the supplied protocol.

For Northern blot analysis of ncRNA expression, Nylon
membranes with pre-blotted human RNA samples (15 µg/tissue;
Zyagen) were hybridized at 37°C in Ultrahyb hybridization buffer
(Ambion) with 80-nt end-labeled probes antisense to the pre-
dicted ncRNAs. Upon overnight hybridization, membranes were
washed in 2� SSC, 0.1% SDS, and bands were visualized by Phos-
phorImaging.
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