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Jute (Corchorus sp.) is one of the most important sources of
natural fibre, covering ∼80% of global bast fibre production1.
Only Corchorus olitorius and Corchorus capsularis are commer-
cially cultivated, though there are more than 100 Corchorus
species2 in the Malvaceae family. Here we describe high-
quality draft genomes of these two species and their comparisons
at the functional genomics level to support tailor-designed breed-
ing. The assemblies cover 91.6% and 82.2% of the estimated
genome sizes for C. olitorius and C. capsularis, respectively. In
total, 37,031 C. olitorius and 30,096 C. capsularis genes are ident-
ified, and most of the genes are validated by cDNA and RNA-seq
data. Analyses of clustered gene families and gene collinearity
show that jute underwent shared whole-genome duplication
∼18.66 million years (Myr) ago prior to speciation. RNA expression
analysis from isolated fibre cells reveals the key regulatory and
structural genes involved in fibre formation. This work expands
our understanding of the molecular basis of fibre formation laying
the foundation for the genetic improvement of jute.

Bast (phloem) fibres are obtained from the stem of the plants
such as jute, flax, hemp, ramie and kenaf. The annual global
production of jute generates a farm value of ∼US$2.3 billion1.
The cultivated species of jute, C. olitorius and C. capsularis, are
morphologically and physiologically distinct (Supplementary
Fig. 1), and a combination of useful traits from these species into
a single genotype is highly desirable3. However, interspecific hybrid-
ization is limited because of their cross-incompatibility4,5. To facili-
tate comparative functional genomics and to understand the
molecular basis of bast fibre biogenesis, genomes of two popular
jute cultivars C. olitorius var. O-4 and C. capsularis var. CVL-1
are sequenced and analysed.

We performed whole-genome shotgun (WGS) sequencing with
the Roche/454 platform (Supplementary Table 1) and assembled
the genomes using CABOG6. The resulting assemblies were
445 Mb (scaffold N50 length, 3.3 Mb; longest scaffold, 45.5 Mb)
for C. olitorius and 338 Mb (scaffold N50 length, 4.1 Mb; longest
scaffold, 28.5 Mb) for C. capsularis (Table 1 and Supplementary
Table 2). Eighty per cent of the C. olitorius and C. capsularis assem-
blies were covered with 415 scaffolds (minimum length 76 kb) and
231 scaffolds (minimum length 120 kb), respectively. We estimated
the genome sizes for C. olitorius and C. capsularis to be ∼448
and ∼404 Mb (Supplementary Information and Supplementary
Fig. 2), respectively, which were consistent with reported estimates7.
Whole-genome optical mapping was used to improve the assemblies,
resulting increase in N50 of the scaffolds to 4.0 Mb for C. olitorius
and 8.5 Mb for C. capsularis (Supplementary Information and
Supplementary Tables 3–6). We anchored ∼60% of each assembly
to seven genetic linkage groups using a set of 1,389 molecular
markers from a consensus genetic linkage map8–12

(Supplementary Fig. 3 and Supplementary Table 7). More than
99% (C. olitorius) and 97% (C. capsularis) of the isotigs generated
from transcriptome sequencing of jute seedlings aligned to the
respective genomes indicate comprehensive coverage of the gene-
rich regions (Supplementary Tables 8 and 9). In addition, more
than 97% of the conserved core eukaryotic genes13 were present in
each of the draft genomes (Supplementary Table 10). Moreover,
the single-base accuracy of the de novo assembled genomes was eval-
uated by mapping all reads onto the scaffolds using a CLC mapper
(CLC bio, Aarhus, Denmark). It was observed that 82.29% and
78.28% of the reads are uniquely mapped to C. olitorius and
C. capsularis, respectively (Supplementary Table 11). We predicted
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37,031 C. olitorius and 30,096 C. capsularis protein-coding genes by
using a combination of de novo, homology and transcriptome-based
approaches (Table 1; Supplementary Fig. 4 and Supplementary
Table 12). The averages of gene length, number of exons and
coding sequence length of C. olitorius are 2,359 bp, 4.00 and
927 bp respectively and for C. capsularis are 2,759 bp, 4.58 and
1,036 bp respectively (Supplementary Table 13). These values are
similar to other malvaceous crops such as cotton14 and cacao15.
We also identified 1,010 and 666 microRNAs (miRNAs), 488 and
203 transfer RNAs (tRNAs) and 80 and 110 rRNAs in the C. olitor-
ius and C. capsularis genomes, respectively (Table 1; Supplementary
Tables 14–16). More than 50% of the C. olitorius and C. capsularis
genomes were composed of repetitive elements, which is similar to
cotton (∼57%) and double that of cacao (∼24%) (Supplementary
Tables 17 and 18). The proportions of various types of repeats
were similar in both genomes, with long terminal repeats being
the most abundant (Supplementary Table 19) which is similar to
that observed in Bamboo16 and Banana17.

We examined the evolutionary relationship between jute and
13 other sequenced plant genomes with representatives from the
Malvids (cacao, cotton and Arabidopsis), Fabids (castor bean, flax,
Medicago, soybean, Fragaria and Populus), Asterids (tomato and
potato), Vitales (grape) and Monocots (rice). Phylogenetic analysis,
based on a concatenated alignment of 13 single-copy gene families
from 15 sequenced plant genomes, supported the placement of
jute with cacao and cotton in the Malvaceae family (Fig. 1a). This
inclusion is consistent with the analysis done with chloroplast
DNA sequences18. All protein-coding genes from 15 genomes
(Supplementary Table 20) were clustered into 47,186 gene families
(two or more members), of which 8,177 were common to all five
groups and 8,816 were confined to the Malvids (Supplementary
Fig. 5). Among the Malvids-specific gene families only 613 and
152 are unique to C. olitorius and C. capsularis, respectively
(Fig. 1b). These jute-specific gene families were significantly enriched
with genes related to the oxidation–reduction process, transcription
factors, transposases and defence-related proteins (Supplementary
Tables 21 and 22). To investigate the expression of jute-specific
genes in fibre cells, the RNA-seq data from isolated fibre cells and
seedlings of C. olitorius and C. capsularis were compared. Among
the jute-specific genes, Myb/SANT-like domain, Zinc finger,
PHD-type, F-box domain cyclin-like proteins are highly expressed
in fibre cells than seedlings (Supplementary Tables 23 and 24)
indicating their involvement in bast fibre formation.

The natural genetic diversity within the jute species is very
narrow19,20 and it is one of the impediments for the breeder to
develop high-yield and quality varieties. The extent of gene dupli-
cations in the C. olitorius and C. capsularis genomes were examined.
By calculating the synonymous substitution rates (Ks) for paralogous
gene pairs, two peaks at 0.24–0.32 and 0.72–0.92 for both of the
genomes were found (Fig. 1c). The first peak reveals the whole-
genome duplication (WGD) event occurred ∼18.6 (16.0–21.3) Myr
ago prior to their separation at ∼6 Myr ago (Supplementary Fig. 6).
The second peak is indicating an ancient WGD event occurred in
jute ∼129.2 (110.7–141.5) Myr ago (Fig. 1c). The ancient duplication
event corresponds to the ancient hexaploidization that is shared
among the eudicots21. Comparison of the two genomes revealed
that they share 160 syntenic blocks (five or more genes per block)
with the linkage groups covering 58% and 65% of the assembled
genome of C. olitorius and C. capsularis, respectively (Fig. 1d;
Supplementary Fig. 7 and Supplementary Tables 25 and 26). It indi-
cates that extensive synteny and conserved gene order exists between
the genomes. A one-to-one relationship of the predominantly aligned
syntenic regions denotes no WGD after speciation (Supplementary
Fig. 8). The occurrence of tandem duplications, which tend to be
biased towards genes involved in responses to environmental
stimuli22, was relatively low for C. olitorius (7.2% of total genes)
and C. capsularis (5.9% of total genes) (Supplementary Table 27)
compared with other plant genomes23.

The genomics information of jute fibre biogenesis is merely
available for the improvement of its yield and quality. RNA-seq
data obtained from isolated fibre cells (elongated cells undergoing
secondary cell wall (SCW) deposition) and seedlings of C. olitorius
and C. capsularis were analysed to investigate the molecular events
of jute fibre development (Supplementary Fig. 9 and Supplementary
Tables 28 and 29). We identified 6,077 upregulated and 6,809 down-
regulated genes for C. olitorius and 7,695 upregulated and 7,809
downregulated genes for C. capsularis (Supplementary Fig. 10 and
Supplementary Tables 30 and 31). Among them, 329 C. olitorius
and 344 C. capsularis genes were identified based on the analysis
of homologous genes reportedly involved in plant fibre formation24

which facilitated us to propose a model for bast fibre biogenesis in
jute (Fig. 2a). It was found that 174 (53%) C. olitorius and 216
(63%) C. capsularis genes were expressed significantly within the
fibre cells and seedlings (Supplementary Table 32). Genes encoding
theWOX4, APL and HAT22 transcription factors and the TDIF sig-
nalling peptide, which are involved in vascular cambium initiation
and proliferation25–28, were highly expressed in fibre cells, suggesting
their importance in fibre differentiation. Moreover, several of the
transcription factor genes involved in regulating SCW formation
exhibited higher expression in the fibre cells (Supplementary
Fig. 11). In particular, a substantial increase in expression was
observed for the MYB83 homologue of Arabidopsis, a master regu-
lator capable of activating the biosynthesis of all major SCW com-
ponents (cellulose, lignin and xylan)29. The homologue of
AtMYB46, which is co-expressed and functionally redundant with
AtMYB83 in Arabidopsis29, showed little or no expression in jute
fibres indicating that MYB83 is primarily accountable for the
SCW regulatory network of jute.

The relatively high lignin content (∼15%) in jute fibre makes
it coarser than other bast fibres such as flax and ramie (<5%
lignin)30. Among the lignin biosynthetic genes detected in the
C. olitorius and C. capsularis genomes, there were expansions of
the 4-coumarate:CoA ligase (4CL), cinnamoyl-CoA reductase (CCR),
trans-caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) and caffeic
acid O-methyltransferase (COMT) gene families compared with flax
(Supplementary Table 33). The expression profiles of the lignification
genes reveal that only a few homologues appeared to be preferentially
expressed at high levels in the fibre cells for most of the gene families
(Fig. 2b; Supplementary Table 32 and Supplementary Fig. 12a1),

Table 1 | Assembly and annotation features of the C. olitorius
and C. capsularis genomes.

Genome features Corchorus
olitorius

Corchorus
capsularis

Estimated genome size (Mb)* 447.95 404.09
Assembled genome size (Mb) 445.05 338.13
Number of scaffolds (≥500 bp) 22,944 6,125
Number of N50 scaffolds 31 14
N50 scaffold length (Mb) 3.30 4.13
Longest scaffold (Mb) 45.45 28.54
GC content (%) 34.10 34.84
Transposable elements (%) 53.72 56.17
Predicted protein-coding genes 37,031 30,096
Gene density† 0.90 0.91

ncRNA‡

miRNA 1,010 666
tRNA 488 203
rRNA 80 110

*Calculation described in Supplementary Information. †Gene density expressed in number of genes
per 10 kb and based on total contig length (410.19 Mb and 331.96 Mb for C. olitorius and C. capsularis,
respectively). ‡For details, see Supplementary Tables 14–16. ncRNA, non-coding RNA.
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highlighting possible targets for engineering low-lignin jute fibres.
Cellulose, synthesized by the cellulose synthase (CesA) complex,
makes up the majority of the SCW in jute fibres (∼60%).We identified
10 CesA and 32 cellulose synthase-like (Csl) genes, similar to several
other plants (Supplementary Table 34). SCW synthesis specific genes
CesA4 and CesA7 were distinctly upregulated in fibre cells (Fig. 2c;
Supplementary Table 32 and Supplementary Fig. 12a2) indicating
their association with SCW cellulose deposition, whereas significant
expression of CesA1, CesA3 and CesA6 in seedlings suggest their
involvement in primary cell wall cellulose deposition (Fig. 2c;
Supplementary Table 32 and Supplementary Fig. 12a2).

Senescence and cell death are the final phases of fibre biogenesis
related to autophagy and proteolysis pathways. KEGG pathway
enrichment analysis with fibre cell transcriptome data indicated
an upregulation of autophagy and proteolysis pathways whereas
most of the metabolic pathways were downregulated (Supplementary
Tables 35 and 36). In flax phloem and poplar xylem fibres, a
gradual degradation of the nucleus and cytoplasm is likely to be
mediated by autophagy while deposition of the SCW continues31,32.
In poplar xylem fibres32, all copies of ATG8 were upregulated in
jute fibre cells and the expressions were the highest among the
autophagy-related genes (Supplementary Table 32) suggesting a
similar cell death programme.

RNA-seq results for fibre biogenesis pathway genes were
validated with quantitative polymerase chain reaction with
reverse transcription (RT–qPCR) on randomly selected genes

(Supplementary Fig. 13). For most of the genes, similar upregulation
and downregulation patterns were observed.

To explain the morphological and physiological differences
between the species, we focused on comparing the transcripts and
genes that are related to lignin deposition in SCW, fibre colour
and response to abiotic stress. As C. olitorius fibre contains more
lignin and less cellulose than that of C. capsularis (Supplementary
Table 37)33, expression patterns of lignin and cellulose biosynthesis
genes between them were different (Fig. 2b,c). Genes encoding most
of the key enzymes for proanthocyanidin biosynthesis were highly
expressed in the fibres of C. olitorius (golden colour) than in
C. capsularis (whitish colour) (Supplementary Fig. 14), indicating
their involvement for the differences in fibre pigmentation.

C. capsularis is comparatively tolerant to flood and drought but
slightly more susceptible to diseases and pests than C. olitorius34.
Moreover, C. capsularis is somewhat tolerant to salt stress compared
with C. olitorius and can survive up to 60 mM concentrations of
NaCl in nutrient media (Supplementary Fig. 15). We categorized
gene ontology (GO) using the Blast2GO pipeline35 to identify gene
copy number variation which is a major mechanism of phenotypic
differentiation and evolutionary adaptation to the environment36,37

(Supplementary Tables 38 and 39). In the GO class ‘biological pro-
cesses’, genes with GO terms associated with response to important
environmental factors including salt and osmotic stress were over-
represented in C. capsularis (Fig. 3a; Supplementary Table 40). Besides,
in the GO class ‘molecular function’, we found that genes responding
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to abiotic stress were also significantly over-represented in C. capsularis
(Fig. 3b; Supplementary Table 40). Among them transmembrane
transport, vacuolar transport, homeostatic process, ATPase activity,
transmembrane transporter activity, signal transducer activity,
oxidoreductase activity were significantly higher in C. capsularis,
indicating its adaptability in different habitats and environmental
pressure. For example, transmembrane transport proteins mediate
ion fluxes, including sodium ATPase, vacuolar H+-ATPase, chloride
channel protein, and ABC transporters play important roles in ionic
and osmotic homeostasis under salt environments38. To corroborate
GO analysis results, correlated genes were identified (Supplementary
Table 41) andmost of them are associated with abiotic stress tolerance.

The comparative genome analysis opens up opportunities for the
development of improved breeding strategies to meet the increasing
demand of natural fibres in industry. The genome sequences provide
a valuable resource to advance our understanding of bast fibre
biogenesis in jute, thus serving as the foundation of genetic
improvement for productivity and fibre quality.

Methods
Genome sequencing and assembly. The genomes of C. olitorius var. O-4 and
C. capsularis var. CVL-1 were sequenced using the WGS approach on the

454 platform. A total of 13.04 Gb of sequence data was generated for the C. olitorius
genome, consisting of 5.65 Gb of shotgun sequences, 2.56 Gb of 3 kb paired-end
sequences, 2.47 Gb of 8 kb paired-end sequences and 2.36 Gb of 20 kb paired-end
sequences. For the C. capsularis genome, 13.69 Gb of sequence data was generated,
consisting of 7.87 Gb of shotgun sequences, 2.04 Gb of 3 kb paired-end sequences,
2.26 Gb of 8 kb paired-end sequences and 1.51 Gb of 20 kb paired-end sequences
(Supplementary Table 1).

We used the CABOG tool sffToCA to identify mated reads and remove duplicate
mate pairs. The remaining read sequence data were converted to the fastq format,
trimmed to a length of 65 bases and used in the assembly. The CABOG v7.0
pipelines were then run with default parameters using a kmer parameter of 22,
which was selected after testing a range of kmer settings.

We used whole-genome optical mapping technology to improve and validate
the assemblies (Supplementary Table 3). A total of 360,906 and 260,615
single-molecule restriction maps longer than 250 kb each, with an average size of
356.37 and 356.99 kb, were generated using the KpnI restriction enzyme for
C. olitorius and C. capsularis, respectively (Supplementary Table 4). Super-
scaffolding with optical map data was performed using Genome-Builder software
(OpGen). Super-scaffolds and scaffolds were anchored to seven linkage groups using
a combination of traditional markers and whole-genome mapping data using
ALLMAPS software.

The accuracy and completeness of the assemblies were assessed by aligning
isotigs that were generated from transcriptome sequencing onto the WGS scaffolds
using BLAT (Supplementary Table 9). We also checked the relative completeness of
the assemblies by performing core gene annotation using the CEGMAv2.5 pipelines
(Supplementary Table 10).
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Figure 3 | Comparison of GO categories between C. olitorius and C. capsularis based on the response to abiotic stress. a, GO biological processes.
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Gene annotation. Repetitive elements were identified and masked by
RepeatModeler v1.0.7 and RepeatMasker Open-3.0 with default parameters. Gene
prediction was performed using a combination of homology, de novo and transcript-
based approaches (Supplementary Fig. 4). The predicted genes were analysed for
functional domains and homologies by using InterProScan and Basic Local
Alignment Search Tool (BLAST) against the NCBI non-redundant database,
TrEMBL and SwissProt with Protein BLAST (BLASTP) (e < 1 × 10−5) and Blast2GO
v3.3 with default parameters.

Genome comparison and evolution. Comparative analysis was performed to
identify orthologous gene families among the genomes of C. olitorius, C. capsularis,
Arabidopsis thaliana, Theobroma cacao, Gossypium raimondii, Glycine max, Populus
trichocarpa, Ricinus communis, Fragaria vesca, Linum usitatissimum, Medicago
truncatula, Vitis vinifera, Solanum lycopersicum, Solanum tuberosum and Oryza
sativa. All predicted protein sequences of these plants (Supplementary Table 20)
were searched against each other using BLASTP (e < 1 × 10−5) and clustered into
orthologous groups using MCL-10-201 (inflation parameter, 1.5). Clusters
containing single-copy orthologues were identified with exact one member per
species. Phylogenetic relationships were determined from these single-copy
orthologues using the maximum likelihood method.

Paralogous genes in C. olitorius and C. capsularis were detected by all-against-all
protein sequence similarity searches using BLASTP. The synonymous substitution
rate (Ks) was calculated for each gene pair. Paralogous genes were determined to be
tandem duplicates if they were located within five genes from each other.
Orthologous genes between C. olitorius and C. capsularis were identified using the
reciprocal best hit method and the Ks values were calculated for each pair. Intra- and
intergenomic regions of synteny were identified and visualized by SyMAP v4.0.

Pathway reconstruction. Metabolic and regulatory pathways were reconstructed
with Pathway Studio software based on the Resnet-Plant 4.0 database. Predicted jute
interologues and pathways were imported into a new Pathway Studio database for
manual pathway reconstruction and genome analysis.

Fibre cell transcriptome sequencing and analysis. The transcriptomes of isolated
fibre cells and whole seedlings were sequenced with an Illumina HiSeq 2,500 at
HudsonAlpha Institute for Biotechnology, Huntsville, Alabama (Supplementary
Tables 28 and 29). Expression patterns were compared by aligning the RNA-seq
reads against the C. olitorius and C. capsularis genome sequences and quantifying
the transcript abundances using the Cufflinks v2.2.1 package, which was visualized
by R libraries. KEGG Orthology Based Annotation System (KOBAS) was used to
identify the pathways in the C. olitorius and the C. capsularis genome using the
model organism A. thaliana. KEGG (Release 74.0) and Biocyc v19.0 pathways were
utilized to run R package piano v1.8.0 for Gene set analysis (GSA). Pathways in the
distinct direction were selected for subsequent analysis based on adjusted P < 0.05.
The differential gene expression from the in silico analysis were validated by
RT–qPCR with randomly selected several fibre biosynthesis pathway genes. All
primers used in this study are provided in Supplementary Table 42.

Statistical analyses. Two-tailed chi-squared tests were used to compare the
distributions of GO subcategories between C. olitorius and C. capsularis (Fig. 3). For
each GO subcategory, a 2 × 2 contingency table was constructed by recording the
existence of the number of genes in a subcategory for each species and ranking the
statistical significance of the differences.

Detailed methods and their associated references are in the Supplementary
Information.

Data availability. The WGS projects have been deposited at NCBI GenBank under
BioProject ID PRJNA215141 and accession no. AWUE00000000 for C. olitorius and
BioProject ID PRJNA215142 and accession no. AWWV00000000 for C. capsularis.
The genomic and transcriptomic raw data have been deposited in the NCBI
Sequence Read Archive (SRA) under SRP049494 and SRP053213 for C. olitorius and
C. capsularis, respectively.
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