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Small RNAs (sRNAs) constitute a large and heterogeneous class of
bacterial gene expression regulators. Much like eukaryotic micro-
RNAs, these sRNAs typically target multiple mRNAs through short
seed pairing, thereby acting as global posttranscriptional regula-
tors. In some bacteria, evidence for hundreds to possibly more
than 1,000 different sSRNAs has been obtained by transcriptome
sequencing. However, the experimental identification of possible
targets and, therefore, their confirmation as functional regulators
of gene expression has remained laborious. Here, we present
a strategy that integrates phylogenetic information to predict
sRNA targets at the genomic scale and reconstructs regulatory
networks upon functional enrichment and network analysis
(CopraRNA, for Comparative Prediction Algorithm for sRNA Tar-
gets). Furthermore, CopraRNA precisely predicts the sSRNA domains
for target recognition and interaction. When applied to several
model sRNAs, CopraRNA revealed additional targets and functions
for the sRNAs CyaR, FnrS, RybB, RyhB, SgrS, and Spot42. Moreover,
the mRNAs gdhA, Irp, marA, nagZ, ptsl, sdhA, and yobF-cspC were
suggested as regulatory hubs targeted by up to seven different
sRNAs. The verification of many previously undetected targets by
CopraRNA, even for extensively investigated sRNAs, demonstrates
its advantages and shows that CopraRNA-based analyses can com-
pete with experimental target prediction approaches. A Web in-
terface allows high-confidence target prediction and efficient
classification of bacterial sRNAs.

regulatory RNA | E. coli | RNA-RNA interaction

mall RNAs (sRNAs) are ubiquitous and important regulators
of gene expression in bacteria. The most common and best
investigated frans-acting sRNAs regulate their targets post-
transcriptionally by RNA-RNA interactions, often depending on
the RNA chaperone Hfq (1). Individual functions of model
sRNAs have been discovered primarily through extensive ex-
perimental work and may be assigned to many different stress
responses and signal transduction pathways, covering virtually all
aspects of bacterial growth (1, 2) and virulence (3). One of the
most intriguing conceptual advances has been the identification
of sRNAs as posttranscriptional regulators that act globally
within complex regulatory networks. Examples for such sSRNAs
are GevB, which is a major regulator of amino acid metabolism
and directly controls ~1% of all Salmonella enterica mRNAs (4);
MicA and RybB, which together constitute the repressor arm of
the Sigma E response (5); and Spot42, a global regulator of
catabolite repression (6). With the advent of high-throughput
sequencing and comprehensive transcriptome analysis techni-
ques, increasing numbers of new sSRNAs have been detected in
bacteria belonging to diverse taxa (7, 8). However, the experi-
mental testing and verification of SRNA targets is costly, labor
intensive, and may be challenging, even in model organisms.
Moreover, for most environmentally and biotechnologically rel-
evant microbes, experimental verification is hindered further by
the lack of systems for their genetic manipulation.
The reliable computational prediction of SRNA targets pro-
mises a great reduction of required wet-laboratory analyses while
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enabling large-scale SRNA-mRNA network analyses in geneti-
cally intractable species. However, reliable in silico prediction of
mRNA targets has been challenging because of the extreme
heterogeneity of SRNAs in size, structure, and the typically short
and imperfect sSRNA-target complementarity (9). The existing
tools for the genome-scale prediction of SRNA targets evaluate
the strength of a particular SRNA-target interaction by either
base pair complementarity (10) or thermodynamic models (11—
13). The latter are built on the observed exponential correlation
between repression strength and hybridization free energy (14),
which can be corrected by an energy term that reflects the ac-
cessibility of the interaction sites (11, 12). However, despite
continuous improvement of target prediction methods (15), even
the most accurate methods integrating interaction site accessi-
bility scoring and additional features, such as seed regions,
produce many false positives and, thus, compromise the selec-
tion of putative targets for subsequent experimental investi-
gation (16, 17).

Furthermore, the implementation of seed sequence conser-
vation to improve sRNA target prediction has been difficult to
achieve for bacterial systems because of the great flexibility of
the interaction patterns (16). It is conceivable that the in-
teraction is preserved while the actual interaction site is not.
Therefore, to predict conserved interactions, it is necessary to
combine evidence for interactions in different species without
resorting to a consensus interaction-based approach.

Here, we introduce a computational approach that uses phy-
logenetic information from an extended model of sSRNA-target
evolution (CopraRNA, for Comparative Prediction Algorithm
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for SRNA Targets). CopraRNA depends solely on the conser-
vation of target genes (i.e., conservation of target regulation) and
does not require conservation of specific interaction sequences
(81 Appendix, Figs. S1 and S2).

By introducing a generic approach combining predictions for
homologous targets in distinct organisms, we reduced the hitherto
existing high false positive rate (FPR) of single-organism target
prediction. Using this strategy, CopraRNA matches microarray-
based experimental SRNA target prediction with respect to the
number of correctly identified direct targets (Fig. 1B and Table 1)
and the characterization of physiological functions of these
sRNAs. Thus, it constitutes a significant improvement of in silico
sRNA target prediction and enables competitive and functional
large-scale initial screening for sSRNA targets without experi-
mental effort and costs. Application of CopraRNA to previously
characterized sSRNAs proposed and partially verified additional
targets and functions for the SRNAs cyclic AMP activated SRNA
(CyaR), FNR regulated sRNA (FnrS), RybB, RyhB, sugar
transport-related SRNA (SgrS), and Spot42. Also, it suggested the

gdhA, Irp, marA, nagZ, ptsl, sdhA, and yobF-cspC mRNAs as
hubs targeted by up to seven different SRNAs. A Web interface
for CopraRNA has been set up under http://rna.informatik.uni-
freiburg.de/CopraRNA/.

Results

Prediction Strategy. CopraRNA begins with a genome-wide target
prediction (12) for each considered organism, as summarized in
Fig. 14. The interaction energies are fitted to a general extreme
value distribution and transformed into P values to normalize for
organism-specific GC-content and dinucleotide frequency. These
P values are combined for orthologous genes into a single P value
per conserved interaction. Orthologous genes are determined
based on the respective amino acid sequences (25); genes that are
present in less than 50% of the investigated genomes are dis-
carded. Two aspects require specific normalization. First,
CopraRNA normalizes for the degree of overall dependency to
account for the nonindependent P values that result from the
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Fig. 1. (A) Schematic overview of the CopraRNA pipeline. (B) Comparison of CopraRNA predictions with microarray results and other target prediction methods.

Genome-wide target predictions for 18 sSRNAs in E. coli and S. enterica with 101 experimentally verified targets from the literature. The plot shows the number of
correctly predicted targets (true positive predictions, y axis) vs. the number of target predictions per sRNA (x axis) for our comparative method CopraRNA and the
existing single-organism-based methods IntaRNA, TargetRNA, and RNApredator. The results, including the verifications from this study, are shown with solid
lines, and the results based on the benchmark set only are demarcated with a dashed line. (Inset) total numbers of independently verified targets detected by
either CopraRNA (46 targets) or microarray experiments (49 targets) for the sRNAs CyaR, FnrS, GevB, MicF, RyhB, SgrS, and Spot42; 25 targets were identified by
both methods. The numbers refer to our benchmark dataset (S/ Appendix, Table S1) and to the table comparing CopraRNA with different microarray experiments
(Table 1). Visualization of the predicted interaction domains in GevB (C) and the predicted mRNA targets of GevB (D). The density plots at the top give the relative
frequency of a specific SRNA or mRNA nucleotide position in the predicted sRNA-target interactions. The plots combine all predictions with a P value <0.01 in all
included homologs. Local maxima indicate distinct interaction domains and are marked with upright lines. The schematic alignment of homologous sRNAs and
targets at the bottom show the predicted interaction domains. The aligned regions are displayed in gray, gaps in white, and predicted interaction regions in color
(color differences are for contrast only). The locus tag and gene name (if available) of a representative cluster member are given on the right.
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Table 1. Comparison of CopraRNA predictions and published microarray studies
CopraRNA Microarray
No. of No. of No. overlap®
candidates  candidates after No. No. sig. diff. No. verified/
sRNA (P<0.01)  postprocessing*  verified" expr. genes* verified® Ref.  unverified Overlap genes”
CyaR 69 55 143l 24 genes 4 18 1”1 fepA, ompX
1 gene 1 19 1/0 ompX
Fnrs 67 41 3+ 4l 16 genes/11 operons 6 + 1/ 20 3/0 marA, sodB, yobA
31 genes 7 +1l 21 4/2 adhP, marA, sfcA/maeA,

sodB, ydhD/grxD, yobA

GevB 60 34 14 54 genes 16 4 10/3 argT, aroP, brnQ, cycA, dppA,
gdhA, gltl, Irp, oppA, serA,
sstT, trpE, yifK

MicF 50 30 4 5 genes 4 22 2/0 Irp, ompF

RyhB 70 37 2+5l 56 genes/18 operons 3+ 1! 23 33 frdA, fumA, msrB, sdhA,
sdhD, sodB

Sgrs 66 35 2+ 1 6 genes 4 24 2/0 ptsG, yiglL

Spot42 85 48 443l 16 genes 7 6 3/0 galk, gltA, xyIF

The candidates after postprocessing for these SRNAs are given in Table S5.

*Top 15 targets + automatically and manually functionally enriched.

"Verified targets after postprocessing regarding the benchmark list (S/ Appendix, Table S1), published data, and this study.
*Significantly differentially expressed genes with regard to the respective publications.
SGenes detected by prediction and microarray (independently verified/unverified).

Yindependently verified targets are in boldface.
Iverified in this study.

general sequence conservation between related organisms. Sec-
ond, the individual dependencies have to be calculated because,
in most cases, the considered organisms will not be equidistant
from each other. Thus, we additionally used species-specific
weights that were calculated based on 16S rDNA-based phylo-
genetic trees. The combination of the P values used a modified
z-transform method, which permits adjustment for dependency in
the data and a weighting based on the phylogenetic relationship
(26). We defined significance thresholds either on CopraRNA
P values or on g-values (27); the latter provide correction for
multiple testing by controlling the false discovery rate (FDR).
Both methods have proven useful for the analysis of the bench-
mark dataset. The chosen P value threshold of 0.01 allows for the
detection of approximately half of all verified benchmark targets
(SI Appendix, Fig. S34) and was applied for the functional en-
richment and network analysis. The g-value gives a measure of
how many false positive predictions are expected in the group of
targets called significant. True positives are all experimentally
verified targets (with regard to our benchmark dataset in SI Ap-
pendix, Table S1) within the positive predictions, whereas false
positives are all positive predictions that are no real targets, i.e.,
in our case, those that have not been verified experimentally.
Positive predictions (also called candidates below) are all targets
that match the respective threshold criterion (e.g., a P value <0.01
or a given rank); they consist of true positive and false positive
predictions (statistical terms are defined also in SI Appendix). A
reliable bioinformatic prediction tool for sSRNA targets should
not predict more than ~50% of false positive targets; therefore,
we chose a g-value threshold of 0.5. The validity of this approach
for CopraRNA was tested with the prediction for GevB. We as-
sume that GevB, with its 22 verified targets, is so far the most
thoroughly investigated sSRNA (4). In the CopraRNA prediction
of GevB, 37 targets are predicted with a g-value <0.5. Of these, 35
have homologs in Escherichia coli or S. enterica, 11 of which have
been verified. Fifteen of the 35 homologs are involved in amino
acid metabolism or transport, i.e., they fit to the known biological
function of GevB. This corresponds to an FDR of 69% or 57%,
respectively, with regard to currently known targets and is not
very far from the statistical estimate of 50%. In general, the
number of significant predictions with a g-value <0.5 is a rough
approximation of the expected number of targets and the pre-

Wright et al.

diction quality of the tested SRNA. A detailed description of the
CopraRNA procedure is provided in SI Appendix.

Benchmark with Experimentally Verified Targets. To evaluate the
accuracy of CopraRNA, we performed a benchmarking test on
a set of 18 conserved enterobacterial SRNAs and their 101 ex-
perimentally verified mRNA targets (modified from ref. 16) us-
ing homologous sequences from three to eight organisms (S7
Appendix, Fig. S4). Compared with predictions by the existing
approaches IntaRNA (12), TargetRNA (10), and RNApredator
(11) (Fig. 1B), CopraRNA showed a clear improvement in the

sensitivity or true positive rate (sensitivity = W) and

positive predictive value (PPV = #m%). Based on published
data, CopraRNA’s top 1 target predictions were correct for 8
of 18 sRNAs (PPV: 44%), compared with 5 (PPV: 28%) for
IntaRNA, 2 (PPV: 11%) for TargetRNA, and 1 (PPV: 6%) for
RNApredator. When considering the top 5 and top 15 target
predictions per SRNA, CopraRNA correctly detected 23 and 32,
respectively, of all 101 targets (true positive rate: 23% and 32%,
respectively), which constitutes a twofold increase in sensitivity
compared with IntaRNA and a 2.9-fold and fourfold improve-
ment compared with TargetRNA and RNApredator, respectively
(81 Appendix, Table S2). In addition, our experimental verifica-
tion (below) demonstrated that the existing lists of known targets
are still incomplete, implying an underestimation of the true
positive rate (Fig. 1B).

In many cases, the comparative approach resolved the prob-
lem of false negatives (i.e., verified targets missed in the pre-
diction) in single-organism-based methods. Prominent examples
are the GevB targets lrp (4), oppA (4), and stm3903 (4); the RybB
target ompN (28); and the Spot42 target glt4 (6). The ranking of
these targets improved from rank 95 to 3, rank 164 to 14, rank
1,297 to 40, rank 69 to 3, and rank 392 to 2, respectively (E. coli-
or S. enterica-specific prediction vs. CopraRNA prediction). The
benchmark dataset and the complete ranked list of all pre-
dictions are given in SI Appendix, Table S1 and Table S3.

Prediction of Interaction Domains. In addition to the ranked list of

predicted targets, CopraRNA provides comparative information
on the putative interaction sites of the SRNA and its mRNA
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targets. These data are summarized in two density plots com-
bining all predictions with a P value <0.01 for a specific SRNA
(Fig. 1 C and D shows the GevB example). Based on multiple
sequence alignments, these plots visualize the frequency of single
residues participating in the predicted sRNA-mRNA inter-
actions. The plots are complemented by a series of schematic
alignments for both sSRNAs and mRNAs that highlight organism-
specific predicted interactions. From these plots, the interaction
domains of the sSRNA can be inferred, as they provide the
combined information of accessibility, complementarity, and
phylogenetic conservation.

This visualization immediately highlights the two previously
described interaction regions of GevB (4) (Fig. 1C), the three
different interaction regions of Spot42 (6), and the single 5’ lo-
cated region of RybB (9) (SI Appendix, Fig. S5). In agreement
with the published data for Spot42, glt4 is targeted by the first
single-stranded region (6) centered at position 6 in the multiple-
sequence alignment (SI Appendix, Figs. S5 and S6). The newly
identified targets sucC and gdhA base pair with the second and
third interaction region of Spot42, respectively. For galK, all
three regions are predicted to be involved in the interaction for
four of the eight investigated organisms (SI Appendix, Fig. S5).
As previously described (4), GevB targets Irp and cycA via region
“R2” of the sSRNA (Fig. 1C), whereas most targets (e.g., dppA
and oppA) interact with region “R1.” In the case of RprA, the
full-length form appears to have two interaction domains, and
only the distal site is retained after processing (29) (SI Appendix,
Fig. S5), leading to a significant shift in the list of predicted
targets. The mRNA plots are useful to obtain a rapid overview
on the predicted interaction sites regarding their relative position
and their phylogenetic conservation. The density plot also

reveals the predominant interaction regions when using target
sequences of the same length. For GevB targets, there is a clear
tendency toward the region near the start codon (Fig. 1D).

Functional Enrichment of Predicted Targets. Many well-studied
SRNAs control sets of functionally related genes [e.g., RyhB,
nonessential iron-binding proteins (30), GevB, amino acid bio-
synthesis genes (4)]. Therefore, we analyzed the top-ranked
targets of all benchmark sRNAs for functional relationships
based on automated functional enrichment using the database
for annotation, visualization, and integrated discovery (DA-
VID) (31). A combination of CopraRNA and functional enrich-
ment provided very clear results for several SRNAs and suggested
their potential involvement in diverse cellular networks
(Tables S4 and S5). The DAVID Web server clusters related
terms and calculates a combined enrichment score. Table 2 shows
representative terms for the most strongly enriched clusters of
selected sSRNAs. The accuracy of this approach is demonstrated
exemplarily for GevB: this SRNA has a broad set of 22 verified
target mRNAs (4) and a clearly defined function as a regulator of
amino acid metabolism and transport (4). GevB has 60 positive
predictions (P value <0.01, E. coli). Seven experimentally verified
targets are in the top 10 list, which supports the prediction accu-
racy of our algorithm and represents a PPV of 70%. Among the 60
candidate targets, 19 were annotated with the term “cellular
amino acid biosynthetic process” and were significantly enriched
(enrichment score ~6.65) over background (i.e., all genes included
in the prediction output). In summary, 26 of the 60 predictions
were grouped as amino acid related, including genes for 11
amino acid biosynthesis proteins, 9 amino acid transporters,
and 4 peptide transporters. These results are complementary

Table 2. Results of the functional enrichment analysis using the DAVID Web server (31)

sRNA No. predicted  Enrichment score Category Term No.
CyaR 69 4.95 UP_SEQ_FEATURE Topological domain:Periplasmic 26
3.45 SP_PIR_KEYWORDS Cell inner membrane 32
2.15 GOTERM_BP_FAT GO0:0005976~polysaccharide metabolic process 1
FnrS 67 2.43 SP_PIR_KEYWORDS Flavoprotein 6
1.44 GOTERM_MF_FAT G0:0005506~iron ion binding 9
1.41 GOTERM_MF_FAT G0:0046872~metal ion binding 19
GcevB 60 6.65 GOTERM_BP_FAT GO0:0008652~cellular amino acid biosynthetic process 19
4.12 GOTERM_BP_FAT G0:0006865~amino acid transport 9
2.78 GOTERM_MF_FAT G0:0015171~amino acid transmembrane transporter activity 5
MicA 46 1.97 GOTERM_CC_FAT G0:0009279~cell outer membrane 6
1.12 GOTERM_BP_FAT GO0:0000271~polysaccharide biosynthetic process 6
MicF 50 2.36 GOTERM_CC_FAT GO0:0044462~external encapsulating structure part 7
2.14 GOTERM_CC_FAT GO0:0030312~external encapsulating structure 16
1.28 SP_PIR_KEYWORDS Lipoprotein 5
RyhB 70 3.41 GOTERM_MF_FAT GO0:0005506~iron ion binding 13
2.86 GOTERM_MF_FAT GO0:0046872~metal ion binding 22
2.59 GOTERM_MF_FAT G0:0051536~iron-sulfur cluster binding 9
SgrS 66 1.62 KEGG_PATHWAY 02060: phosphotransferase system (PTS) 5
1.36 GOTERM_MF_FAT GO0:0046872~metal ion binding 17
1.35 GOTERM_BP_FAT GO0:0051188~cofactor biosynthetic process 7
Spot42 85 2.96 GOTERM_BP_FAT GO0:0046356~acetyl-CoA catabolic process 7
2.53 GOTERM_BP_FAT G0:0006732~coenzyme metabolic process 12
1.83 KEGG_PATHWAY 00020:Citrate cycle, tricarboxylic acid cycle (TCA cycle) 5
FsrA 54 4.77 GOTERM_MF_FAT GO0:0051536~iron-sulfur cluster binding 8
3.81 GOTERM_BP_FAT G0:0022900~electron transport chain 6
3.69 UP_SEQ_FEATURE domain:4Fe-4S ferredoxin-type 2 4
PrrF 103 4.47 GOTERM_MF_FAT G0:0051536~iron-sulfur cluster binding 12
4.88 GOTERM_MF_FAT G0:0005506~iron ion binding 20
3.81 SP_PIR_KEYWORDS electron transport 7
SR1 50 1.88 GOTERM_BP_FAT G0:0030435~sporulation resulting in formation of a cellular spore 8

The top 3 significantly enriched terms (DAVID enrichment score >1.1) for 11 tested sSRNAs are shown. For each sRNA, the number of predicted targets with
a P value <0.01 (column 2), the score of the enriched functional cluster (column 3), the name and source of a representative term of this cluster (columns 4

and 5), and the number of unique genes in this cluster (column 6) are given. Individual gene members of the enriched terms are given in Table S5.
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to the existing experimental findings and add several plausible
candidates.

The known functions of GecvB were predicted almost com-
pletely by CopraRNA and the subsequent functional enrichment.
The top 15 predictions and functionally enriched target candi-
dates are shown in Fig. 24.

CopraRNA also returned the correct functional character-
ization for several other SRNAs. The predicted targets of MicA
(Table 2 and SI Appendix, Fig. S7) and MicF were strongly en-
riched for outer membrane proteins, whereas the most strongly
enriched cluster of RyhB targets consists of iron-binding proteins
(Table 2 and Fig. 2 B and C).

Network Analysis of Predicted Targets. Certain genes serve as
regulatory hubs and are targeted by several SRNAs. For example,
the mRNA encoding the alternative sigma factor RpoS is tar-
geted directly by at least three SRNAs, the Arc-associated SRNA
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Z (ArcZ), DsrA, and the RpoS regulator RNA (RprA) (1),
whereas the csgD mRNA is regulated by five different SRNAs,
i.e.,, GevB (32), the multicellular adhesive SRNA (McaS) (32,
33), the OmpR-regulated SRNA A/B (OmrA/B) (34), and RprA
(35). Computational target prediction by CopraRNA allows the
analysis of a high number of SRNAs, and the results can be com-
bined to infer the gene regulatory network for a given organism.
Indeed, our global network analysis based on the benchmark
dataset predicted known and potential hotspots of SRNA-based
regulation. In total, 15 mRNAs were predicted to be targeted by
four or more sSRNAs and ~50 mRNAs by three or more SRNAs
(Table S6). A striking example of an mRNA with multiple po-
tential SRNA regulators encodes Lrp (leucine-responsive regu-
latory protein) and is predicted to be regulated by 7 of the 18
investigated sRNAs, including the previously identified regu-
lators MicF (22, 36) and GevB (4). The mRNA encoding the
succinate dehydrogenase subunit SdhA has six predicted SRNA

]
B cpxR uvrY

miaC ginG "

hst metl__ ade
/ /

/ N\ EE N o
oppA’ folA - focA Irp  obgE mazF

I

cydB dms /potH

yabl squ murG appB
F ™
RyhB sRNA
Irp predicted mRNA target
m e
Verified in this study
L] T 3 .
Verified in previous studies
" detected by microarrays
more significant
prediction
2 >5
Edge color: -log (p-value)

Fig. 2. Visualization of the functional enrichment analysis. All top 15 target predictions are shown plus predictions with a CopraRNA P value <0.01 that are

functionally enriched (selected enriched terms). The edges connecting the sRNA:

s and targets are color coded according to the CopraRNA prediction P value,

a darker color indicates a statistically more significant prediction. Previously experimentally verified targets from the literature [with regard to our benchmark

list (S/ Appendix, Table S1)] are marked with a black square, verifications from t

his study with a red square, and targets detected by microarrays with a blue

square. Functionally enriched targets are color coded with respect to the enriched term. Results for (A) GevB, (B) MicF, and (C) RyhB.
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regulators, three of which were verified in this study (see below).
We also detected multiple regulators of csgD and rpoS mRNAs.
In addition to OmrA/B (34) and RprA (35), we predicted ChiX as
a potential regulator of csgD. Another interesting example is the
yobF-cspC dicistron with four potential regulators (CyaR, OmrA/
B, and OxyS). From these, OxyS was previously shown to nega-
tively regulate the yobF-cspC mRNA (10). The network obtained
for 18 sRNAs and their previously verified and new targets is
presented in Fig. 34. In total, when using a P value threshold of
0.01, CopraRNA predicted 52 of the 101 benchmark targets.
Furthermore, we verified 17 as yet unknown targets, uncovering
connections between the regulatory networks of GcvB and
Spot42, CyaR, RyhB and FnrS, and CyaR and SgrS. FnrS and
RyhB share a dense overlapping regulon of at least four targets
(Fig. 34). Additionally, several operons were predicted to be
influenced by multiple SRNAs: the sdhCDAB-sucABCD operon is
targeted by five SRNAs at three different positions (Fig. 3B);
Spot42 and RyhB each regulate two genes in the operon, sdhC
(37) and sucC, as well as sdhD (37) and sdhA, respectively. In
addition, the iscRUAB operon is regulated by both FnrS and
RyhB (38) (Fig. 3C).
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Experimental Verification of Predicted Targets. Based on the
benchmark results, we restricted the final set of target candidates
for each sRNA to the top 15 predictions plus candidates that

BN AS  DNAS P

belong to the functional-enriched terms (Table S5). This ap-
proach provides a reasonable balance between sensitivity and
specificity because it uses the high positive predictive value in the
topmost predictions (SI Appendix, Fig. S3B) while allowing in-
vestigation of an extended target set. We selected 23 previously
uncharacterized potential targets (SI Appendix, Table S7) for
experimental testing using a GFP reporter system tailored to
investigate posttranscriptional regulation (22). We verified 17
additional targets, which equals a success rate of ~74%, and
exemplarily proved the predicted interaction sites of yobF-CyaR,
iscR-FnrS, nirB-RyhB, and gdhA-Spot42 through the intro-
duction of compensatory mutations and for marA-FnrS, erpA-
RyhB, marA-RyhB, and sucC-Spot42 by point mutations in
their respective 5’UTRs (Fig. 4 4 and B and S/ Appende Fig.
S8). Interestingly, the point mutations in the marA*' construct
resulted in an increased repression by wild-type RyhB, which
indicates an improved RNA-RNA hybrid formation. Post-
transcriptional repression of the remaining predicted targets was
tested by flow cytometry (Fig. 4C) or Western blots (SI Appendir,
Fig. S9). An overview of the constructs used and the respective
mean fluorescence intensities is given in SI Appendix, Figs. S9
and S10. Most of the predicted interactions resemble the classic
binding proximal to the translational start site. However, the
binding sites for Spot42 in gdhA and icd align with positions +80
and +75 downstream from the start codon, deeply within the
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sRNAs of the benchmark dataset. Visualization of the
(B) sdhCDABsucABCD and (C) iscRSUAB operon with
verified interaction sites; the promoters are anno-
tated according to EcoCyc (52).
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coding region. A direct inhibition of translation seems unlikely
for these targets; rather, we assume a mechanism that reduces
the half-life of the mRNAs, as shown for the ompD-MicC in-
teraction in S. enterica (39, 40).

Performance of CopraRNA for sRNAs from Nonenterobacterial Species.
To evaluate the performance of CopraRNA for sSRNAs that are not
conserved in E. coli or S. enterica, we extended our benchmark
dataset by five additional sSRNAs from a wide range of bacterial
families and phyla—the Fur-regulated SRNA A (FsrA) and
SR1 (Firmicutes, Bacillaceae), LhrA (Firmicutes, Listeriaceae),
the inhibitor of hctA translation (IhtA) (Chlamydiae), and PrrF
(Proteobacteria, Pseudomonadaceae)—with a total of 17 experi-
mentally verified targets (SI Appendix, Table S8). CopraRNA
detects 11 of the 17 verified targets in the top 35 predictions,
which resembles a true positive rate of ~65% and a PPV of ~6.3%.
Again, this is at least ~3.7 times better than the single-organism—
specific methods (SI Appendix, Fig. S11). We also obtained
intriguing functional enrichments for FsrA and PrrF (Table 2
and Table S5). The topmost enriched term for the predicted
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FsrA and PrrF targets is “GO:0051536~iron-sulfur cluster
binding” followed by other iron-related terms. This is in agree-
ment with the known roles of these SRNAs in the iron stress
response (30) and may hint at additional yet-unknown target
genes of those SRNAs. The complete prediction dataset is given
in Table S9.

Discussion

Comparison with Other Target Identification Strategies. In this
study, we present a comparative method for SRNA target iden-
tification in bacteria. The method is superior to existing bioin-
formatics tools (Fig. 1B) and works for a wide range of bacterial
organisms. For seven tested benchmark sRNAs, CopraRNA can
compete with microarray-based experiments for target detection
(Table 1). CopraRNA is available as an easy-to-use Web inter-
face (http://rna.informatik.uni-freiburg.de/CopraRNA/). True
positive predictions are enriched by the downstream refinement
of the prediction results through integration of existing data.
Using CopraRNA, we detected 17 as yet unknown targets
for six sSRNAs (Fig. 4 and SI Appendix, Fig S9). For the sSRNAs
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Fig. 4. Verification of sRNA target candidates.
Translational repression of 5" UTR-gfp fusions when
overexpressing the sRNA. The fold repression is the
ratio of the GFP fluorescence of the respective
translational 5° UTR-GFP fusion in the presence of
the control plasmid pJV300 and a plasmid for the
overexpression of the respective sRNA, after sub-
traction of the background fluorescence. Compen-
satory point mutations in the UTR and sRNA are
indicated with an asterisk. (A) Verification of the
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yobF-CyaR, nirB-RyhB, gdhA-Spot42, and iscR-FnrS
interactions with compensatory point mutations. (B)
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FnrS, and sucC-Spot42 interactions with point muta-
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FnrS, FsrA, GcevB, MicA, MicF, PrrF, RyhB, SgrS, and
Spot42, bona fide physiological functions could be predicted
accurately on our in silico results (Table 2). Compared with
microarrays, CopraRNA has an advantage in that genetic modi-
fications and time-consuming, expensive wet-laboratory experi-
ments are not required for initial target screening. Additionally,
CopraRNA is not biased by secondary effects, which might be
picked up by experimental screening, and allows detection of
targets not expressed under the tested conditions. Consequently,
the predicted targets verify but also extend the existing micro-
array data.

However, CopraRNA also comes with certain limitations. The
primary limitation of bioinformatic target prediction methods is
that most predictions correspond to false positive predictions.
The comparative approach of CopraRNA reduces this problem
to the extent that further experimental analysis becomes much
more reasonable than with existing tools, but it does not solve
this problem completely. In our benchmark assay, half of the 101
known targets are detected with a P value threshold of 0.01 (S
Appendix, Fig S34). At this threshold, an average of 65 targets is
predicted for each SRNA and the FPR is ~95% (SI Appendix,
Fig S3B). Thus, a reasonable sensitivity of 50% comes with a low
specificity of 5%. In fact, this is a strong improvement, as the
other tools tested reach a maximum sensitivity of 25%
(IntaRNA) at 65 predictions per sRNA, and e.g., IntaRNA
needs 226 predictions per SRNA to reach a sensitivity of 50%.
Nevertheless, a low specificity challenges investigators to
follow up on the predictions. For that reason, we do not stick to
the P value threshold strictly, but focus on the top 15 list and on
the predictions (P < 0.01) suggested by further postprocessing
steps. These steps may include automatic and manual func-
tional enrichment (Fig. 2), network analysis (Fig. 3), overlaps
with transcription factor regulons (Fig. 5 and ST Appendix, Fig
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S13), or correlation patterns coming from microarray data (41,
42). This combined strategy was very successful in retaining
sensitivity while enhancing specificity. We demonstrated this
by the experimental verification of 73% of the selected 23
predicted targets that were not characterized previously. These
results also show that the FPR is at least slightly over-
estimated because of previously unknown targets (SI Appen-
dix, Fig S3B; compare dashed and solid blue lines). Another
challenge is a prediction without a meaningful postprocessing
result, caused, e.g., by the lack of additional data or lower
prediction quality. For these cases, we control the FDR sta-
tistically by calculating a g-value. The average g-value at pre-
diction rank 65 is ~0.54 and therefore judged by the current
benchmark data, rather too optimistic. Nevertheless, the g-
value distribution is valuable to roughly estimate the general
prediction quality for a given SRNA. For example, we could not
predict known targets for ArcZ. This less informative prediction
is accompanied correctly by a rapidly growing g-value and only
10 predictions with q < 0.5. On the other side, the good pre-
diction for GevB has 38 predictions with q < 0.5, and as de-
scribed above, the g-value fits well to the benchmark dataset.
CopraRNA generally requires the conservation of an sSRNA and
also a substantial level of target conservation in the selected
species. Therefore, single-organism—specific targets are likely
to be missed, as are interactions that generally are not predict-
able by the underlying IntaRNA algorithm (e.g., double-kissing
hairpin complexes). For example, the metE-FnrS interaction
[verified in E. coli (20)] seems to be conserved or detectable only
in three of the eight included species (SI Appendix, Fig. S12).
This results in a high combined P value of 0.54 and a rank of
1,969 in the combined prediction and shows the importance of
carefully selecting species. A small evolutionary distance favors
sensitivity, and a large distance favors specificity. The downstream
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Fig. 5. Partial regulatory network around FNR, ArcA, and FnrS. The figure shows verified FnrS targets, as well as predicted targets (CopraRNA P value <0.01)
regulated by FNR or ArcA. For the transcription factors, only selected targets are displayed.
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functional enrichment analysis relies on the availability of the
organism in the DAVID database (31), and the results depend
on the annotation quality of the genome of interest. Of note,
CopraRNA is a target prediction tool for sSRNAs that are ex-
pected to act in frans; it is not suitable for the differentiation of
a trans-acting RNA from other types of transcripts. However, the
functional enrichment analysis, the conservation plots, and the
g-value distribution provided by CopraRNA might provide a hint
as to whether a given conserved RNA is a functional trans-
acting SRNA.

Additional Targets and Functions of Previously Characterized sRNAs.
The inspection of the benchmark dataset revealed additional
targets and functions, even for sSRNAs extensively characterized
in the past. For the cAMP receptor protein (CRP)-regulated
sRNA CyaR (18, 19), we detected as yet unidentified targets
in primary metabolism (sdhA4) and the phosphotransferase
system (ptsI), constituting previously unreported links of the
CyaR regulon to carbon metabolism. Furthermore, with regard
to the yobF-cspC operon, we found a potential explanation for
the indirect negative effect of CyaR on the rpoS mRNA, which
was detected in a screen with 26 SRNAs (43). The yobF gene is
organized together with cspC in a dicistronic operon, and the
RNA chaperone CspC is a posttranscriptional stabilizer of the
rpoS message (44).

FnrS is involved in gene regulation after the shift from aerobic
to anaerobic conditions, and its expression is activated by the
transcription factors FNR and ArcA (20, 21). The combination
of existing information (45) with our predictions and verifications
for FnrS results in a remarkable complex regulatory network
(Fig. 5): (i) FnrS transduces the signal to several non-FNR and
-ArcA targets. These include the target nagZ and the two tran-
scription factor mRNAs iscR and marA. (ii) The prediction also
revealed several target candidates, which are controlled simul-
taneously by FNR and ArcA, which would establish multi-output
feed-forward loops. Although the transcription factor MarA is
not directly regulated by FNR or ArcA, four genes that are ac-
tivated by MarA (acnA, fumC, sodA, zwf) are repressed by ArcA
and/or FNR. These four genes are involved in the resistance to
superoxide (46) and provide a reasonable explanation for the
repression of marA by FnrS at anaerobic conditions. The re-
pression of the transcription factor IscR may be part of the
observed O,-dependent expression of the iscR regulon (47).

FnrS shares three targets with RyhB. Both sSRNAs regulate the
mRNA encoding MarA, which is involved in the response to
antimicrobial compounds and oxidative stress (46), and of the
mRNA for the p-N-acetylglucosaminidase NagZ, which permits
resistance to p-lactams in Pseudomonas aeruginosa (48). In-
terestingly, both MarA and NagZ are not obviously involved in
iron homeostasis. For the iron stress-induced sSRNA RyhB, we
predicted mRNAs for 13 iron-containing proteins as targets and
verified the posttranscriptional regulation of erpA, the mRNA of
an A-type carrier (ATC) protein involved in iron—sulfur cluster
biogenesis (49), and of nirB, which codes for a subunit of
nitrite reductase.

Regarding the dual-function RNA SgrS, we predicted inter-
actions with mRNAs of additional components of the phos-
photransferase system (chhB, cmtB and frud) and verified the
posttranscriptional regulation of ptsI (Fig. 4), which codes for the
non-sugar-specific enzyme I component of the PTS. Further-
more, we detected the recently described positive regulated sugar
phosphatase mRNA yigl. (50) as a direct target.

We also predicted and verified targets for the CRP-repressed
Spot42 sRNA which is involved in catabolite repression and con-
trols a range of genes in central and secondary metabolism and
sugar transport (6). Our predictions show a large, 18-gene overlap
with the CRP regulon and point to an even broader regulatory
role for Spot42 in primary metabolism involving the citrate cycle
and acetyl-CoA-dependent processes (Table 2, Tables S4
and S5, and ST Appendix, Fig. S13). Our successful experimental
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validation of the targets gdhA, icd, and sucC proves the accuracy
of our predictions.

In sum, CopraRNA allows for an efficient screening of large
numbers of sSRNAs and has proven superior compared with
existing methods. Using this tool, we obtained compelling evi-
dence that SRNAs are global regulators of large sets of mRNAs,
comparable to protein transcription factors and eukaryotic
microRNAs. We also show that it is a common concept that
mRNAs are targeted by multiple SRNAs and correctly predicted
the regulatory hubs csgD and rpoS. Furthermore, we proposed
and partially verified gdhA, lrp, marA, nagZ, ptsl, sdhA, and yobF-
¢spC as hubs targeted by up to seven different SRNAs. Finally,
we present examples for complex posttranscriptional events at
the operon level, including multiple targeting by the same, as
well as different, SRNAs.

Methods

Experimental Methods. Bacterial strains and growth. Cells were grown in Luria—
Bertani (LB) broth or on LB plates at 37 °C. Antibiotics (where appropriate)
were applied at the following concentrations: 100 mg-mL~" ampicillin and
25 mg-mL~" chloramphenicol.

Plasmid construction. The plasmids for the overexpression of FnrS and CyaR and
those for the translational superfolder-GFP fusions were constructed as
described previously (22).

Oligonucleotides and plasmids. Oligonucleotides and plasmids are listed in S/
Appendix, Tables S10 and S11.

Fluorescence measurements. Overnight cultures were used to inoculate (1:100)
fresh cultures, and cultivation was continued to ODggo = 2.0. Culture samples
equivalent to 1 OD were harvested by centrifugation and resuspended in
PBS. Aliquots of 100 pL were transferred to a 96-well microtiter plate, and
relative GFP levels were measured in a Victor3 fluorimeter (Perkin-Elmer). A
wild-type strain was measured in parallel to subtract autofluorescence levels.
All samples were measured in biological triplicates. This method was used to
analyze the RyhB-nirB and the CyaR-yobF interactions.

Flow cytometry-based fluorescence measurements. Single bacterial colonies were
inoculated in 200 pL LB medium in 96-well microtiter plates containing
ampicillin and chloramphenicol and grown at 37 °C, 100 rpm for 12-15 h.
Cells were diluted 1/5 in LB and fixed with formaldehyde (Roti-Histofix 10%;
Carl Roth GmbH) to an final concentration of 1% (wt/vol) and measured
directly on an Accuri C6 flow cytometer (BD Biosciences). The mean fluo-
rescence of 50,000 events was averaged for 6-12 independent biological
replicates. The fold repression was calculated as the ratio of the mean GFP
fluorescence of the respective translational UTR-GFP fusion in the presence
of the control plasmid pJV300 and a plasmid for the overexpression of the
respective sRNA, after subtraction of the background fluorescence. Back-
ground fluorescence was measured with the control plasmids pXG-0 and
pJV300 (22):

Fluorescence UTRppn300 — PXG — Opjv3o0

Fold,ep = X
Oldrer = Il orescence UTRskna — PXG — Opjv3oo

The respective mean fluorescences after subtraction of the background
fluorescence are shown in S/ Appendix, Fig. S9. Western blots were per-
formed as described in ref. 9.

Theoretical Methods. Benchmark analysis. For the benchmark analysis, we
conducted whole-genome target predictions for E. coli (NC_000913) and
S. enterica (NC_003197, NC_003277) based on the sequences 200 nt upstream
and 100 nt downstream of the annotated start codons as the input (the first
nucleotide of the start codon corresponds to position 201). The Web server
of RNApredator used the whole gene for target prediction. Otherwise, all
the tools were used with the given standard parameters. The P value
threshold of TargetRNA was set to 0.99 to obtain the top 100 predictions.
The benchmark dataset included 18 sRNAs and a total of 101 previously
published targets (S Appendix, Table S1). Some targets were verified in both
E. coli and S. enterica; the total number of verified sRNA-target pairs is 113,
but we used only the nonredundant dataset. We included only targets for
which a direct posttranscriptional regulation by an sRNA was verified ex-
perimentally. Targets detected only by RT-PCR, microarrays, or Northern
blots and not verified further were excluded.

Functional enrichment. Functional enrichments (functional annotation clus-
tering) were performed on the DAVID Web server (31) for all benchmark
sRNA predictions. For each sRNA, the target candidates (P < 0.01) were
tested against all the genes on the list as background. Obvious artifacts,
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i.e., predicted interactions with the complementary strand of the genomic
coding region of the respective sRNA, were excluded. Enrichments were
performed for E. coli. The standard parameters were changed to a “Similarity
Threshold” of 0.85 and an “Initial Group Membership” and “Final Group
Membership” of 2. Our threshold for a functional-enriched term was
a DAVID enrichment score of >1.1. Networks were visualized using Cyto-
scape (51).

CopraRNA algorithm. To reduce the number of false positive hits in the in-
teraction predictions, we searched for interactions that are conserved in
various species. However, for several reasons, it is conceivable that the
interaction is preserved whereas the actual interaction site is not. To be able
to still predict conserved interactions, it is necessary to combine the evidence
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for interactions in the different species without resorting to a consensus-
based approach. In addition to the Web server version, a stand-alone version
of CopraRNA is available (www.bioinf.uni-freiburg.de/Software/). A more
detailed description of CopraRNA, with a focus on the calculation of P val-
ues, may be found in S/ Appendix.
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Definition of statistical terms

Positives: Positives are in our case all experimentally verified benchmark targets (given in Table S1).

Positive predictions (candidates): Positive predictions are all targets that match the respective
threshold criterion (e.g. p-value < 0.01 or a given prediction rank). These targets are actually
predicted by CopraRNA to be a target. The positive predictions consist of true positive and false
positive predictions.

True positives: True positives are all experimentally verified targets (with regard to our benchmark
dataset in Table S1) within the positive predictions.

False positives: False positives are all positive predictions that are no real targets, i.e. in our case that
have not been experimentally verified.

True negatives: True negatives are all genes that do not match the respective threshold criterion (i.e.
they are not predicted by CopraRNA) and are actually no real targets.

False negatives: False negatives are those positives that are not detected by CopraRNA.

True positive rate (sensitivity): The true positive rate defines how many real targets (positives) are
# True positives

found in the positive predictions, it is calculated by the following formula: Sensitivity = o Posities

Positive predictive value (PPV): The proportion of positive predictions that are true positives. The
# True Positives

PPV is calculated by the following formula: PPV = ¥ Positive Prodictions
Theoretical methods

Benchmark analysis

For the benchmark analysis, we conducted whole-genome target predictions for Escherichia coli
(E. coli, NC_000913) and Salmonella enterica (S. enterica, NC_003197, NC_003277) using our new
method CopraRNA and the web-based tools IntaRNA (1), RNApredator (2) and TargetRNA (3). For
CopraRNA, IntaRNA and TargetRNA, we used the sequences 200 nt upstream and 100 nt
downstream of the annotated start codons as the input (the first nucleotide of the start codon
corresponds to position 201). The webserver of RNApredator did not allow a specification of the
input UTR sequence. Otherwise, all the tools were used with the given standard parameters. The p-
value threshold of TargetRNA was set to 0.99 to obtain the top 100 predictions. The benchmark

dataset included 18 sRNAs and a total of 101 previously published targets (Table S1). Some targets

were verified both in E. coli and Salmonella; the total number of verified sSRNA-target pairs is 113, but



we used only the non-redundant dataset. We only included targets for which a direct post-
transcriptional regulation by an sRNA was experimentally verified. Targets detected only by RT-PCR,

microarrays or northern blots and not further verified were excluded.

Functional enrichment

Functional enrichments (Functional Annotation Clustering) were performed on the DAVID webserver
(4) for all the benchmark sRNA predictions. For each sRNA, the target candidates (p<0.01) were
tested against all the genes in the list as background. Obvious artifacts, i.e., predicted interactions
with the complementary strand of the genomic coding region of the respective sSRNA were excluded.
Enrichments were performed for E. coli. The standard parameters were changed to a “Similarity
Threshold” of 0.85 and an “Initial Group Membership” and “Final Group Membership” of 2. Our

threshold for a functional-enriched term was an EASE score of >1.1.

Networks

Networks were visualized using Cytoscape (5).

CopraRNA algorithm

To reduce the number of false-positive hits in the interaction predictions, we searched for
interactions that are conserved in various species. One approach, as used in Petcofold (6) and
ripalign (7), is to perform a combined consensus prediction for all the species together, thereby
predicting the conserved interaction sites. However, due to several reasons, it is conceivable that the
interaction is preserved while the actual interaction site is not. To be able to still predict conserved
interactions, it is necessary to combine the evidence for interactions in the different species without

resorting to a consensus-based approach.

Determining organism-specific p-values
The standard approach to quantify the evidence for an interaction prediction is to determine its
significance, i.e., to predict p-values for the probability of finding an interaction in random sequences

with a score greater than or equal to the score of the observed interaction. This makes the scores for



different organisms comparable, particularly if they have vastly different GC-contents. If only energy
scores were to be combined, organisms with higher GC-contents will be weighted inappropriately
stronger compared to organisms with low GC-contents due to the stronger binding of GC-rich

duplexes.

We tested two different methods to deduce p-values. As the p-value for a single CopraRNA energy
score describes the probability of a score of this quality being acquired by chance in front of a
background model, it appears sensible to create a background model by shuffling all the putative
target sequences to attain a dataset of random interactions. For this purpose, we executed IntaRNA
predictions for 92 sRNA/species pairs. The target sequences were shuffled 10 times each while
maintaining the di-nucleotide frequencies. The shuffling was performed with the shuffle program

from Shawn Eddy’s SQUID package (http://selab.janelia.org/software.html).

From the similarity of interaction prediction with local sequence alignment, it was already concluded
by Rehmsmeier et al. (2004) (8) that interaction scores follow an extreme value distribution. Hence,
one possibility we explored was to estimate the scale and location parameters for an extreme value
distribution (Gumbel distribution) from the above-described sampled background data. We are,
however, more interested in the tail of the distribution that is associated with significant
interactions. Thus, we finally chose the generalized extreme value distribution over the Gumbel
distribution, which has an additional shape parameter governing the tail behavior. As a second

method, we directly used the empiric p-values determined from the above sampling.

This sampling method has the disadvantage of high computational complexity and would have to be
redone for every new genome. For that reason, we also considered the possibility of approximating
p-values from the un-shuffled data, i.e., the scores from the whole-genome interaction predictions.
Although these un-shuffled scores do not give a correct background model because they also contain
true positives, we were surprised to find that the approximated p-values work in practice. In Fig. S14,

we display the fits of the extreme value distribution to the shuffled and un-shuffled data for GecvB.



This is an extreme case because GcvB has many targets (9), which amounts to many true positive
predictions in the un-shuffled data. Nevertheless, the distributions are similar enough such that the

error can be compensated by our combination method described below.

Combining p-values from different species

To combine evidence from different species, we employed a pair of a non-coding RNA r; and an
MRNA 7, and all the homologs of both RNAs in N species. We then calculated the score for the
interaction of the associated homologs of r; and 7, in each species. Using the previously described
approach, we have a test for the significance of this interaction in each species, resulting in N p-
values p; ...py. Now a test statistic for the combination of the evidence indicated by this specific

vector of p-values is required.

One flexible and robust approach, known as the inverse normal method, transforms the p-values into
so-called probits t; = ®~1(p;), where ®~1 is the inverse of the standard normal distribution. Again,
because each p; is uniform within [0..1], we obtain t; ~ N(0,1). Under the assumption of

independence, the combined value

N
Zi=1 ti

t==7 (1)

follows a normal distribution (i.e., t ~ N(0,1)).

The main problem, however, is that the independence assumption does not hold in many cases and
clearly not in our setting in which we include even close homologs that share extensive sequence
similarity. Thus, in particular, the test for closely related species will be strongly correlated. In more
detail, the degree of correlation depends on the evolutionary relationship between the species, and

we have to consider this when combining the p-values.

Hartung (10) introduced a modification of the inverse normal method that accounts for correlations

between p-values and allows one to weight the difference test. He assumed a constant correlation



p = corr(t;, t;) between each pair i # j of probits. When p is known, then the Eq (1) can be

rewritten as follows:

N
2i=1 ti

t(p) = i with £(p)~N(0,1). (2)

Correcting for correlation

The remaining problems are to estimate the correlation, and to weight the different tests due to
their different similarities. Concerning the latter, one approach would be to include the weighting in
the correlation correction by deviating from the assumption of a constant correlation, i.e., by
assuming a known correlation matrix R. The extension of Hartung’s method to the case of non-
constant correlation has been investigated in detail by (11), who used the copula approach to
determine conditions for the correlation matrix that still allow for (asymptotic) normality. Another
example is the work by (12), who also considered an extension of the inverse normal method,
allowing for a non-constant correlation, with an application to the significance analysis of GO terms.
There are several reasons for not applying these techniques in our case. First, we typically use
between 5 and 8 species, which would imply that we have to estimate between 10 and 45
parameters for the correlation matrix, which causes problems. Second, for a pair of sRNA r; and
MRNA r,, we do not want to identify only interactions between r; and r, that are conserved in all
species. Instead, we are also interested in interactions that display a conserved regulon in a “core
group” of species, particularly if the set of species considered contains also distantly related species.
Consider the two trees in Fig. S15. In the first tree, we will most likely find interactions that are
conserved in all species S; ...S;. In the second tree, however, although there are interactions that
might be conserved in all species, it is very likely that we also will find important interactions that are
conserved only in S; ...S3 due to the huge evolutionary distance of S,. The latter aspect cannot be
modeled with correlation alone because it is very likely that the correlation (due to sequence

similarity) between S, and the group S; ... S3 is close to zero. Thus, we are likely to overestimate the



importance of S, because correlation 0 would imply independence of the test associated with S,,

which, thus, receives a high weight.

For that reason, we decided to introduce a weighting that reflects evolutionary distances and, in
addition, to correct for an overall correlation between the different p-values. Thus, we compute
weights 4, ... 4y for each p-value that are derived from a phylogenetic tree (based on 16S rDNA) for
the species, as described later, and an overall correlation p that has to be estimated from the data.
Following (10), this resorts to the modification of the weighted inverse normal method:

N
Yi=1 Aiti

A-p) IV, 22 4+pEN 1)

(3)

t(p, 1) = J

which approximately follows a normal distribution. Thus, by using the probability integral

transformation, we can derive a p-value for the combined test, as follows:

P = o (t(p, 1)) (4)

The last problem is to estimate p. Hartung (10) provided a method to estimate p from the t;. We
decided, however, to follow the approach that was already successfully employed in the interaction
prediction tool RNAhybrid (8), albeit on a different combined test statistic that did not allow for
weighting. The idea is simply that if we correctly estimated p and thus t(p, Z) follows a normal
distribution under the null hypothesis, then the value P calculated in equation (4) should be
uniformly distributed under the combined null hypothesis. Thus, for determining the p empirically,
we evaluate each possible value of p in the interval [0..1] (in steps of 0.1). For every such p, the
distribution of the p-values according Eq. (4) is compared to the uniform distribution. For the optimal
p according to this comparison (using the least square error measurement), the same procedure is

repeated in the interval [p — 0.1.. p + 0.1] in steps of 0.01.



Tree-based weighting

Finally, we have to estimate the weights of the different sequences in the definition of the combined
p-values. The problem is related to the weights used in the calculation of a multiple sequence
alignment. Different publications agreed on the fact that these kinds of weights have to be
introduced. However, to the best of our knowledge there is no accepted theory of how to determine
them. An overview of different methods to determine such weights is given in Wallace et al. (13).
One popular method is the one introduced by Thompson et al. (14). The basic idea here is to add up
the weights for each edge from the organism to the root. The weight of each edge, however, is
divided by the number of organisms below the edge, thus distributing the weight of each edge to the
associated organisms. In the example tree given in Fig. S16A, the species 0; gets the absolute

weight w§ = 1+%+§= 8.5. Analogously, we get wg =8.5 and w{ = 13. This gives rise to the

relative weights of w; = 43.3%, w, = 28.3% and w3 = 28.3%.

If we now compare the relative weight of species O, in the tree in Fig. S16A with the weight in Fig.
$16B, one can conclude that the situation is not very different. In both cases, the weight of 0, should
be around 50%. The fact that the first tree contains two close homologs O, and O3 should not change
much in the relative weight of 0;. For that reason, we introduce a weighting scheme that recursively
splits the weights of the edges according to the weight induced by the complete subtree. The relative
weight of the subtree is defined as the sum of all edges, this defining the relative weights for each
subtree. The basic idea is explained in Fig. $17. Using this recursive scheme, the final weight for each
organism is given by

w(0,) = l_[ relweight(i)

i€ancestors(x)

where ancestors(x) are all ancestors of x(i.e., all internal nodes on the path between the root and x),
and relweight(i) is the relative weight of node iw.r.t. its sibling. Given the parent p(i) of node i,

relweight(i) is defined by



W
% + weight(i)

weight(p(i))

relweight(i) =

Here, w, (p(i), i) is the weight of the edge between i and the parent of i, and for any node j, weight
(j) is the sum of all edges’ weights for nodes below j. Finally, the weights are modified by a root
function to limit the influence of outlier species while maintaining a high resolution for closely

related species.

CopraRNA implementation

CopraRNA is implemented in Perl and R. Several Perl modules, R libraries and bio software packages
are incorporated. The general design is depicted in Fig. 1A. As input, CopraRNA initially requires the
homologous sRNA sequences of each participating organism in FASTA format and the affiliated
RefSeq Ids of the genomes (i.e. NC_000913 for E. coli). Only one RefSeq Id is needed per sequence.
Additional replicons are automatically retrieved and included in the analysis. Furthermore, the
regions that shall be subjected to the computation must be specified. Regions upstream and
downstream of either start or stop codon can be selected. In the benchmark analysis for example, we

applied regions of -200 and +100 with respect to the start codon.

The putative target and 16S rDNA sequences are parsed from all replicons of the participating
organisms. Sequence retrieval is aided by BioPerl. Then the clusters of homologous genes amongst all
organisms are calculated by application of DomClust, the algorithm behind the homology calculations
on MBGD (15). In the following, IntaRNA (1) (options -p 7 -w 140 -L 70 -o) predicts the whole genome
interactions for each individual organism. This step is aided by the Perl module
Parallel::ForkManager. This greatly reduces runtime, as IntaRNA tasks run in parallel instead of

successively.

After the single predictions’” completion, the combination of results commences. Statistical
operations are implemented in R and evaluated within Perl, assisted by the Perl module Statistics::R,

while the R evir library simplifies handling of extreme value distributions. The EMBOSS programs



emma (clustalw wrapper), distmat (Jukes-Cantor method) and fneighbor (neighbor-joining) are
combined in order to calculate the phylogenetic tree from which the weights for the individual
organisms are derived. These weights are subjected to a root function (i.e. weight~2°) in order to
reduce inappropriately strong influence of outliers. Given the homologous gene clusters, the weights
and the IntaRNA predictions, the combined p-value is calculated for each cluster that contains genes
from at least 50% of all participating organisms. Missing p-values in clusters = 50% are sampled,
using a multivariate normal distribution, in order to maintain the original correlation of the data. The
multivariate normal distribution is calculated on the clusters containing genes from every organism

entered in the analysis.

Finally, the results are annotated, the interaction regions plots for mRNAs and sRNAs are generated
(R script using the seqinr library and clustalw) and automatic functional enrichment is assessed by
utilizing the Perl interface supplied by DAVID (16). Further Perl modules, which were used but not

contextually explained, are List::MoreUtils, SOAP::Lite, HTTP::Cookies and Getopt::Long.



Table S1. Benchmark set of experimentally verified sRNA targets. Published verified targets
which were used to benchmark CopraRNA against the single organism specific prediction tools
IntaRNA, TargetRNA and RNApredator. Obvious artifacts, i.e. predicted interactions with the
complementary strand of the genomic region coding for the respective sRNA were excluded. If a
target was verified for more than one organism we included the respective data, but for our
calculations we used the non-redundant set of 101 experimentally verified targets.

Rank
IntaRNA | TargetRNA | RNApredator | CopraRNA Target sRNA Reference Evidence
285 >100 >100 644 b2741(rpoS) ArcZ (17) L, CM, GAL
3480 >100 >100 2393 stm3216 ArcZ (18) G, CM, W
4420 >100 >100 2454 stm2970(sdaC) ArcZ (18) G, CM, W
1890 >100 >100 1376 stm1682(tpx) ArcZ (18) G, CM, W
7 >100 11 3 stm0687(ybfM) Chix (19) L, IM, GAL
3 13 2 2 stm1313(celB) Chix (19) N, IM, indirect
GAL
2 11 2 2 b1737(chbC) ChiX (20) N, **
7 >100 8 171 b0619(dpiB) ChiX (21) L, CM, GAL
3 >100 3 3 b0681(chiP) Chix (22) PE, CM, GS
615 >100 >100 126 b2687(luxS) CyaR (23) L, CM, GAL
1861 >100 >100 1742 b1740(nadE) CyaR (23) L, CM, GAL
92 >100 >100 4 b0814(ompX) CyaR (23) L, IM, GAL
570 >100 >100 935 b2666(yqaE) CyaR (23) L, CM, GAL
44 >100 >100 4 stm0833(ompX) CyaR (24) G, CM, W
5 18 16 3 b1237(hns) DsrA (25) L, CM, indirect
GAL
1 3 20 2 b2741(rpoS) DsrA (25) L, IM, GAL
428 >100 >100 1448 b3908(sodA) FnrsS (26) G,W
470 >100 >100 74 b1656(sodB) FnrS (26) G, W
23 >100 >100 1969 b3829(metE) FnrS (26) G, W
584 >100 >100 1950 b0887(cydD) FnrS (26) PE
502 >100 >100 403 b2153(folE) FnrS (27) L, IM, GAL
876 >100 >100 1781 b2303(folX) FnrS (27) L, IM, GAL
1341 >100 >100 389 b0755(gpmA) FnrsS (27) L, CM, GAL
316 19 >100 55 b1479(maeA) FnrsS (27) L, CM, GAL
3 2 >100 49 b1841(yobA) FnrS (26) G, W
42 42 >100 58 b3089(sstT) GevB (28) L, CM, GAL
58 12 >100 4 b4208(cycA) GcvB (29) L, IM, GAL
52 26 84 9 stm2355(argT) GevB (30) G, IM, W
16 2 91 8 stm3630(dppA) GevB (30) G, IM, W
90 >100 >100 12 stm0665(gltl) GevB (30) G, IM, W
84 >100 >100 2 stm3567(liv)) GevB (30) G, IM, W
47 >100 46 2 stm3564(livk) GevB (30) G, IM, W
164 47 >100 14 stm1746.s (oppA) GevB (30) G, IM, W
219 >100 >100 * stm4351 GcevB (30) G, IM, W




234 >100 >100 840 stm3064(iciA) GcevB (9) G, IM, FL
3 >100 5 5 stm3909(ilvC) GevB (9) G, IM, FL
1297 >100 >100 40 stm3903(ilvE) GcvB (9) G, IM, FL
93 >100 >100 6 stm1299(gdhA) GevB (9) G, IM, FL
79 48 >100 19 stm3062(serA) GevB (9) G, IM, FL
95 >100 >100 3 stm0959(lrp) GevB (9) G, IM, FL
49 >100 >100 34 stm0399(brnQ) GevB (9) G, IM, W
12 5 >100 4 stm4398(cycA) GevB (9) G, IM, FL
1191 >100 >100 144 stm1452(tppB) GevB (9) G, IM, FL
67 >100 >100 612 stm2526(ndk) GcvB (9) G, IM, FL
747 51 >100 85 stm0602(ybdH) GevB (9) G, IM, FL
403 >100 >100 58 stm3225(ygju) GevB (9) G, IM, FL
239 >100 >100 124 csgD (b1040) GevB (31) FLA, W
359 >100 >100 916 stm0245 (metQ) GevB (9) G, IM, FL
284 31 >100 62 stm0001 GevB (9) G, IM, FL
/stm0002
(thrL/thrA)
603 >100 >100 90 b3729(gIm$) GImz (32) G, CM, W
181 >100 >100 29 stm4231(lamB) MicA (33) L, CM, GAL
87 12 >100 27 b1130(phoP) MicA (34) L, CM, GAL
419 >100 >100 13 b0814(ompX) MicA (35) G, CM, FL
550 >100 >100 526 b0411(tsx) MicA (35) G, CM, FL
78 67 >100 9 b0957(ompA) MicA (36) TP, MS, 2D, SP,
N
1 1 22 1 b2215(ompC) MicC (37) LU, CM
168 >100 >100 239 stm1572 MicC (38) CM, W
(nmpC/ompD)
1 >100 >100 1 stm0959(Irp) MicF (39) G, CM, FL
1 >100 >100 1 b0889(Irp) MicF (40) G, IM, PR
359 >100 >100 * stm1328(IpxR) MicF (39) G, CM, FL
259 >100 >100 219 stm0366(yahO) MicF (39) G, CM, FL
242 >100 >100 44 b3912(cpxR) MicF (40) G, IM, PR
165 7 >100 52 b0241(phoE) MicF (40) G, IM, PR
12 6 4 3 b0929(ompF) MicF (41) L, GAL
60 >100 60 13 b1040(csgD) omrA (42) G, FLA, CM, W
950 >100 >100 1110 b2155(cirA) OmrA (43) L, CM, GAL
59 >100 >100 133 b0565(ompT) omrA (43) L, CM, GAL
83 >100 >100 22 b3405(ompR) omrA (43) L, CM, GAL
28 >100 11 2 b1040(csgD) OmrB (42) G ,FLA, CM, W
1185 >100 >100 867 b2155(cirA) OmrB (43) L, CM, GAL
162 >100 >100 318 b0565(ompT) OmrB (43) L, CM, GAL
275 >100 >100 16 b3405(ompR) OomrB (43) L, CM, GAL
1829 >100 >100 3384 b2731(fhlA) OxyS (44) L, CM, GAL




19 >100 >100 1 b2741(rpoS) RprA (45) L, CM, GAL
520 >100 30 414 b1341(ydaM) RprA (46) Gs, CM, W, L,
GAL
12 18 8 71 b1040(csgD) RprA (46) Gs,CM, W
414 >100 >100 50 b1341(ydaM) RprA-S (46) Gs,CM, W, L,
GAL
1 2 1 2 b1040(csgD) RprA-S (46) Gs, CM, W
2627 >100 >100 386 b2741(rpoS) RprA-S (45) L, CM, GAL
541 >100 >100 511 stm2391(fadL) RybB (47) G, CM, FL, W
1017 >100 >100 212 stm1070(ompA) RybB (47) G, CM, FL, W
98 >100 >100 12 stm2267(ompC) RybB (47) G, CM, FL, W
618 >100 >100 1674 stm1572(ompD) RybB (47) G, CM, W
226 >100 >100 * stm0999(ompF) RybB (47) G, CM, FL, W
96 32 >100 3 stm1473(ompN) RybB (48) G, CM, W
556 >100 >100 3 stm1995(ompS) RybB (47) G, CM, W
931 >100 >100 132 stm1732 (ompW) RybB (47) G, CM, FL, W
491 >100 >100 431 stm0413(tsx) RybB (47) G, CM, FL, W
894 >100 >100 165 stm0687 (ybfM, RybB (49) L, CM, GAL
chiP)
377 >100 >100 * b0805 (fiu) RybB (35) G, CM, W
2441 >100 >100 1848 b0721 (sdhC) RybB (50) L, CM, GAL
74 >100 >100 12 b2215 (ompC) RybB (51) w
636 >100 >100 132 b1256 (ompW) RybB (51) w
652 >100 >100 902 b2594 (rluD) RybB (35) G, CM, W
112 24 >100 53 b3607 (cysE) RyhB (52) L, CM, GAL
239 >100 >100 86 b2530 (iscS) RyhB (53) w
3129 >100 >100 1274 b0683 (fur) RyhB (54) IV, IM
721 >100 13 360 b1981(shiA) RyhB (55) L, CM, GAL
508 34 >100 58 b1656 (sodB) RyhB (56) IV, CM
193 35 27 125 b0721 (sdhC) RyhB (50) L, CM, GAL
164 >100 >100 33 b1612 (fumA) RyhB (57) L, CM, W
5 >100 17 5 b1101 (ptsG) sgrs (58) N, CM
1602 >100 >100 270 b1817 (manX) sgrs (59) L, CM, GAL
1163 >100 >100 * stm2945 (sopD) SgrS (60) G, CM, W
118 >100 >100 3 stm3962 (yigL) Sgrs (61) G, W, CM
1 1 >100 1 b0757(galK) Spot42 (62) TP, 2D, W, MS
392 >100 >100 2 b0720(gltA) Spot42 (63) L, IM, GAL, N
50 35 32 332 b4311(nanC) Spot42 (63) L, CM, GAL
300 >100 >100 488 b2702(sIrA) Spot42 (63) L, CM, GAL, N
441 >100 >100 2784 b3962(sthA) Spot42 (63) L, CM, GAL, N
72 >100 >100 51 b3566(xylF) Spot42 (63) L, IM, GAL
1607 >100 >100 583 b2802(fucl) Spot42 (63) L, IM, GAL, N
95 >100 18 14 b0721(sdhC) Spot42 (50) L, CM, GAL




84 >100 >100 15 b2416 (ptsl) CyaR this study | G, FL

52 >100 >100 7 b1824 (yobF) CyaR this study | G, CM, FL
60 >100 >100 18 b0723 (sdhA) CyaR this study | G, FL

83 >100 >100 34 b1531 (marA) FnrS this study | G, FL

5 10 >100 26 b2531 (iscR) FnrS this study | G, FL

755 >100 >100 10 b1107 (nagz) FnrS this study | G, FL

22 >100 82 15 b0723 (sdhA) FnrS this study | G, FL

76 >100 95 2 b0081 (mraz) RybB this study | G, W

55 >100 48 7 b3365 (nirB) RyhB this study | G, CM, FL
128 >100 >100 37 b0156 (erpA) RyhB this study | G, FL
1369 >100 >100 15 b1531 (marA) RyhB this study | G, FL

53 >100 >100 4 b1107 (nagZ) RyhB this study | G, FL

74 >100 >100 56 b0723 (sdhA) RyhB this study | G, FL

25 10 >100 21 b2416 (ptsl) Sgrs this study | G, FL

43 81 >100 30 b1761 (gdhA) Spot42 this study | G, FL

168 >100 >100 3 b0728 (sucC) Spot42 this study | G, FL

48 87 >100 24 b1136 (icd) Spot42 this study | G, FL

L) LacZ-fusion, G) GFP-fusion, LU) Luciferase fusion, FLA) Flag-fusion, W) Western blot, FL) Flow
cytometry, GAL) b-Galactosidase activity assay, N) Northern blot, PE) Primer extension, GS) Gel shift,
PR) Plate reader, TP) Toeprint, 2D) 2D electrophoresis, MS) mobility shift assay, SP) structural
probing, CM) compensatory mutations, IM) interaction site mutations, 1V) in vitro translation assay,
RT) real time PCR

* not enough homologs for calculation

**overexpression of a chbB-chbC IGR ChiX trap



Table S2. Comparison of CopraRNA with other target prediction tools. Total number of
verified targets for the 18 benchmark sRNAs which were detected by the indicated prediction
method and varying cut-offs for the prediction rank. We show the results based on a set of 101
published targets with (right side of the slash ) and without (left side of the slash) the results of the
17 verifications made in this study.

Prediction rank CopraRNA IntaRNA targetRNA RNApredator
cut-off
1 8/8 5/5 2/2 1/1
2 15/ 16 6/6 5/5 2/2
3 19/22 9/9 6/6 3/3
5 23/26 11/12 6/6 5/5
15 32/41 13/14 11/13 8/8

Table S3. Complete CopraRNA result list for the 18 benchmark sRNAs (additional
multisheet Excel file). Results of the CopraRNA predictions for all benchmark sRNAs. Each
worksheet contains the whole ranked prediction list for one sRNA. The final lists only contain genes
which are conserved in at least 50% of the investigated species, with regard to the MGDB cluster
table and a predicted IntaRNA energy score of < 0 kcal/mol in at least 50% of the investigated
species. Each sheet contains the CopraRNA p-value (columnl), the g-value (column2) and the
annotation of the gene cluster according to MGDB (column3). If an MGDB cluster contains more than
one gene in the organism of interest (i.e., a homolog), the respective locus tag or tags are given in
column 4. For the calculation of the CopraRNA p-value always the homolog with the lowest predicted
IntaRNA interaction energy is used. The following columns give the organism-specific prediction
results and gene information, beginning with the locus tag. Within brackets the following information
is quoted: Gene name, single organism specific prediction energy [kcal/mol], single organism specific
p-value, start of the interaction in the target RNA input sequence, end of the interaction in the target
sequence, start of the interaction in the sRNA input sequence, end of interaction in the sRNA
sequence, Entrez GenelD of the target.

Table S4. Functional enrichment for the 18 benchmark sRNAs (additional multisheet
Excel file). Functional enrichments (Functional Annotation Clustering) as provided from the DAVID
webserver (16) for all benchmark sRNAs. For each sRNA the target candidates (p<0.01) were tested
against all genes in the list as background. Obvious artifacts, i.e. predicted interactions with the
complementary strand of the respective SRNA genomic coding region were excluded. Enrichments
were done for E. coli. The standard parameters were changed to a “Similarity Threshold” of 0.85 and
an “Initial Group Membership” and “Final Group Membership” of 2. A help text for the table is given
at the DAVID website under the URL:
http://david.abcc.ncifcrf.gov/helps/functional_annotation.htmI#EA4.

Table S5. Predicted targets after post-processing (additional multisheet Excel file). The
candidates after post-processing include the top 15 predictions for each sRNA and those targets with



a p-value < 0.01 which are significantly functional enriched by the DAVID webserver (4) (i.e. they
belong to a cluster with an DAVID score of > 1.1). For each predicted target the CopraRNA p-value
and information about the IntaRNA results for the reference organism are given (locus tag, gene
name, IntaRNA energy, IntaRNA p-value, interaction coordinates in the mRNA and the sRNA, Entrez
GenelD). Furthermore, the table shows the enriched terms with the corresponding DAVID score, and
the membership of a predicted target to the first term in the respective cluster (compare Table S4).
Membership is indicated by a “1” and a yellow background in the respective table element.

Table S6. List of potentially multiple targeted mRNAs (additional Excel file). List of all
predicted targets with a CopraRNA p-value < 0.01 for at least one of the benchmark sRNAs. Columns
1 - 3 give the Entrez GenelD, the gene name and the locus tag of the target candidate for E. coli.
Column 4 gives the number of sRNAs which are predicted to interact with the target. Columns 5-23
indicate for each target/sRNA combination if the prediction meets the threshold criteria (1) or not

(0).



Table S7. List of experimentally tested targets. List of the 23 selected predictions which were

tested with the GFP-fusion system(39, 64) as part of this study.

Post-
transcriptional
sRNA | predicted target Method regulation

ChiX opgG (b1048) Flow cytometry |no

Flow cytometry |yes
CyaR ptsl (b2416)

Plate reader yes
CyaR yobF (b1824)

Flow cytometry |yes
CyaR sdhA (b0723)

Flow cytometry |yes
FnrS marA (b1531)

Flow cytometry |yes
FnrS iscR (b2531)

Flow cytometry |yes
FnrS sdhA (b0723)

Flow cytometry |yes
FnrS nagZ (b1107)

Western blot no
GcvB mraZ (b0081)

Western blot no
Glmz mraZ (b0081)

Western blot no
MicA ftsB (b2748)

Western blot no
MicC mraZ (b0081)

Western blot no
RprA phoU (b3724)

Western blot yes
RybB mraZ (b0081)

Plate reader yes
RyhB nirB (b3365)

Flow cytometry |yes
RyhB erpA (b0156)

Flow cytometry |yes
RyhB marA (b1531)

Flow cytometry |yes
RyhB nagZ (b1107)

Flow cytometry |yes
RyhB sdhA (b0723)

Flow cytometry |yes
SgrS ptsl (b2416)

Flow cytometry |yes
Spot42 |gdhA (b1761)

Flow cytometry |yes
Spot42 | sucC (b0728)

Flow cytometry |yes

Spot42

icd (b1136)




Table S8. Benchmark set for non enterobacterial organisms. Published verified targets which
were used to benchmark CopraRNA against the single organism specific prediction tools IntaRNA,
TargetRNA and RNApredator. TargetRNA predictions have been done on the TargetRNA2 server
without usage of the “sRNA conservation and accessibility” option. Targets in this list may have a
lower degree of experimental evidence for an actual post-transcriptional regulation than the targets
listed in Table S1.

Rank
IntaRNA | TargetRNA | RNApredator | CopraRNA Target sRNA Reference Evidence
109 83 149 2 hctA (ct743) lhtA (65) ok
5200 3694 2728 282 sodB (pa4366) PrrF (66) N
186 35 689 10 pad880 PrrF (66) L, GAL
64 1423 120 2 sdhC (pa1581) PrrF (67) RT
2995 4459 3214 166 acnA (pal562) PrrF (67) RT
410 2650 119 14 acnB (pal787) PrrF (67) RT
296 2479 915 1747 antR (pa2511) PrrF (67) RT
1022 >100 1351 * antA (pa2512) PrrF (67) RT
5 14 51 1 chiA (Imo1883) LhrA (68) N, TP, M5
95 >100 69 161 Imo302 LhrA (68) L N, GAL, TP
45 >100 49 30 Imo0850 LhrA (69) I’;;ISGAL, M, N,
70 103 1556 23 lutA (bsu34050) FsrA (70) W,N
187 88 854 31 lutB (bsu34040) FsrA (70)(71) | W, N, 2D, RT
273 117 902 19 sdhC (bsu28450) FsrA (71) MS
9 27 10 4 citB (bsu18000) FsrA (71) 2D
118 206 460 35 leuC (bsu28260) FsrA (71) 2D
3855 2213 1442 1571 ahrC (bsu24250) SR1 (72) IV, MS

L) LacZ-fusion, G) GFP-fusion, LU) Luciferase fusion, FLA) Flag-fusion, W) Western blot, FL) Flow
cytometry, GAL) b-Galactosidase activity assay, N) Northern blot, PE) Primer extension, GS) Gel shift,
PR) Plate reader, TP) Toeprint, 2D) 2D electrophoresis, MS) mobility shift assay, SP) structural
probing, CM) compensatory mutations, IM) interaction site mutations, 1V) in vitro translation assay,
RT) real time PCR

* not enough homologs for calculation

*** indirect, rescue of hctA dependent growth phenotype in E. coli

Table S9. CopraRNA results and DAVID outputs for non enterobacterial sRNAs (additional
multisheet Excel file). Results of the CopraRNA predictions for the non enterobacterial sSRNAs.
Each worksheet contains the whole ranked prediction list for one sRNA. The final lists contain only
genes which are conserved in at least 50% of the investigated species, regarding to the MGDB cluster
table and have a predicted IntaRNA energy score of < 0 kcal/mol in at least 50% of the investigated
species. Each sheet contains the CopraRNA p-value (columnil), the g-value (column2) and the



annotation of the gene cluster according to MGDB (column3). If an MGDB cluster contains more than
one gene in the organism of interest (i.e., a homolog), the respective locus tag or tags are given in
column 4. For the calculation of the CopraRNA p-value always the homolog with the lowest predicted
IntaRNA interaction energy is used. The following columns give the organism-specific prediction
results and gene information, beginning with the locus tag. Within brackets the following information
is quoted: Gene name, single organism specific prediction energy [kcal/mol], single organism specific
p-value, start of the interaction in the target RNA input sequence, end of the interaction in the target
sequence, start of the interaction in the sRNA input sequence, end of interaction in the sRNA
sequence, Entrez GenelD of the target. The CopraRNA output is accompanied by the DAVID
webserver functional enrichment output in the adjacent sheet if there was a significant functional
enrichment. Please compare with the Table S5 (Predicted targets after post-processing).

Table $10. List of oligonucleotides used in this study

Name Sequence Used for
JV0-9422 | agctCtaccaggaaccacc pKP-299-1
JVO-9423 | ggtaGagctagcatttatgg pKP-299-1
JVO-9424 | attgGtcacattgcttcca pKP-296-2
JVO-9425 | GTGACCAATGTCGTGCTTT pKP-296-2
JV0-9261 | gtttttATGCATAGTGGGAAATTGTGGGGC pKP-287-1
JV0-9262 | GTTTTTTGCTAGCGAGATTGACTAACGTTGCTCC pKP-287-1
NVO-938T | I TTTTTGCTAGCGAAGCGGTATTCAACGTCA pKP-295-1
JVO-9356 | gtttttATGCATACGCCAGTTTAAGTATCTGC pKP-295-1
JVO-9350 | gtttttATGCATAATAGAAAAGAAATCGAGGC pKP-293-1
JVO-9351 | GTTTTTTGCTAGCTTCGATAAAGCGATGGCC pKP-293-1
JVO-9416 | ggtaGagttctgtttatgtgtg pKP-300-1
JVO-9417 | AACTCTACCTCGTTTAACCC pKP-300-1
JV0O-9420 | atgaCcaaagtcagactcg pKP-297-1
JV0O-9421 | TTTGGTCATTTTTGCCTC pKP-297-1
JVO-9348 | gtttttATGCATGTTGTCGCGGTATCCCCA pkp292-1
JVO-9349 | GTTTTTTGCTAGCCCACAGCGAATACTGTAGCC pkp292-1
JV0-9352 | gtttttATGCATCAACACGGACGATCTGTTC pkp294-1
JV0-9353 | GTTTTTTGCTAGCACTTTCCAGTTCGGCGTT pkp294-1
erpA5’ TTAATGCATATTATTGGGTTAGAATTTGCCCAATTG pJG1
erpA3’ TTAGCTAGCTTTAACTTTGTTGGCTGCTGCGTC pJG1
gdhA5’ TTAATGCATGCAAAAGCACATGACATAAACAACATA pJG3




gdhA3' TTAGCTAGCATATTTTGGATTTTGTTCAAGAAAAGGC pJG3
icd5 TTAATGCATGCCAATTACAAATCATTAACAAAAAATTGC pJG6
icd3’ TTAGCTAGCTTTATAGGCTTTCTCGACTGCAGC pJG6
iscR5' TTAATGCATGCTATGCAATACCCCCACTTTTAC pJG8
iscR3' TTAGCTAGCCGGGCCCGCTTCAGAGTTGA pJG8
marA5’ TTAATGCATAACTAATTACTTGCCAGGGCAACT pJG10
marA3* TTAGCTAGCTGGCGATTCCAGGTTGTCCTC pJG10
nagZ5* TTAATGCATTGGCTGCTGATGCTCAAAGCA pJG12
nagZ3* TTAGCTAGCCACCAGCGGATGCGCCAGTA pJG12
ptsl5 TTAATGCATAATTATTTTGATGCGCGAAATTAATCGTTAC pJG14
ptsl3’ TTAGCTAGCCTGGTCGGCAGAAATTTTTTTCCG pJG14
sdhA5* TTAATGCATTGGCAGGTGTTGACCGACTAC pJG16
sdhA3* TTAGCTAGCGCCGCTCTGGGAAATTTGCAG pJG16
CyaR5' GCTGAAAAACATAACCCATAAAATGCTA pJG19
CyaR3' GTTTTTTCTAGATGGACGTGACCAGAAATAAATCC pJG19
FnrS5* GCAGGTGAATGCAACGTCAAGCG pJG20
FnrS3* GTTTTTTCTAGAGTGGACTCTTAAAGGGTAGACGC pJG20
ChiX5* ACACCGTCGCTTAAAGTGACG pJG21
ChiXx3’ GTTTTTTCTAGAGAGAAGGGAATTTGCCGCAAATG pJG21
Spot42*5° cttGaGgtaatcggatttggctgaatattttag pJG22
Spot42*3* gattacCtCaagtaaaaggtctgaaagatagaac pJG22
gdhA*5’ ccgttcGtCaagtaatgaccacactc pJG23
gdhA*3’ cttGaGgaacggcttgcgegaac pJG23
FnrS*5° tgtGttacttccttttttgaattactgcatage pJG24
FnrS*3° GGAAGTAACACAATATGGAGCGCAACG plG24
iscR*5’ GAAGTAACACATGAGACTGACATCTAAAGGG pJG25
iscR*3’ catgtGttacttcacctcaaactcgcc pJG25
erpA*s’ TATGACTGATGACGTAGCACTGCCG pJG26
erpA*3’ catcagtcatattttgctccaaacgacatc pJG26
marA1*5’ gtatgaGCatgtccagacgcaatactga pJG27
marA1*3’ gacatGCtcatacctcttttttgtttacgg pJG27
marA2*5’ gtatAaAgatgtAcagacgcaatactga pJG28
marA2*3’ gTcatcTtTatacctcttttttgtttacgg pJG28




sucC*5’

ttactgaaAAatggacagaacacatgaacttac pJG29

sucC*3’

ctgtccatTTttcagtaatcgttatcttttaaacc pJG29

Table S11. List of plasmids used in this study.

Plasmid Plasmid Relevant Comment Origin, Reference
trivial name stock fragment marker
name
control pJV300 Control plasmid, expresses a ~50 nt nonsense transcript. ColE1, (73)
AmpR
pP.-RybB pFM1-1 RybB RybB expression plasmid ColE1, (48)
AmpR
pP.-CyaR pKP39-3 CyaR CyaR expression plasmid used to test the yobF-CyaR ColE1, (24)
interaction Amp®
pP.-RyhB pJU-002 RyhB RyhB expression plasmid ColE1, (64)
Amp®
pP -CyaR* pKP299-1 CyaR* Derivative of pKP39-3. Point mutant in yobF binding site. ColE1, this study
Amp®
pP.-RyhB* pKP296-2 RyhB* Derivative of pJU-002. Point mutant in nirB binding site. ColE1, this study
Amp®
pP.-CyaR pJG19 CyaR CyaR expression plasmid used to test the interaction with sdhA ColE1, this study
and ptsl Amp®
pP.-FnrS pJG20 FnrS FnrS expression plasmid ColE1, this study
AmpR
pP.-ChiX pJG21 ChiX ChiX expression plasmid ColE1, this study
AmpR
pSpotd2 plSpf Spot42 Spot42 expression plasmid pMB1, (64)
AmpR
pGImZ: pJV103IH GImzZ: GImZ expression plasmid ColE1, (32)
AmpR
pGcevB pJU-014 GcevB GcevB expression plasmid p15A, (64)
Amp®
pMicA pJV1501G- MicA MicA expression plasmid ColE1, (36)
34 Amp®
pMicC pSK-017 MicC MicC expression plasmid ColE1, (64)
Amp®
pRprA pJV100IA- RprA RprA expression plasmid ColE1, (64)
T4 AmpR
PopgG:: gfp pJU-126 opgG GFP reporter plasmid. Carries the opgG/mdoG 5’'UTR and pSC101*, (64)
ORF. cmt
PmraZ:: gfp pKP287-1 mraZ GFP reporter plasmid. Carries the mraZ 5’'UTR and ORF pSC101*, this study
(60bp). cmt
PyobF::sfgfp pKP295-1 yobF GFP reporter plasmid. Carries the yobF 5UTR and ORF pSC101*, this study
(60bp). cmt
PnirB::sfgfp pKP293-1 nirB GFP reporter plasmid. Carries the nirB 5UTR and ORF (60bp). pSC101*, this study
cmt
PyobF*::sfgfp pKP300-1 yOobF* Derivative of pKP295-1. Point mutant in CyaR binding site. pSC101*, this study




cm°

PnirB*::sfgfp pKP297-1 nirB* Derivative of pKP293-1. Point mutant in RyhB binding site pSC101*, this study
cmt
PftsB::gfp pkp292-1 ftsB GFP reporter plasmid. Carries the ftsB 5’'UTR and ORF (60bp) pSC101*%, this study
cmt
PphoU::gfp pkp294-1 phoU GFP reporter plasmid. Carries the phoU 5UTR and ORF pSC101*%, this study
(60bp) cm®
Pptsl::sfgfp pJG14 ptsl GFP reporter plasmid. the complete ptsH ORF, the intergenic pSC101%, this study
region between ptsH and pts/, and parts of the pts/ ORF cmt
(105bp)
PsdhA::sfgfp pJG16 sdhA GFP reporter plasmid. Carries the sdhA 5UTR and ORF pSC101*, this study
(90bp) and parts of the sdhD ORF (120nt). cmt
PiscR::sfgfp pJG8 iscR GFP reporter plasmid. Carries the iscR 5’'UTR and ORF pSC101*, this study
(75bp). cm®
PmarA::sfgfp pJG10 marA GFP reporter plasmid. Carries the complete marR ORF, the pSC101*, this study
intergenic region between marR and marA, and parts of the cmt
marA ORF (75bp)
PnagZ::sfgfp pJG12 nagZ GFP reporter plasmid. Carries the last 114bp of the thiK ORF, pSC101*, this study
the intergenic region between thiK and nagZ, and parts of the CmR
nagZ ORF (78bp)
PerpA::sfgfp pJG1 erpA GFP reporter plasmid. Carries the erpA 5UTR and ORF pSC101*, this study
(60bp). CmR
PgdhA::sfgfp pJG3 gdhA GFP reporter plasmid. Carries the gdhA 5'UTR and ORF pSC101*, this study
(135bp). CmR
Picd.::sfgfp JG6 icd GFP reporter plasmid. Carries the icd 5UTR and ORF (114bp). pSC101*, this study
CmR
PsucC::gfp pJU-159 sucC GFP reporter plasmid. Carries the last 138bp of the sucB ORF, pSC101*, (64)
the intergenic region between sucB and sucC, and parts of the CmR
sucC ORF (150bp)
pSpot42* pJG22 Spot42* Derivative of pISpf. Point mutant in gdhA binding site. pMB1, this study
Amp®
PgdhA*:sfgfp pJG23 gdhA* Derivative of pJG3. Point mutant in Spot42 binding site. pSC101*%, this study
CmR
pP.-FnrS* pJG24 FnrS* Derivative of pJG20. Point mutant in iscR binding site. ColE1, this study
Amp®
PiscR*:sfgfp pJG25 iscR* Derivative of pJG8. Point mutant in FnrS binding site. pSC101*, this study
cmt
PerpA*.:sfgfp pJG26 erpA* Derivative of pJG1. Point mutant in RyhB binding site pSC101*, this study
CmR
PmarA*1::sfgfp pJG27 marA*1 Derivative of pJG10. Point mutant in RyhB and FnrS binding pSC101*, this study
site cm®
PmarA*2::sfgfp pJG28 marA*2 Derivative of pJG10. Point mutant in RyhB and FnrS binding pSC101*, this study
site cm®
PsucC*::gfp pJU-159 sucC* Derivative of pJU-159. Point mutant in Spot42 binding site pSC101*, this study

CmR




A sstT mRNA

ypo0584 - — -11.8 kcal/mol , p-value = 0.17
spro_4319 — -11.2 kcal/mol, p-value = 0.30
pc1_0533 —_—— - -11.8 kcal/mol, p-value = 0.33
efer_4387 ——  — — -16.7 kcal/mol, p-value = 0.01
rod_47981 o x — -16.7 kcal/mol, p-value = 0.03
cko_04492 - -9.9 kcal/mol, p-value = 0.42
b3089_sstT — Y — — -18.2 kcal/mol, p-value = 0.01
stm3225 ygju —_— -13.0 kcal/mol, p-value =0.10
T T
-100 start codon 100
GcecvB sRNA
ypo0584 — -11.8 kcal/mol , p-value = 0.17
spro_4319 — - -11.2 kecal/mol, p-value = 0.30
pc1_0533 — — -11.8 kcal/mol, p-value = 0.33
efer_4387 —_ -16.7 kcal/mol, p-value = 0.01
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b3089_sstT - -18.2 kcal/mol, p-value = 0.01
stm3225_ygju — -13.0 kcal/mol, p-value = 0.10
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(: STM3225 A-TACTCAACCAGGCAAACAC--TTTGTTAC--ATCCTGA--AAGATGCGC------
ROD_47981 A-TACTCGACCAGGCAAACAC--TTTGTTAC--ATCCGGA--AAGATGCGC------
b3089 A-TACTCGACCTTGCAAACAC--TTTGTTAC--ATCCTGA--AAGATGCGT-
CKO_04492 A-TACTCACTCAGGCAAACAC--TTTGTTAC--ATCCTGA--AAGATGCGC----~-~
EFER_4387 A-TACTCACTCAGGTAAACAC--CTTATTAC--ATCCAGA--AAGATGCAC--=-~~~
PC1_0533 A-TACTGACATGTGCAAACACATTTCGTTACGGAAATAAA--AAGTCACCCGACACATGT 142
Spro_4319 AATACTGATT T-GGCAAACACACTTGGTTACAGAT TCAAATAAAGTTGTCC- == ===~ GG 145
YPOO584 GGIﬂTGGAGAGCA?CT&GEQE----CGCIGEAACTTCAGGTA%TQAAGGGT -------- A 159
STM3225 AAGAG--CGTGCAGG----GGA- - - TGACCAGCAACACAATACAAGGAATAT -----~
ROD_47981 AAGAG--CGCACGGC----GGA- - -CGAGCAATATCACACTGTAAGGATCGA-----~
b3089 CAGAA--CGCACCAG----GGA---TGTGCGACAACACAATGAAAGGATCGA--
CKO_04492 CAGAG--CGTGCAAA----GGA- - -TGAACAACATCACACTGAAAGGATCAT
EFER_4387 CAAAG--CGCACATT----GGA---TGAGCAACATCACACC--AAGGATCAC------
PC1_0533 CAGAG———GTGCCAGATCCGTA———TAGACAACCACTTAGCGGAACGGTTATCCCGTCAA 196
Spro_4319 CGAGGTTCCCGCCGAGATAAAGCTGTAAGCAACATCAT - - CGGGAAGA-————————— AA 193
YP00584 TAAA---CGGGCAGA----ACA---TATTAAATTTCACTTGGGAAGAGGCATT--GCTAG 207
b e e
STM3225 AA---TGGCTACGCAACGAGCATCAGGGCTAC---—- TGCAGCGTTTAGCGCAAGGCAGT 251
ROD_47981 AA---TGACTACGCAACGTACACCGGGGATGT==-=~ TCCAGCGCCTGGCGCAGGGGAGT 251
b3089 AA---TGACTACGCAACGTTCACCGGGGCTAT----~ TCCGGCGTCTGGCTCATGGCAGC 251
CKO_04492 AA---TGACTACGCAACGTTCATCGGGGCTAC-~----TCCAGCGTTTGGTTCAAGGGAGC 251

EFER_4387 AAA--TGACTACGCAACGTTCGCCGGGGCTGC-~~=~TTCAGCGTTTGGCTCAGGGAAGC 251
PC1_0533 AATTATGGAAACTCAACACTCTC---GTTTTT- -TGCAGTACATTACGCACGGCAGC 248
Spro_4319 AAGC---ACTATGCAA--======= AAACTAT----~ TACAGAAGATCACTCAGGGCAGT 236
YP00584 AA-—=== GCTATGGAAAAGACAC——AGTCTGTATTTATACGATTTATCGTCAACGGTAGT 260
STM3225 CTGGTTAAACAAATTTTAGTGGGTCTGGTACTGGGGATTTTACTGGCAT -~

ROD_47981 CTGGTAAAACAAATTTTAGTGGGCCTCGTACTGGGGGT TCTACTGGCAT-—-——

b3089 CTGGTAAAACAAATCCTGGTCGGCCTTGTTCTGGGGATTCTTCTGGCAT-—- -~

CKO_04492 CTGGTTAAACAAATTTTAATTGGGCTTATACTGGGAATTTTACTGGCTT--—

EFER_4387 CTGGTAAAACAAATATTGGTCGGTCTCGTTCTCGGGATCATTCTGGCAT -~

PC1_0533 CTGGTTAAACAGATTCTTCTGGGGCTCGCCGCCGGGATTATTCTGGCCTCGC

Spro_4319 CTGGTCAAACAAATCATGGTCGGCCTGGTGGCCGGTATTATCGTGGCGTTGG

YPO0584 TTAGTGAAACAAATACTGATCGGTTTAGTTGCCGETATT G~~~ -~ - ===~ 3
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Fig. S1. Comparison of species specific sstT-GcvB interactions. A previous study (74)
investigated how sRNA-mRNA interactions are conserved. By the comparison of a positive and a
negative dataset, it was found that only interaction sites in sRNAs, but not in targets, displayed
significant sequence conservation. As a result of the missing target site conservation, there is no
general conservation of complementarity between sRNAs and targets. Consequently, predicting a
consensus interaction, i.e. base pairs shared by the majority of the homologous sequences, would be
too conservative. With our p-value combination strategy we also detect more remote related
interactions as they appear e.g. in the in silico prediction for the sstT-GecvB interaction which was
experimentally verified for E. coli and S. enterica. Panel A) shows a schematic alignment of the
interaction sites in the ssT mRNA for all investigated organism together with the predicted
interaction energy and the single organism specific p-value. Panel B) shows the interaction sites in
the repective GevB homologs. Panel C) shows an alighment of the homologous mRNA sequences
used. The bases which are predicted by IntaRNA to participate in base pairing with GcvB are shown in
red. There is clearly a relatively strong heterogeneity of the interaction sites on the nucleotide level
in the mRNAs and the sRNAs.



NAVGVAVAY,
A AN

Species 1 Species 2 pecies 3

o Core targets
New targets
Lost targets Common ancestor

sRNA D\/G
Fig. S2. Evolutionary model. Scheme of the proposed evolutionary model for the conservation of
an sRNA and its target set. In our strategy, we consider for a particular sRNA fully conserved core
targets that were passed from a common ancestor (grey boxes), targets that were lost in individual
species (empty boxes with grey broken lines) and targets that were newly acquired in individual

species or branches during evolution (green boxes). The two latter effects lead to targets that are
conserved only in specific sub-groups of all species in which the sRNA is evolutionary conserved.
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Fig. S3. Benchmark results. a) The plot shows the number of true positive predictions vs. the log
transformed p-value cut-off for our comparative target prediction method CopraRNA and the single
organism-based method IntaRNA. At a p-value cut-off of 0.01 (i.e. log (0.01) = -2) 50 of the
experimentally verified 101 benchmark targets are detected. b) The plot shows the positive
predictive value (PPV = (# true positive predictions)/(# positive predictions)) vs. the prediction rank
cut-off for our comparative target prediction method CopraRNA and the existing single organism-
based methods IntaRNA, TargetRNA and RNAPredator, respectively. These results (including our own
verifications) are shown with solid lines while results based only on the benchmark set are indicated
with dashed lines. The number of positive predictions is defined in this case as the prediction rank
cut-off multiplied by the number of sRNAs in the benchmark dataset. The number of true positives is
the number of experimentally verified targets among the positive predictions. To give an example:
For the set of 18 sRNAs, at a prediction rank cut-off of 15 a total of 270 targets (= 18*15) is predicted
(i.e. positive predictions) and 32 of those are actually experimentally verified (i.e. true positives). The
resulting PPV is 11.85 % (32/270*100), i.e. we yield ~1.8 true targets in the top 15 predictions on
average per sRNA. If the newly verified targets are included, the number of true positives increases
to 41 and the new PPV is 15.2%.



95 Salmonella enterica subsp. enterica serovar Typhimurium str. LT2
90 |

Citrobacter rodentium ICC168
100 Citrobacter koseri ATCC BAA-895 . .
ChiX, DsrA, MicC,
| [ Escherichia coli str. K-12 substr. MG1655 MicF, OxyS, RyhB,
Sgrs
ogl——— Escherichia fergusonii ATCC 35469
Yersinia pestis CO92 ArcZ, CyaR, Fnrs,
Pectobacterium carotovorum subsp. carotovorum PC1 GevB, GImZ, MicA,
_ —{ d OmrB, RprA, RybB,
0.005 74 Serratia proteamaculans 568 Spot42

OmrA: Escherichia coli, Escherichia fergusonii, Salmonella enterica

Fig. S4. Phylogenetic tree of enterobacerial benchmark species. The neighbor joining tree is
based on 16S rDNA sequences. One group of benchmark sRNAs was only tested in the 5 organisms
which are highlighted by the grey box. OmrA is only conserved in 3 of the 8 benchmark organisms.



0.03

RybB

0.01

° 9
—— b1487_ddpA stm1222_potD
— S b0353_mhpT Stm0381_N/A
b3675_yidG stm1742_oppF
I ———— A sm3585_rosiK
X 14470_yjgD
i b0420_dxs stm4470_yjg
cko_02296_N/A stm4392_priB
— B b3291_mscl stm4170_hupA
—— — b0728_sucC stm1473_ompN
—____E 50720_ StmO119_yabB
— _gltA
S ————————— b0757_galk stm2364_dedD
; T ) i T
0 50 110 0 50 80
RprA-L - RprA-S
5 =
g
=
3
= s
=
s
5
o
o 55 82 - 5]

b4006_purH
b1849_purT
b0958_sulA
b4043_lexA
b0680_ginS
b3724_phaU
b3281_aroE
b1821_fiiZ
b2752_cysD
b2741_rpoS

b4035_malK
b3724_phoU
b0B55_gltl
b0161_degP
b2725_hycA
efer_3481_siiEB
b2069_yegD
b0883_trxB
b1040_csgD
b1921_fiiZ

T 1
0 50 100 121 0 46

Fig. S5. Visualization of predicted interaction domains. Visualization of the predicted
interaction domains in Spot 42, RybB, RprA-L and RprA-S. In the upper part, the density plot gives the
relative frequency of the involvement of a specific SRNA or mRNA nucleotide position in predicted
target interactions. The plot is a combination of all predicted interactions with a p-value <0.01 in all
homologs used. Local maxima indicate distinct interaction domains and are marked with upright
lines. The number of the central nucleotide of the interaction domain regarding to the multiple
sequence alignment is indicated. The lower part shows the predicted interaction domains for the top
10 predicted mRNA targets in a schematic alighment of the homologous sRNAs. Aligned regions are
shown in grey, gaps are indicated in white and the predicted interaction regions are indicated as
colored lines (color differences are for contrast only). The locus tag and the gene name (if available)
of a representative cluster member is given at the right side.
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Fig. S6. Comparison of LocARNA alignment with CopraRNA plots. Visualization of the
predicted interaction domains in Spot42 (a) and GevB (b). In the upper part, the density plot gives the
relative frequency of the involvement of a specific SRNA or mRNA nucleotide position in predicted
target interactions. The plot is a combination of all predicted interactions with a p-value <0.01 in all
homologs used. Local maxima indicate distinct interaction domains and are marked with upright
lines. The plots are combined with a structural LocARNA (75) alignment from all involved sRNA
homologs involved and a consensus secondary structure obtained by RNAalifold (76) based on the
LocARNA alignment.
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Fig. S7. Functional enrichment of the MicA prediction. Visualization of the functional
enrichment analysis for MicA. The figure shows all top 15 predictions and those targets with a p-
value £ 0.01 which are significantly functional enriched (automatic or by visual inspection). The edges
connecting the sRNAs and targets are color coded according to the CopraRNA prediction p-value, a
darker color indicates a statistically more significant prediction. Previously experimentally verified
targets from the literature (with regard to our benchmark list, Table S1) are marked with a black
square, verifications from this study with a red square and targets detected by microarrays with a
blue square. Functionally enriched targets are color coded with respect to the enriched term.
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Fig. S8. Predicted base pairings in interactions tested by point mutations. Start codons are
marked by a box and introduced point mutations are indicated by an arrow and the changed base in
red or blue.
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Fig. S9. Results of experimental target verifications (A-C) Mean fluorescence of all constructs

in presence of the plasmid carrying the respective sRNA or the control plasmid pJV300 after the

subtraction of the background fluorescence in the flow cytometer measurement. (D) Western blot

with GFP antibody for the mraZ-UTR GFP fusion in presence of different sSRNAs.



sucC-Spot42

-412
= | licd-Spot42
115 174
Fmw=n  gdhA-Spota2
-63 135
_ — tsl-SgrS
565 -302 5 1!]5 P g
r sghD = sdhA-RyhB
-119 0 90
_L; . nirB-RyhB
C .122”( T— nagZ-RyhB
<o SR marA-RyhB
J;' s'o erpA-RyhB
_!;—3|0 mraZ-RybB
SphD =), sdhA-FnrS
UTR _1|2§th_; - nagZ-FnrS
— predicted interaction region r’
lacZ fragment (from pXG30) 481 Y45y - marA-FnrS
fragment of 5'ORF - ;
™ 5'ORF b8 7 iscR-FnrS
fragment of tested gene - yobF-CyaR
gfp -202 30
T PLtetO-1 promoter C ﬁﬂ;D i sdhA-CyaR
-5[3; =302 !5- 1(;5 ptSI-CyaR

Fig. $10. Scheme of verification constructs. Scheme of the constructs which showed post-
transcriptional regulation. The predicted interaction sites are shown as black lines. The color code for
other elements is given in the figure. The coordinates of the constructs are given relative to the first
nucleotide of the start codon (+1) of the UTR of interest. The pXG10 and pxG30 plasmids that have
been used to construct the UTR-GFP fusions are described in (39, 64). The used primers and further
information to the resulting plasmids are given in Table $10 and Table S11. The pXG30 plasmid was
constructed to mimic a polycistronic operon with an artificial translated gene consistent of a lacZ
fragment and the 3’ part of the gene in front of the gene of interest. In cases where the gene of
interest was the second gene in operon we used the complete 5’ part and pXG10 instead. All fusions
are transcribed from the constitutive PLtetO-1 promoter.
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CopraRNA and the existing single organism-based methods IntaRNA, TargetRNA and RNAPredator.
The plot was created with the data from Table S8.
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all benchmark organisms, whereas the metE-FnrS interaction has only in E. coli, S. enterica und C.
koseri low p-values. For that reason the verified metE-FnrS interaction (77) is not detectable by
CopraRNA with the given benchmark organism set.
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Help for the CopraRNA webserver

CopraRNA is a tool for sSRNA target prediction. It computes whole genome predictions by
combination of distinct whole genome IntaRNA predictions. As input, CopraRNA requires at least 3
homologous sRNA sequences from 3 distinct organisms in FASTA format. Furthermore each
organisms' genome has to be part of the NCBI Reference Sequence (RefSeq) database (i.e. it should
have exactly this format NC_XXXXXX where X stands for a digit between 0 and 9). Depending on
sequence length (target and sRNA), amount of input organisms and genome sizes, CopraRNA can
take up to 24h to compute (in most cases it is significantly faster). It is suggested you supply your
email and return when the job has finished. As output CopraRNA produces a CopraRNA p-value
sorted list of putative targets. Results can be viewed in the browser, but closer examination of the
downloadable data is suggested.

Input Parameters
Organism selection

The major CopraRNA parameter is the selection of the species, which definitely has an impact on the
prediction results. A small evolutionary distance between the species favors sensitivity and a high
distance favors specificity. Hence, we suggest selecting 8 SRNA homologs (maximal number of
organisms allowed by the webserver) from species with varying evolutionary distance, if there is no
availability constraint by the species in which respective sRNA is conserved. For the benchmark we
used a blend of close, medium and more remotely conserved species (based on the 16S rDNA
sequence, see Fig. S4 in the accompanied publication). In general the maximal evolutionary distance
is given by the conservation of the sRNA that is often restricted to a phylum or a class.

SsRNA sequences (3-8)

CopraRNA accepts input in form of a multiple FASTA file. A simple example looks like this:



>NC_000913
cccagagguauugauuggugaagucucucaugcgcagguuuuuuuu
>NC_011740
cccagagguauugauucggcacccgeggaugegecagguuuuuuuu
>NC_003197
cccagagguauugauuggugagauuaggaugcgcagguuuuuuuu

Note the FASTA headers have to represent a RefSeq ID of the according organism! In order to be
CopraRNA compatible, an entered organism must be part of the NCBI Reference Sequence (RefSeq)
database. This given, an organism has one, or several (depending on the existence of further
replicons such as plasmids) RefSeq ID(s) in the following format:

NC_XXXXXX where X stands for a digit between 0 and 9 (NC_000913 for E. coli)

Only one RefSeq ID has to be supplied for each organism. If you supply the ID for a plasmid, the
prediction will also be executed on all other replicons of the organism. Vice versa, if you supply the ID
of the major replicon, the prediction will also be taken out on all additionally available replicons. IDs
such as these NZ_CMO001165, NS_000191 are not valid.

To check if the organisms you selected are CopraRNA compatible, check the list of available RefSeq
IDs on our homepage. Currently, more than 2400 organisms are CopraRNA compatible. The list is
regularly updated.

Please contact us if you know your organism is part of the RefSeq database and has an ID in the
NC_XXXXXX format but is not present in the list, or is missing IDs. Then we can run an update.

Input can be given either as direct text input or by uploading a FASTA file. The sequences you upload

should be homologous to each other. If you have an sRNA sequence and are trying to find homologs,
then you can start by using BLAST. If you don't find anything with BLAST there are more sophisticated
methods for this task, such as GotohScan. Furthermore it is also possible that there are no homologs

for your sequence. In this case we suggest you resort to the IntaRNA whole genome target prediction
webserver.

Extract sequences around

This option allows you to select from which region of the mRNAs you would like to retrieve your
putative target sequences. Selecting "start codon" selects regions upstream and downstream (see nt
up, nt down) relative to the start codon. The same logic holds if you select "stop codon".

nt up (0-300)

This parameter specifies the number of nucleotides (nt) upstream of your start or stop codon
(depending which one you selected). If you selected start codon, and have prior knowledge about
average 5'UTR lengths in your input organisms then it is sensible to set nt up to this number in order
to increase prediction quality. The sum of nt up and nt down must be at least 140.

nt down (0-300)



This parameter specifies the number of nucleotides (nt) downstream of your start or stop codon
(depending which one you selected). If you selected stop codon, and have prior knowledge about
average 3'UTR lengths in your input organisms then it is sensible to set nt down to this number in
order to increase prediction quality. The sum of nt up and nt down must be at least 140.

Putative target sequences

These are the putative target sequences, extracted from the organism of interest's RefSeq file(s). In
most cases their length is nt up + nt down.

Organism of interest

Usually a user has a specific organism he is especially interested in. The organism of interest which is
finally selected takes a prime position in the output display and post processing. However it does not
change the internal computations of the core CopraRNA algorithm. The online output can only be
viewed for the organism of interest. In the downloadable data, all organisms are incorporated, but
the functional enrichment of the top candidates is only computed for the organism of interest.

Output Description
Main result:

The main CopraRNA result is a CopraRNA p-value sorted table, of target candidates for the entered
homologous sRNAs. The data displayed on the output page of the webserver is comparatively
limited, when compared to the downloadable data. For this reason we suggest you download the
results for closer inspection.

Positions of interactions:

The positions of the interactions are not relative to start or stop codon, but rather absolute positions
with respect to the lengths of your sSRNA/mRNA sequence. For example, if you were to extract
sequences 200 upstream and 100 downstream of the start codon, the location of your start codon is
201,202,203.

Annotation:
The annotation is retrieved from the RefSeq genome files.
Additional homologs:

In some cases, genes from the same organism can be part of the same cluster of targets. In these
cases only the sequence with the best IntaRNA energy score participates in the calculation of the
CopraRNA p-value. To secure that no potential targets are lost because of this, the additional
homologs are added for the organism of interest.

Regions plots:

These plots are meant to give you an overview of the regions in the target and sRNA sequences that
play predominant roles in the statistically significant interactions. The density plot in the top of the
image, is calculated from all predicted interactions with a CopraRNA-p-value <= 0.01, while the
interactions displayed in the bottom of the image are shown for the top 20 predicted targets. The



different coloring contains no information and is purely intended to increase contrast between
different genes.

Interactions:

The interaction you see on the webserver, is the interaction calculated by IntaRNA for the specific
candidate you are viewing (the highlighted line in the table). Single interactions can be downloaded
for further use. For additional information on how the RNA interactions are computed, please resort
to the IntaRNA publication.

Downloadable files:
Main CopraRNA result:

This is a CopraRNA p-value sorted, comma separated table (*.csv), containing all the results for all
organisms entered in the analysis. Each column, named by a RefSeq ID, represents the prediction for
one organism. The other columns should be self explanatory. See explanation of additional homologs
further up in this help. Each line represents one cluster of homologous genes within the organisms
entered in the analysis. The content of the cells follows this scheme:

locus_tag(gene name|IntaRNA energy score|IntaRNA p-value|pos. start mRNA | pos. stop mRNA
| pos. start sSRNA | pos. stop sSRNA|Entrez GenelD)

Functional Enrichment:

This file contains the DAVID functional enrichment result for the target candidates up to CopraRNA p-
values <= 0.01. A certain term appears as enriched, if it is significantly overrepresented in the top list
when compared to the background. The background in this case are all genes for which there is a
prediction (not the entire set of genes of an organism). Enrichment scores of 1.3 and higher, suggest
statistical significance. However, enrichments also strongly depend on the quality of the annotation
of the entered organism of interest. The file is tab delimited. This result is only calculated for the
organism of interest.

Regions plots:

These are the same as the ones displayed on the webserver. They can be downloaded in postscript,
pdf and png format.

FAQs for the CopraRNA webserver

Other tools for whole genome sRNA target prediction are much faster and do not require previous
assembly of homologs. Why should | use CopraRNA?

Truthfully, the runtime of CopraRNA is not excellent and sequence assembly can be tedious.
However, the quality of the results outcompetes all other state of the art SRNA target prediction
algorithms. Our results show that CopraRNA is even very competitive when compared with the
insights gained from micro array analyses. The cost of additional runtime and previous data
assembly, is justified by the results being several orders of magnitude better than those computed by
other algorithms. Furthermore, CopraRNA is free and fast when compared with microarrays. In some



cases (i.e. GevB) it allows a complete in silico characterization of a certain sSRNA's function within the
organism.

Why are only organisms supported that are part of the RefSeq database?

In order to guarantee easy usability, CopraRNA requires a certain degree of consistency within the
files that it accesses. RefSeq is in most cases a very reliable and consistent database, that meets
sensible consistency terms. Find all CopraRNA compatible organisms in this list. Already more than
2000 organisms are CopraRNA compatible.

Why does the target on rank 1 have a p-value =0 ?

In some cases one of the putative target sequences is encoded on the complementary strand at the
same genomic location as the sRNA. In these cases, the complementarity is perfect, which leads to
extremely low IntaRNA energy scores and consequently to a p-value of 0. Usually this can be
discarded as an artifact. However in some cases it has been shown that sRNAs not only act on trans
but also have cis regulatory effects, in which case a putative target with a p-value of 0 should not be
disregarded.

What are the q-values and how to interpret them?

The g-values are most easily explained with an example. Assume a g-value cutoff of 0.5. Statistically
speaking, 50% of all predicted targets in the list up to this cutoff are assumed to be false positives.
The g-value gives you an impression of how many incorrect predictions to expect up to a certain
threshold.

When are sRNAs homologous? or Are the sequences | am inputing feasible for CopraRNA?

This is not a trivial question and subject to research in itself. Usually if you find similar sequences of
similar lengths with a BLAST search, it is highly likely that the sequences you found are homologous.
Yet, if you don't find anything with BLAST this doesn't mean there is nothing to find. In these cases
we suggest that you resort to more sophisticated methods to find sSRNA homologs, such as
GotohScan. Nevertheless, there are cases in which no sSRNA homologs exist. In these cases we
suggest you resort to an IntaRNA whole genome target prediction.

What are additional homologs?

Sometimes the clustering of homologous genes, assigns several genes from one organism to the
same cluster. In this case the analysis is only executed on the candidate with the best IntaRNA energy
score. In order to prevent losing the other putative targets, they are added at the end as additional
homologs.

Are the predictions always good?

Even though we could show that CopraRNA predictions are mostly reliable for Enterobacteria, it is
still an in silico method and not flawless. You should look at, and think about the output and try to
make sense of it, instead of blindly trusting the top list (p-value <=0.01).

Which putative targets should | take a closer look at?



Basically all putative targets with a CopraRNA p-value <=0.01 are statistically speaking interesting.
Furthermore putative targets that belong to a certain enriched term are interesting.

Does CopraRNA work for all bacterial and archaeal phyla?

Extensive testing of CopraRNA predictions has so far only been done for enteric bacteria. However,
the basic idea is not limited to this branch of microorganisms. It is highly likely that CopraRNA can
produce predictions of the same quality for other phyla but it has not yet been experimentally
proven.

Is CopraRNA deterministic? It appears your precalculated results are not identical to the results
presented in the publication. Why?

Due to the p-value sampling for clusters that do not contain genes from each participating organism,
CopraRNA is not a deterministic algorithm. However, usually only slight differences between distinct
analyses are to be expected.

Can | download CopraRNA to run batch jobs on my local machine?

The source code for CopraRNA is available from our Software page.
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