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Abstract

Background: Structured noncoding RNAs perform many functions that are essential for protein synthesis, RNA

processing, and gene regulation. Structured RNAs can be detected by comparative genomics, in which

homologous sequences are identified and inspected for mutations that conserve RNA secondary structure.

Results: By applying a comparative genomics-based approach to genome and metagenome sequences from

bacteria and archaea, we identified 104 candidate structured RNAs and inferred putative functions for many of

these. Twelve candidate metabolite-binding RNAs were identified, three of which were validated, including one

reported herein that binds the coenzyme S-adenosylmethionine. Newly identified cis-regulatory RNAs are

implicated in photosynthesis or nitrogen regulation in cyanobacteria, purine and one-carbon metabolism, stomach

infection by Helicobacter, and many other physiological processes. A candidate riboswitch termed crcB is

represented in both bacteria and archaea. Another RNA motif may control gene expression from 3'-untranslated

regions of mRNAs, which is unusual for bacteria. Many noncoding RNAs that likely act in trans are also revealed,

and several of the noncoding RNA candidates are found mostly or exclusively in metagenome DNA sequences.

Conclusions: This work greatly expands the variety of highly structured noncoding RNAs known to exist in

bacteria and archaea and provides a starting point for biochemical and genetic studies needed to validate their

biologic functions. Given the sustained rate of RNA discovery over several similar projects, we expect that far more

structured RNAs remain to be discovered from bacterial and archaeal organisms.

Background
Ongoing efforts to identify and characterize various

structured noncoding RNAs from bacteria are revealing

the remarkable functions that structured RNAs can per-

form [1-3]. To detect novel RNA classes in bacteria and

archaea, a variety of bioinformatics strategies have been

used [4-12]. In our recent efforts to identify novel struc-

tured RNAs, we applied a scheme based on detecting

RNA secondary structures upstream of homologous pro-

tein-coding genes [13,14]. However, this strategy is best

suited to finding cis-regulatory RNAs, not noncoding

RNAs. Also, some cis-regulatory RNAs such as c-di-

GMP riboswitches [14,15] or ydaO motif RNAs [5] are

not often found upstream of homologous genes [13].

We therefore implemented a search system that is

independent of protein-coding genes. In brief, our system

clusters intergenic regions (IGRs) [16] by using a

BLAST-based method [17] and infers secondary struc-

tures by using CMfinder [18]. Then, as before [19,20],

the identified structures are used in homology searches

to find homologues that allow CMfinder to refine further

its structural alignment. The resulting alignments are

scored and then analyzed manually to identify the most

promising candidates and to infer possible biologic roles.

This method was applied to all available bacterial and

archaeal genome sequences, as well as metagenome (that

is, environmental) sequences, and identified 104 candi-

date RNA motifs described in this report. Some addi-

tional RNAs will be reported later (unpublished data)
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that bind cyclic di-GMP or tetrahydrofolate, that repre-

sent diverse variants of hammerhead self-cleaving ribo-

zymes, or that exhibit exceptional characteristics

suggesting a novel or unusual biochemical function [21].

In this report, we provide biochemical evidence that

members of one of the 104 RNA motifs bind S-adenosyl-

homocysteine (SAH) and S-adenosylmethionine (SAM)

in vitro, and presumably regulate the downstream genes

coding for SAM synthetase. The rest of this report pro-

vides predicted structures of selected motifs and hypoth-

eses regarding their biologic roles. The remaining motifs,

as well as additional information on the selected motifs,

are presented in Additional File 1. Discussions about

individual motifs are largely independent, but are

grouped into common putative functional roles. A list of

all 104 motifs is provided in Table 1 and Additional File

2. Multiple-sequence alignments of motifs, the organisms

in which their representatives appear, and predicted

flanking genes are available in printable format in Addi-

tional File 3, and alignments are provided in machine-

readable format in Additional Files 4 and 5. Consensus

diagrams for all motifs are depicted in Additional File 6.

Selected motifs (Table 1) were submitted for inclusion in

the Rfam Database version 10.1 [22].

Results and discussion

Identification and analysis of RNA structures

Promising RNA motifs predicted by our automated

bioinformatics procedure were subsequently evaluated

manually (see Materials and Methods). As previously

reported [14], we identified promising motifs by seeking

RNAs that exhibit both regions of conserved nucleotide

sequence and evidence of secondary structure. Evidence

for the latter characteristic involved the identification of

nucleotide variation between representatives of a motif

that conserves a given structure. For example, one form

of covariation involves mutations to two nucleotides

that preserve a Watson-Crick base pair. Assessment of

covariation can be complicated, because, for example,

spurious evidence of covariation is sometimes a conse-

quence of sequence misalignments. Therefore, final cov-

ariation assessments were performed manually.

Cis-regulatory RNAs in bacteria are typically located

in 5' UTRs. However, transcription start sites for most

genes have not been experimentally established. There-

fore, when a motif commonly resides upstream of cod-

ing regions, we usually assume that it resides in 5' UTRs

and is a cis-regulatory RNA. Additional analysis of our

system and our scheme for naming motifs is described

in Additional File 1.

Riboswitch candidates

Riboswitches [1,2,23] are RNAs that sense metabolites

and regulate gene expression in response to changes in

metabolite concentrations. Typically, they form domains

within 5' UTRs of mRNAs, and their ligand binding trig-

gers a folding change that modulates expression of the

downstream gene. Therefore, good riboswitch candi-

dates are consistently located in potential 5' UTRs. Most

known riboswitches require complex secondary and

tertiary structures to form tight and highly selective

binding pockets for metabolite ligands. Therefore, motifs

that comprise the strongest riboswitch candidates have

complex secondary structures and stretches of highly

conserved nucleotide positions. Motifs were analyzed

manually according to these criteria.

We identified a total of 12 RNA motifs that exhibited

these characteristics. Here we report the validation of a

new SAM/SAH-binding RNA class, and analysis of

other riboswitch candidates. Experimental validation of

cyclic di-GMP-II and tetrahydrofolate riboswitches will

be reported elsewhere. Details describing additional

experimental validation efforts and ligands tested with

other riboswitch candidates are presented in Additional

File 1.

SAM/SAH-binding RNA

The coenzyme SAM and its reaction by-product SAH

are frequently targeted ligands for riboswitches. Three

structurally unrelated superfamilies [24] of SAM-binding

riboswitches [25] and one SAH-binding riboswitch class

[26] have been validated previously. All discriminate

against SAM or SAH by orders of magnitude, despite

the fact that SAM differs from SAH only by a single

methyl group and associated positive charge.

Our current search produced a motif, termed SAM/

SAH (Figure 1a), that is found exclusively in the order

Rhodobacterales of a-proteobacteria. The RNA motif is

consistently found immediately upstream of metK genes,

which encode SAM synthetase. Because known SAM-

binding riboswitches are frequently upstream of metK

genes [25], the element’s gene association suggests that

it may function as part of a novel SAM-sensing ribo-

switch class.

A SAM/SAH RNA from Roseobacter sp. SK209-2-6,

called “SK209-52 RNA,” was subjected to in-line probing

[27] in the presence of various concentrations of SAM

or SAH (Figure 1b,c). SK209-52 RNA appears to bind

SAH with a dissociation constant (KD) of ~4.3 μM and

SAM with a KD of ~8.6 μM (Figure 1d). Similar results

were obtained with SAM/SAH RNA constructs from

other species (data not shown). However, because SAM

undergoes spontaneous demethylation, SAM samples

contain at least some of the breakdown product SAH.

Thus, apparent affinity for SAM could result from bind-

ing only of contaminating SAH [26]. However, binding

assays based on equilibrium dialysis and molecular-

recognition experiments indicate that SAM/SAH RNAs

do bind SAM (Additional File 1).
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Table 1 Motifs identified in this work

Motif RNA? cis-reg? Switch? Taxa Rfam

6S-flavo Y N N Bacteroidetes RF01685

aceE ? y ? g-Proteobacteria

Acido-1 y n n Acidobacteria RF01686

Acido-Lenti-1 y n n Acidobacteria, Lentisphaerae RF01687

Actino-pnp Y Y N Actinomycetales RF01688

AdoCbl-variant Y Y Y Marine RF01689

asd Y ? ? Lactobacillales RF01732

atoC y y ? δ-Proteobacteria RF01733

Bacillaceae-1 Y n n Bacillaceae RF01690

Bacillus-plasmid y ? n Bacillus RF01691

Bacteroid-trp y y n Bacteroidetes RF01692

Bacteroidales-1 Y ? ? Bacteroidales RF01693

Bacteroides-1 y ? n Bacteroides RF01694

Bacteroides-2 ? n n Bacteroides

Burkholderiales-1 ? ? n Burkholderiales

c4 antisense RNA Y N N Proteobacteria, phages RF01695

c4-a1b1 Y N N g-Proteobacteria, phages

Chlorobi-1 Y n n Chlorobi RF01696

Chlorobi-RRM y y n Chlorobi RF01697

Chloroflexi-1 y ? n Chloroflexus aggregans RF01698

Clostridiales-1 y n n Clostridiales, human gut RF01699

COG2252 ? y n Pseudomonadales

Collinsella-1 y n n Actinobacteria, human gut RF01700

crcB Y Y Y Widespread, bacteria and archaea RF01734

Cyano-1 y n n Cyanobacteria, marine RF01701

Cyano-2 Y n n Cyanobacteria, marine RF01702

Desulfotalea-1 ? n n Proteobacteria

Dictyoglomi-1 y ? ? Dictyoglomi RF01703

Downstream-peptide Y y y Cyanobacteria, marine RF01704

epsC Y y y Bacillales RF01735

fixA ? y n Pseudomonas

Flavo-1 y n n Bacteroidetes RF01705

flg-Rhizobiales y y n Rhizobiales RF01736

flpD y ? n Euryarchaeota RF01737

gabT Y y ? Pseudomonas RF01738

Gamma-cis-1 ? y n g-Proteobacteria

glnA Y Y y Cyanobacteria, marine RF01739

GUCCY-hairpin ? ? n Bacteroidetes, Proteobacteria

Gut-1 Y n n Human gut only RF01706

gyrA y y n Pseudomonas RF01740

hopC y Y ? Helicobacter RF01741

icd ? y n Pseudomonas

JUMPstart y Y ? g-Proteobacteria RF01707

L17 downstream element y y n Lactobacillales, Listeria RF01708

lactis-plasmid y ? n Lactobacillales RF01742

Lacto-int ? ? n Lactobacillales, phages
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Table 1: Motifs identified in this work (Continued)

Lacto-rpoB Y y n Lactobacillales RF01709

Lacto-usp Y ? ? Lactobacillales RF01710

Leu/phe leader Y Y N Lactococcus lactis RF01743

livK y y ? Pseudomonadales RF01744

Lnt y y ? Chlorobi RF01711

manA Y Y y Marine, g-Proteobacteria, cyanophage RF01745

Methylobacterium-1 Y n n Methylobacterium, marine RF01712

Moco-II y Y ? Proteobacteria RF01713

mraW y y ? Actinomycetales RF01746

msiK Y Y ? Actinobacteria RF01747

Nitrosococcus-1 ? n n Nitrosococcus, Clostridia

nuoG y y ? Enterobacteriales (incl. E. coli K12) RF01748

Ocean-V y n n Marine only RF01714

Ocean-VI ? ? ? Marine only

pan Y Y ? Chloroflexi, Firmicutes, δ-Proteobacteria RF01749

Pedo-repair y ? n Pedobacter RF01715

pfl Y Y Y Several phyla RF01750

pheA ? y n Actinobacteria

PhotoRC-I y y n Cyanobacteria, marine RF01716

PhotoRC-II Y y n Marine, cyanophage RF01717

Polynucleobacter-1 y y ? Burkholderiales, fresh water/estuary RF01718

potC y y ? Marine only RF01751

psaA Y y ? Cyanobacteria RF01752

psbNH y y n Cyanobacteria, marine RF01753

Pseudomon-1 y n n Pseudomonadales RF01719

Pseudomon-2 ? n n Pseudomonas

Pseudomon-GGDEF ? y ? Pseudomonas

Pseudomon-groES y y ? Pseudomonas RF01721

Pseudomon-Rho y Y n Pseudomonas RF01720

Pyrobac-1 y n n Pyrobaculum RF01722

Pyrobac-HINT ? y n Pyrobaculum

radC Y y ? Proteobacteria RF01754

Rhizobiales-1 ? n N Rhizobiales

Rhizobiales-2 y ? n Rhizobiales RF01723

Rhodopirellula-1 ? y ? Proteobacteria, Planctomycetes

rmf Y y ? Pseudomonadales RF01755

rne-II Y y N Pseudomonadales RF01756

SAM-Chlorobi y Y ? Chlorobi RF01724

SAM-I-IV-variant Y Y Y Several phyla, marine RF01725

SAM-II long loops Y Y Y Bacteroidetes, marine RF01726

SAM/SAH riboswitch Y Y Y Rhodobacterales RF01727

sanguinis-hairpin ? n n Streptococcus

sbcD y ? n Burkholderiales RF01757

ScRE ? y n Streptococcus

Soil-1 ? n n Soil only

Solibacter-1 ? n n Solibacter usitatus

STAXI y ? n Enterobacteriales RF01728
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Table 1: Motifs identified in this work (Continued)

sucA-II y y ? Pseudomonadales RF01758

sucC Y Y ? g-Proteobacteria RF01759

Termite-flg Y y n Termite hind gut only RF01729

Termite-leu y ? ? Termite hind gut only RF01730

traJ-II Y Y n Proteobacteria, Enterococcus faecium RF01760

Transposase-resistance ? y n Several phyla

TwoAYGGAY y n n Human gut, g-Proteobacteria, Clostridiales

wcaG Y y y Marine, cyanophage RF01761

Whalefall-1 Y n n Whalefall only RF01762

yjdF Y Y Y Firmicutes RF01764

ykkC-III y Y y Actinobacteria, δ-Proteobacteria RF01763

Columns are as follows. “RNA?” : is this motif likely to represent a biological RNA? “Y” = certainly, “y” = probably, “?” = ambiguous, “n” = probably not, “N” = no.

“cis-reg” : is the motif cis-regulatory? “switch?” : is the motif a riboswitch? Additional annotation and justification is in Additional File 2. “Taxa” : common taxon/

taxa carrying this motif. Many motifs are discussed only in Additional file 1. “Rfam” : accession numbers of motifs that were submitted to the Rfam database for

version 10.1. Note: consensus diagrams of some motifs were presented as supplementary data of a previous report [21] under simplified names: Acido-1

(previously ac-1), Dictyoglomi-1 (dct-1), Gut-1 (gt-1), manA (manA), Termite-flg (tf-1) and Whalefall-1 (wf-1).

Figure 1 SAM/SAH riboswitches. (a) SAM/SAH motif consensus diagram. Possible additional base-pairing interactions are shown (Additional

File 1). The legend applies to all other consensus diagrams in this report. (b) Sequence and proposed secondary structure of SK209-52 RNA.

In-line probing annotations are derived from the data in c. Asterisks identify G residues added to improve in vitro transcription yield. (c) In-line

probing gel with lanes loaded with 5' 32P-labeled RNAs subjected to no reaction (NR), partial digestion with RNase T1 (T1), partial digest under

alkaline pH (-OH), in-line probing reaction without added compound (-), or in-line probing reactions with various concentrations of SAM.

Selected bands in the RNase T1 partial digest lane (products of cleavage 3' of G residues) are numbered according to the nucleotide positions in

b. Uncleaved precursor (Pre) and two internucleotide linkages whose cleavage rates are strongly affected by SAM (3' of nucleotides 42 and 45)

are marked. The full gel image is provided in Additional File 1. (d) Plot of the normalized fraction of RNAs whose cleavage sites (linkage 23 not

shown in c) have undergone modulation versus the concentration of SAM present during the in-line probing reaction. The curve represents an

ideal one-to-one binding interaction with a KD of 8.6 μM.
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It is interesting to note that SAM/SAH aptamers, which

are the smallest of the SAM and SAH aptamer classes,

presumably cannot discriminate strongly against SAH.

This lack of discrimination may mean that genes asso-

ciated with this RNA are purposefully regulated by either

SAM or SAH. However, SAM is more abundant in cells

than is SAH [28]. This fact, coupled with the frequent

association of the RNA motif with metK gene contexts of

SAM/SAH RNAs, suggests that their biologic role is to

function as part of a SAM-responsive riboswitch.

crcB motif

The crcB motif (Figure 2) is detected in a wide variety of

phyla in bacteria and archaea. Thus, crcB RNAs join

only one known riboswitch class (TPP) [29], and few

other classes of RNAs, that are present in more than

one domain of life. The crcB motif consistently resides

in the potential 5' UTRs of genes, including those

involved in DNA repair (mutS), K+, or Cl- transport, or

genes encoding formate hydrogen lyase. In many cases,

predicted transcription terminators overlap the

Figure 2 Riboswitch candidates crcB, yjdF, wcaG, manA, pfl, epsC, and ykkC-III. Annotations are as described in Figure 1a. The transcription

terminators that often overlap crcB or pfl RNAs are not depicted because they are not consistent in all representatives. They are annotated in

Additional File 3. Question marks signify base-paired regions ("P4?” in yjdF, “P2?” in pfl, and “pseudoknot?” in manA) with weaker covariation or

structural conservation. The pseudoknot in the epsC motif was predicted by others (Wade Winkler, personal communication, 2009). A portion of

this figure was adapted from the supplementary data of a previous publication [21].
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conserved crcB motif. Therefore, if ligand binding of the

putative riboswitch stabilizes the conserved structure

predicted for these RNAs, higher ligand concentrations

are expected to inhibit terminator stem formation and

increase gene expression.

The crcB motif might regulate genes in response to

stress conditions that can damage DNA and be miti-

gated by increased expression of other genes controlled

by the RNAs (Additional File 1). If crcB RNAs are ribo-

switches, they presumably sense a metabolite present in

organisms that is indicative of a common cellular condi-

tion in two domains of life.

pfl motif

The pfl motif (Figure 2) is found in four bacterial phyla.

As with crcB RNAs, predicted transcription terminators

overlap the 3' region of many pfl RNAs; thus, gene

expression is likely increased in response to higher

ligand concentrations. The genes most commonly asso-

ciated with pfl RNAs are related to purine biosynthesis,

or to synthesis of formyltetrahydrofolate (formyl-THF),

which is used for purine biosynthesis. These genes

include purH, fhs, pfl, glyA, and folD. PurH formylates

AICAR by using formyl-THF as the donor. Formyl-THF

can be synthesized by the product of fhs by using for-

mate and THF as substrates. Formate, in turn, is pro-

duced in the reaction catalyzed by Pfl. The upregulation

of Pfl to create formate for the synthesis of purines was

observed previously [30]. Formyl-THF can also be pro-

duced from THF and serine by the combined action of

GlyA and FolD. Thus, the five genes most commonly

predicted to be regulated by pfl RNAs have a role in the

synthesis of purines or formyl-THF. Most other genes

apparently regulated by pfl RNAs (Additional File 3)

encode enzymes that perform other steps in purine

synthesis, or convert between THF or its 1-carbon

adducts at least as a side effect (for example, metH)

(Additional File 1).

yjdF motif

The yjdF motif (Figure 2) is found in many Firmicutes,

including Bacillus subtilis. In most cases, it resides in

potential 5' UTRs of homologues of the yjdF gene

(Additional File 7), whose function is unknown. How-

ever, in Streptococcus thermophilus, a yjdF RNA motif is

associated with an operon whose protein products

synthesize nicotinamide adenine dinucleotide (NAD+)

(Additional File 3). Also, the S. thermophilus yjdF RNA

lacks typical yjdF motif consensus features downstream

of and including the P4 stem. Thus, if yjdF RNAs are

riboswitch aptamers, the S. thermophilus RNAs might

sense a distinct compound that structurally resembles

the ligand bound by other yjdF RNAs. Or perhaps these

RNAs have an alternate solution to form a similar bind-

ing site, as is observed with some SAM riboswitches

[24].

manA and wcaG motifs

The manA and wcaG motifs (Figure 2) are found almost

exclusively in marine metagenome sequences, but are

each detected in T4-like phages that infect cyanobacteria

(Additional File 3). Also, two manA RNAs are found in

g-proteobacteria. Remarkably, many phages of cyanobac-

teria have incorporated genes involved in metabolism,

including exopolysaccharide production and photosynth-

esis [31-33], and some of these cyanophages carry manA

or wcaG RNAs. RNA domains corresponding to the

manA motif are commonly located in potential 5' UTRs

of genes (Additional File 3) involved in mannose or

fructose metabolism, nucleotide synthesis, ibpA chaper-

ones, and photosynthetic genes. Distinctively, wcaG

RNAs typically appear to regulate genes related to pro-

duction of exopolysaccharides or genes that are induced

by high-light conditions. Perhaps manA and wcaG

RNAs are used by phages to modify their hosts’ metabo-

lism [33], although they may also be exploited by unin-

fected bacteria.

epsC motif

RNA domains corresponding to the epsC motif (Figure

2) are found in potential 5' UTRs of genes related to

exopolysaccharide (EPS) synthesis, such as epsC [34], in

B. subtilis and related species. Different species use dif-

ferent chemical subunits in their EPS [35], which acts in

processes such as biofilm formation, capsule synthesis,

and sporulation [35-37]. If epsC RNAs are riboswitches,

they might sense an intermediate in EPS synthesis that

is common to all bacteria containing epsC RNAs. Signal-

ling molecules also regulate EPS synthesis in some bac-

teria [36,38], and are therefore also candidate riboswitch

ligands.

The epsC motif was discovered independently by

another group and named EAR (W. Winkler, personal

communication, 2009). This candidate has been shown

to exhibit transcription antitermination activity, likely by

directly interacting with protein components of the

transcription elongation complex (W. Winkler, personal

communication, 2009), and therefore, this RNA motif

may not also function as a metabolite-binding RNA.

Intriguingly, the JUMPstart sequence motif [39] is found

in the 5' UTRs of genes related to polysaccharide synth-

esis and also is associated with modification of tran-

scriptional elongation [40-43]. We detected a conserved

stem-loop structure among JUMPstart elements (Addi-

tional File 1).

ykkC-III motif

The previously identified ykkC [5] and mini-ykkC [14]

motifs are associated with genes related to those asso-

ciated with ykkC-III, but these RNAs have distinct con-

served sequence and structural features. The new-found

ykkC-III motif (Figure 2) is in potential 5' UTRs of emrE

and speB genes. emrE is the most common gene family
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associated with mini-ykkC and the second most com-

mon to be associated with ykkC, and speB is also asso-

ciated with ykkC RNAs in many cases (Additional File

8). Although a perfectly conserved ACGA sequence in

ykkC-III is similar to the less rigidly conserved ACGR

terminal loops of mini-ykkC RNAs, the structural con-

texts are different (Additional File 1). All three RNA

motifs have characteristics of gene-control elements that

regulate similar genes, and perhaps respond to changing

concentrations of the same metabolite. However, unlike

mini-ykkC, whose small and repetitive hairpin architec-

ture is suggestive of protein binding, both ykkC and

ykkC-III exhibit more complex structural features that

are suggestive of direct metabolite binding.

glnA and Downstream-peptide motifs

The glnA and Downstream peptide motifs carry similar

sequence and structural features (Figure 3), although the

genes they are associated with are very different. Many

genes presumably regulated by glnA RNAs are clearly

involved in nitrogen metabolism, and include nitrogen

regulatory protein PII, glutamine synthetase, glutamate

synthase, and ammonium transporters. Another asso-

ciated gene is PMT1479, which was the most repressed

gene when Prochlorococcus marinus was starved for

nitrogen [44]. Some glnA RNAs occur in tandem, which

is an arrangement previously associated with more-digi-

tal gene regulation [45,46].

The Downstream-peptide motif is found in potential 5'

UTRs of cyanobacterial ORFs whose products are typi-

cally 17 to 100 amino acids long and are predicted not

to belong to a known protein family. We observe a pat-

tern of synonymous mutations and insertions or dele-

tions in multiples of three nucleotides (data not shown),

supporting the prediction of a short conserved coding

sequence. A previously predicted noncoding RNA called

“yfr6” [47] is ~250 nucleotides in length and contains a

short ORF. The 5' UTRs of these ORFs correspond to

Downstream-peptide RNAs. Although only two full-

length yfr6 RNAs were found, 634 Downstream-peptide

RNAs were detected, suggesting that only the 5' UTR is

conserved. Experiments on yfr6 showed that transcrip-

tion starts ~20 nucleotides 5' to the proposed Down-

stream-peptide motif [47]. Also, a Downstream-peptide

RNA resides in the potential 5' UTR of a gene that

appears to be downregulated in response to nitrogen

starvation [47]. A conserved amino acid sequence in

predicted proteins associated with Downstream-peptide

RNAs hints at a possible regulatory mechanism (Addi-

tional File 1). The proposed structural resemblance

between glnA and Downstream-peptide RNAs suggests

they may bind to chemically similar ligands, and pre-

viously conducted experiments suggest that both ele-

ments downregulate genes in response to nitrogen

depletion.

Cyanobacterial photosystem regulatory motifs

psaA motif

Representatives of the psaA motif (Figure 4) occur in

the potential 5' UTRs of Photosystem-I psaAB operons

in certain cyanobacteria. The motif includes three hair-

pins that often include UNCG tetraloops [48]. Although

the regulation of psaAB genes in species with psaA

RNAs has not been studied, multiple psa genes in Syne-

chocystis sp. PCC 6803 are regulated in response to light

through DNA elements that are presumably transcrip-

tion factor-binding sites [49]. Photosynthetic organisms

upregulate photosystem-I (psa) genes under low-light

conditions to maximize energy output, but must reduce

their expression under sustained high-light conditions,

to avoid damage from free radicals [50]. psaA RNAs

could be involved in this regulation, although we have

not found this RNA element upstream of psa genes

other than psaAB.

PhotoRC-I, PhotoRC-II, and psbNH motifs

Two distinct RNA structures (Figure 4) are associated

with genes belonging to the photosynthetic reaction

center family of proteins that are probably psbA.

PhotoRC-I RNAs are present in known cyanobacteria

and in marine environmental samples, whereas

PhotoRC-II RNAs are detected only in marine samples

and a cyanophage. These motifs and psbNH are further

described in Additional File 1.

Other motifs

L17 downstream element

The L17 downstream element (Additional File 6) is

located downstream (within the potential 3' UTRs) of

genes that encode ribosomal protein L17. In many

cases, no annotated genes are located immediately

downstream of the element. Although the motif might

actually be transcribed in the opposite orientation, the

structure as shown is more stable because it carries

Figure 3 Riboswitch candidates glnA and Downstream-peptide.

Annotations are as described in Figure 1a. Purple lines and numbers

indicate conserved sequences or structures common to the two

motifs.
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many G-U base pairs and GNRA tetraloops [48]. These

structures would be far less stable in the corresponding

RNA transcribed from the complementary DNA tem-

plate. RNA molecules overlapping an L17 downstream

element were recently detected by microarrays and

designated SR79100 [51]. The expression of ribosomal

proteins is frequently regulated by a feedback mechan-

ism in which the protein binds an RNA structure in the

5' UTR of its mRNA, called a ribosomal leader [52]. We

did not detect obvious similarity between the L17 down-

stream element and rRNA, although this situation is

typical of ribosomal leaders [53]. Thus, the L17 down-

stream element could function in the 3' UTR and be

part of a feedback-regulation system for L17 production.

Regulation of a gene by a structured RNA domain

located in the 3' UTR is highly unusual in bacteria.

However, precedents include an element in a ribosomal

protein operon that regulates both upstream and down-

stream genes [54], and regulation of upstream genes is

observed in a phage [55] and proposed in Listeria [56].

hopC motif

The hopC motif (Additional File 6) is found in Helico-

bacter species in the potential 5' UTRs of hopC/alpA

gene and co-transcribed hopB/alpB genes. Previous stu-

dies established that expression of the hopCB operon is

increased in response to low pH [57]. The

experimentally determined 5' UTRs of the hopCB

operon mRNA in H. pylori 60190 [57] contains a pre-

dicted hopC motif RNA. HopCB is needed for optimal

binding to human epithelial cells [58] and is presumably

involved in infection of the human stomach.

msiK motif

The msiK motif is always found in the potential 5' UTRs

of msiK genes [59,60], which encode the ATPase subu-

nit for ABC-type transporters of at least two complex

sugars [61], and probably many more [62]. The motif

comprises an 11-nucleotide bulge within a long hairpin.

The 3' side of the basal pairing region includes a pre-

dicted ribosome binding site, which may be part of the

regulatory mechanism. Existing data indicate that msiK

genes are not regulated in response to changing levels

of glucose [59,61], so perhaps the RNA participates in a

feedback-inhibition loop by binding MsiK proteins

(Additional File 1).

pan motif

The pan motif (Additional File 6) is found in three

phyla and is present in the genetically tractable organ-

ism B. subtilis. Each pan RNA consists of a stem inter-

rupted by two highly conserved bulged A residues. Most

pan RNAs occur in tandem, and their simple structure

and dimeric arrangement is suggestive of a dimeric pro-

tein-binding motif. The RNAs are located upstream of

Figure 4 Cyanobacterial motifs related to photosynthesis. Annotations are as described in Figure 1a.
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operons containing panB, panC, or aspartate decarboxy-

lase genes, which are involved in synthesizing pantothe-

nate (vitamin B5).

rmf motif

The rmf motif is found in the potential 5' UTRs of rmf

genes in Pseudomonas species. These genes encode ribo-

some-modulation factor, which acts in the stringent

response to depletion of nutrients and other stressors

[63]. Because Rmf interacts with rRNA, the protein Rmf

might bind to the 5' UTR of its mRNA. Alternately,

because the RNA is relatively far from the rmf start

codon, rmf RNAs might be noncoding RNAs that are

expressed separate from the adjacent coding region.

SAM-Chlorobi motif

The SAM-Chlorobi motif is found in the potential 5'

UTRs of operons containing all predicted metK and

ahcY genes within the phylum Chlorobi. As noted ear-

lier, metK encodes SAM synthetase, and in most other

organisms, metK homologues are controlled by changing

SAM concentrations that are detected by SAM-respon-

sive riboswitches. In contrast, ahcY encodes S-adenosyl-

homocysteine (SAH) hydrolase, and this gene is known

to be controlled by SAH-responsive riboswitches in

some organisms [26]. Sequences conforming to a strong

promoter sequences [64,65] imply that SAM-Chlorobi

RNAs are transcribed (Additional File 1). However, pre-

liminary analysis of several SAM-Chlorobi RNA con-

structs by using in-line probing did not reveal binding

to SAM or SAH (Additional File 1).

STAXI motif

The Ssbp, Topoisomerase, Antirestriction, XerDC Inte-

grase (STAXI) motif is composed mainly of a pseudo-

knot structure repeated at least two and usually three

times (Figure 5). Tandem STAXI motifs are frequently

near to genes that encode proteins that bind or manipu-

late DNA, including single-stranded DNA-binding pro-

teins (Ssbp), integrases and topoisomerases, or

antirestriction proteins. Also, they are occasionally

located near c4 antisense RNAs [66] (Additional File 1).

Because genes proximal to STAXI representatives

encode DNA-manipulation proteins, it is possible that

the STAXI motif represents a single-stranded DNA that

adopts a local structure when duplex DNA is separated,

as occurs during DNA replication, repair, or when

bound by some proteins. However, the UUCG tetra-

loops that frequently occur within the STAXI motif

repeats are known to stabilize RNA, whereas the corre-

sponding TTCG are not particularly stabilizing for DNA

structures [67]. This suggests that the motif is more

likely to serve its function as an RNA structure.

Noncoding RNAs

Several motifs that are most likely expressed as noncod-

ing RNAs unaffiliated with mRNAs also were identified

(Figure 5, Table 1). Gut-1 and whalefall-1 RNAs are

found only in environmental sequences, and Bacter-

oides-2 is found in only one sequenced organism (Addi-

tional File 1). Thus, bacteria from multiple

environmental samples express noncoding RNAs that

are not represented in any cultivated organisms whose

genomes have been sequenced [68,21]. Similarly, Acido-

1 and Dictyoglomi-1 RNAs are found in phyla in which

few genome sequences are available. Further observa-

tions regarding all noncoding RNA candidates can be

found in Additional File 1.

Expansion of representatives of previously characterized

structured RNAs

Existing homology search methods for RNAs frequently

fail to detect representatives of known RNA classes

whose sequences have diverged extensively. However,

our computational pipeline occasionally reveals examples

of such RNAs. Details regarding RNA representatives

that expand the collection of 6S RNAs, AdoCbl ribo-

switches, SAM-II riboswitches, and SAM-I/SAM-IV

riboswitches are provided in Additional File 1. The RNAs

that expand the collection of the superfamily of SAM-I

[69] and SAM-IV [24] riboswitches (Additional File 6)

are typically found in metagenome sequences. These var-

iant SAM-I/SAM-IV riboswitches share many of the

structural features of both families (Additional File 6),

but lack an internal loop in the P2 stem, which is present

in SAM-I/SAM-IV riboswitches (Additional File 1).

Conclusions

Numerous structured RNA candidates have been identi-

fied in the genomic and metagenomic DNA sequence data

from bacteria and archaea. The predicted RNAs exhibit a

great diversity of conserved sequences and structural fea-

tures, and their genomic locations are indicative of a wide

variety of mechanisms of action (for example, cis vs. trans)

and putative biologic roles. Our findings suggest that the

bacterial and archaeal domains of life will continue to be a

rich source of novel structured RNAs.

Although some of the RNAs identified perform the

same function as previously validated RNA classes (for

example, 6S-Flavo RNA, SAM/SAH riboswitches), the

vast majority of the predicted RNA motifs are likely to

perform novel functions. Given that many of these

RNAs are specific to certain lineages or uncultivated

environmental samples, technologies that more rapidly

make available DNA sequence information from addi-

tional lineages of bacteria and archaea are likely to

accelerate the discovery of more classes of structured

RNAs. This discovery rate might also be increased by

improvements in computational analysis methods. These

findings should yield a diverse collection of structured

noncoding RNAs that will reveal a more complete

understanding of the roles that RNAs perform in micro-

bial cells.
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Materials and methods

DNA sequence sources and gene annotations

The microbial subsets of RefSeq [70] version 25 or 32

(Additional file 9) were searched, along with metagen-

ome sequences from acid mine drainage [71], soil and

whale fall [72], human gut [73,74], mouse gut [75], gut-

less sea worms [76], sludge [77], Global Ocean Survey

scaffolds [78,79], other marine sequences [80], and ter-

mite hindgut [81]. Locations and identities of protein-

coding genes were derived from RefSeq or IMG/M [82]

annotations, or from “predicted proteins” [83] in Global

Ocean Survey sequences. However, genes in some

sequences [74,80,81] were predicted by using MetaGene

(dated Oct. 12, 2006) with default parameters [84]. Con-

served protein domains were annotated by using the

Conserved Domain Database version 2.08 [85].

Annotations for tRNAs and rRNAs were derived from

the sources noted earlier, or were predicted by using

tRNAscan-SE [86] run in bacterial mode. To detect

additional rRNAs, annotated rRNAs whose descriptions

read “ribosomal RNA” or “#S rRNA” (# represents any

number) were used in WU-BLAST queries with com-

mand-line flags -hspsepQmax = 4000 -E 1e-20 -W 8

[13]. Other RNAs were detected with Rfam [22] and

Figure 5 Examples of other candidate RNAs. Annotations are as described in Figure 1a. The Bacteroidales-1 motif has more conserved

nucleotides than depicted (Additional File 6). A portion of this figure was adapted from the supplementary data of a previous publication [21].
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WU-BLAST, as described previously [13]. We also used

published alignments of riboswitches [87] as queries

with RAVENNA global-mode searches [19,20], selecting

hits manually based primarily on E-values.

Automated motif identification

To reduce false positives in sequence comparisons, the

pipeline was run separately on related taxa or metagen-

ome sources (Additional File 9). For each run, InterGenic

Regions (IGRs) of at least 30 nucleotides were extracted

between protein-coding, tRNA and rRNA genes.

To generate clusters, an early version of a recently

described algorithm was used [16]. Specifically, IGRs were

compared by using nucleotide NCBI BLAST [17] version

2.2.17 and parameters -W 7 -G 2 -E 2 -q -2 -m 8. Self-

matches were ignored. BLAST scores below a parameter S

(see later) were considered insignificant and were ignored.

Each BLAST match defines two “nodes,” corresponding to

the matching sequences. Nodes that overlap by at least

five nucleotides are merged, along with their BLAST

homologies. A cluster consists of all nodes that have direct

or indirect (transitive) BLAST matches. Closely related

sequences that span multiple distinct elements in an entire

IGR can lead to spurious node merges. Therefore, homo-

logies with BLAST scores >100 are ignored.

If a node’s length in nucleotides is L, and L < 500,

then the node is extended on either side by (500-L)/2

nucleotides, but is constrained to remain within the ori-

ginal IGR. CMfinder can easily tolerate nodes of 500

nucleotides. When L > 1,000, nodes are shrunk by (L -

1,000)/2 nucleotides around the center. The L > 1,000

case is extremely rare. Only clusters with at least three

members were reported.

For each pipeline run, we tried a range of values for

the parameter S = 35, 40, ..., 85, and determined how

many known RNAs were detected with each value.

Based on these data, a set of S values was selected

manually, and the union of clusters arising from each S

was used as input to CMfinder [18]. CMfinder was used

to predict motifs exactly as before [13]. Automated

homology searches were then performed as described

[13], except that covariance model scores used the null3

model [88]. Motifs were scored by using a previously

established method [13], and by using tools comprising

Pfold [89] to infer a phylogenetic tree, and then running

pscore [90]. We also automatically eliminated motifs

that had no covarying base-pair positions, that had an

average G+C content <24%, that had representatives

whose nucleotide coordinates overlapped the reverse-

complements of other representatives on average by

≥30% of their nucleotides, or that had fewer than six

positions that were ≥97% conserved (when sequences

were weighted with the GSC algorithm). Source code is

provided (Additional File 10).

Manual analysis of motifs

The manual analysis of each candidate RNA motif pro-

ceeded essentially as described previously [14]. For motifs

that were likely to be cis-regulatory, we routinely searched

for articles referencing the locus tags of apparently regu-

lated genes, by using Google Scholar [91]. We also used

mutual information analysis [87] to predict additional

base-pairing interactions. Motifs less likely to represent

structured RNAs were rejected by using previously estab-

lished criteria [14]. In motif consensus diagrams, covaria-

tion and levels of conservation were calculated using

earlier protocols [14], but ≤10% noncanonic pairs were tol-

erated in alignment columns that correspond to conserved

base pairs. RNAs were drawn with R2R (Z.W., R.R.B.,

unpublished software) and Adobe Illustrator.

Assessing the novelty of motifs

To determine whether the predicted RNA structures

were reported previously, we searched the Rfam database

[22], and various articles not yet incorporated into Rfam

that performed detailed analysis or experiments on new-

found candidate RNAs [10,47,92-110]. Although some

raw predictions of a previous report [9] overlap some of

our RNA motifs (Additional File 11), these raw predic-

tions have never been subjected to detailed evaluation.

Additionally, extensive Google searches [111] for genes

associated with crcB RNAs revealed that one of the 358

raw predictions of conserved elements on the RibEx web

server [112] overlaps several of the crcB RNAs we found.

This conserved element was called RLE0038 and was not

previously subjected to detailed evaluation. We have not

determined whether other coinciding predictions are pre-

sent on this web server because its data are not available

in a machine-readable format.

In-line probing experiments

RNA constructs were prepared by in vitro RNA transcrip-

tion by using T7 RNA polymerase and the appropriate

DNA templates that were created by overlap extension of

synthetic DNA oligonucleotides by using SuperScript II

reverse transcriptase (Invitrogen), as instructed by the

manufacturer. RNA transcripts were purified by using

denaturing (8 M urea) polyacrylamide gel electrophoresis

(PAGE). RNAs were eluted from the gel, dephosphory-

lated by using alkaline phosphatase, and 5' radiolabeled

with [g-32P] by using methods reported previously [26]. 5'
32P-labeled fragments resulting from in-line probing reac-

tions were subjected to denaturing PAGE, and were

imaged and analyzed as previously described [26].

Equilibrium dialysis experiments

Equilibrium dialysis experiments were conducted in a

Dispo-Equilibrium Biodialyzer (The Nest Group, Inc.,

Southboro, MA, USA), which comprises two chambers
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(A and B) separated by a 5,000-kDa MW cut-off mem-

brane. Chamber A was loaded with 20 μl solution of 500

nM 3H-SAM, and Chamber B was loaded with 20 μM spe-

cified RNA in a buffer containing 50 mM MOPS (pH 7.2

at 20°C), 20 mM MgCl2, and 500 mM KCl. The chambers

were equilibrated at 25°C for 10 h before a 3-μl aliquot

was removed from each chamber. Radioactivity of the ali-

quots was measured with a liquid scintillation counter.

Each experiment was repeated 3 times, and average B/A

values and standard deviations were calculated.

Additional file 1: Supplementary results and discussion. Additional

analysis of motifs, including those not discussed in the manuscript, and

in-line probing experiments on riboswitch candidates.

Additional file 2: Summary and evaluation of all motifs. Table 1, with

summary of supporting evidence, and numbers of representatives of

each motif.

Additional file 3: Taxa of motif representatives, genes flanking

representatives and annotated multiple-sequence alignments. For

each motif, this file shows the taxa of each motif representative, depicts

genes flanking these representatives and describes conserved domains

that the genes encode. Also, a multiple-sequence alignment is provided

for each motif, and includes secondary structure and other annotations.

Additional file 4: Raw text alignment files, including annotation.

Raw alignments of RNAs, including annotations (for example, predicted

transcription terminators, flanking sequences) in “Stockholm” text format.

The alignment format and appropriate viewing programs are discussed

on Wikipedia [113]. The Stockholm files can be retrieved from the .tar.gz

archive file by using programs such as WinZip (Windows), StuffIt

Expander (Mac), or tar/gzip (UNIX).

Additional file 5: Raw text alignment files, just the motifs. Raw

alignments of RNA motifs with minimal annotation and no flanking

sequences, in “Stockholm” text format. The Stockholm files can be

retrieved from the .tar.gz archive file by using programs such as WinZip

(Windows), StuffIt Expander (Mac), or tar/gzip (UNIX).

Additional file 6: Consensus diagrams of all motifs. Consensus

diagrams depicting all motifs in high resolution.

Additional file 7: Alignment of YjdF proteins. Multiple-sequence

alignment of proteins predicted to be homologous to YjdF of Bacillus

subtilis.

Additional file 8: Genes associated with ykkC, mini-ykkC and ykkC-III

RNAs. The frequencies with which various gene families are associated

with ykkC, mini-ykkC or ykkC-III RNAs are listed.

Additional file 9: Partitioning of genomes and metagenomes.

Describes how genomes and metagenomes were divided into pipeline

runs.

Additional file 10: Source code implemented as part of this project.

Source code files and a README.pdf file are provided to assist in detailed

understanding of the methods. The files can be retrieved from the .tar.gz

archive file, as described for Additional file 4.

Additional file 11: Overlap with previous raw predictions. Overlaps

of our RNA motifs with raw predictions of a prior study [9]. Tab-delimited

text file.
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